
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 12, No. 3, December 2018, pp. 1054~1062

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i3.pp1054-1062  1054

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

Improved Chicken Swarm Optimization Algorithm to Solve

the Travelling Salesman Problem

Fayçal Chebihi, Mohammed Essaid Riffi, Amine Agharghor, Soukaina Cherif Bourki Semlali,

Abdelfattah Haily
Chouaib Doukkali University, Morocco

Article Info ABSTRACT

Article history:

Received Apr 22, 2018

Revised Jul 16, 2018

Accepted Aug 30, 2018

 This paper proposes a novel discrete bio-inspired chicken swarm

optimization algorithm (CSO) to solve the problem of the traveling salesman

problem (TSP) which is one of the most known problems used to evaluate

the performance of the new metaheuristics. This problem is solved by

applying a local search method 2-opt in order to improve the quality of the

solutions. The DCSO as a swarm system of the algorithm increases the level

of diversification, in the same way the hierarchical order of the chicken

swarm and the behaviors of chickens increase the level of intensification. In

this contribution, we redefined the basic different operators and operations of

the CSO algorithm. The performance of the algorithm is tested on a

symmetric TSP benchmark dataset from TSPLIB library. Therefore, the

algorithm provides good results in terms of both optimization accuracy and

robustness comparing to other metaheuristics.

Keywords:

2-OPT

CSO

DCSO

NP-HARD

TSP

TSPLIB
Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Fayçal Chebihi,

Chouaib Doukkali University, Morocco.

Email: chebihi.f@ucd.ac.ma

1. INTRODUCTION

Traveling salesman problem (TSP) is one of the most extensively studied problems [1]
in operational research. The aim of the problem is to find the shortest path linking a set of cities;

the Salesman should cross each city only once and return to the city of departure in order to close

the cycle.

The TSP is NP-hard problem and its complexity increase depends on the number of cities included.

If we consider 𝑛 is the number of cities, then the number of the possible solutions is:

(1)!

2

n 
 (1)

Taking into consideration that a computer finds a possible solution in 1µs time process. The total

time to obtain all possible solutions is described by the following Table 1.

Table 1. The Computation Time Estimated
Number of Cities Numbet of Tours Time in Year

20 6,08E+16 2

25 3,1E+23 9,84E+6

30 4,4E+30 1,4E+14

35 1,48E+38 4,68E+21

40 1,02E+46 3,23E+29

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Improved Chicken Swarm Optimization Algorithm to Solve the Travelling Salesman… (Fayçal Chebihi)

1055

This kind of problem is very common in industry business [2], [3] such as X-ray crystallography

while analyzing crystals structure or even in more real life situations logistics [4] such as school

transportation.

The difficulty of this problem has generated much interest to solve TSP, starting with the

implementation of heuristics methods such as Tabu Search (TS) [5], Genetic Algorithm (GA) [6],

Heuristic Approach [7], Greedy Randomize Adaptive Search Procedure (GRASP) [8], and Simulated

Annealing (ST) [9]. Recently, several studies use of the bio-inspired algorithms using swarm intelligence

methods [10] such as: ant colonies optimization (ACO) [11], particle swarm optimization (PSO) [12], [13]

bee colonies optimization (BCO) [14], harmony search algorithm (HS) [15], [16], bat-inspired algorithm

(BA) [17], [18],cuckoo search (CS) [19], [20] and a bio-inspired hunting search algorithm (HUS) [21].

The metaheuristic Chicken swarm optimization (CSO) is a bio-inspired behavior of chicken. It was

introduced in 2014 by XIAN BING MENG [22], and proves its efficiency to solve some continued

optimization problem, but it is not possible to use it to solve the combinatorial optimization problem. The

aim of this paper is to propose a novel adaptation of the CSO metaheuristic to solve the combinatorial

optimization problems by redefining operations and operators. To prove the efficiency of the proposed

adaptation, the adapted CSO is applied to solve some benchmark instances of the traveling salesman

problem. The obtained results are compared to the best solutions exiting in the literature.

The rest of the paper is organized as follows: the second section describes the Traveling Salesman

Problem, the third section introduces the Chicken Swarm Optimization Algorithm, the forth section presents

our proposed adaptation of the CSO algorithm to solve TSP, the fifth section shows the experimental and

numerical results, and finally the last section is a conclusion.

2. TRAVELING SALESMAN PROBLEM

The traveling salesman problem [23] was first introduced by the Italian Mathematician Karl Mengre

in 1930 as a given list of cities along with the cost of travel between each pair of them. The aim of this study

is to find the shortest path, which allowed visiting each city once starting and ending in the same city. Given

this simple formulation, it might be possible that the problem could have an equally simple solution.

It appears that this is not the case even if the problem is easy to express and interpreted. To the present day

there is no efficient solution to the TSP has been found. However, the problem has inspired several

mathematicians, computer scientists and a host of non-professional researchers. The problem can be

mathematically formulated as: Let G = (V, E, W) be a weighted graph with V = {v1, v2 … vn}, then the TSP

in G can be represented as:

Let G = (V, E, W) be a weighted graph with V = {v1, v2 … vn}, then the TSP in G can be

represented as;

minimize ∑ 𝒘(𝒆). 𝒙𝒆𝒆∈𝑬 subject to:
({ })

()

2,

2, ,

{0,1},

i
e ie v

ee S

e

x v V

x S V S

x e E







   


  


  




 (2)

3. CHICKEN SWARM OPTIMIZATION

The Chicken swarm optimization (CSO) offers a swarm optimization based on the chicken’s natural

behavior in a swarm. A hierarchical order is established in the swarm. The chickens with the highest fitness

values are identified as roosters and those with the worst fitness values are chicks. Meanwhile, those in the

middle are hens. The swarm is divided into groups; each group contains a rooster, a couple of hens and

chicks and is created randomly as described earlier [22].

The rooster with the best fitness value can look for food in a wider range of places.

1 2

, , (1 (0,))t t

i j i jx x Randn    
 (3)

 2

()

| |

1,

1, ,

,

k i

i

i j

f f

f

if f f

k N k i

e otherwise




 
 

 





  


 (4)

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 3, December 2018 : 1054 – 1062

1056

Hens can randomly steal good food from the other chickens.

1

, , 1, ,

2, ,

1 ()

2 ()

t t t t

i j i j r j i j

t t

r j i j

x x S Rand x x

S Rand x x

     

   
 (5)

𝑤here

(1)

(| |)
1

i r

i

f f

f
S e



 
 

  (6)

And
2()

2 r if f
S e


 (7)

Chicks look for food around their mothers

1

, , , ,()t t t t

i j i j m j i jx x FL x x    
 (8)

Finally, the algorithm of CSO is represented as follow:

Chicken Swarm Optimization Algorithm

Initialize a population of N chickens and define the related parameters

Evaluate the N chickens’ fitness values, t=0

While (t < Max_Generation)

 If (t % G == 0)

 Rank the chickens’ fitness values and establish a hierarchical order in the swarm

 Divide the swarm into different groups, and determine the relationships between chicks and mother hens

in a group

 End IF

 For i=1 : N

 If i== rooster Update its solution/location using equation (3) EndIf

 If i== hens Update its solution/location using equation (5) EndIf

 If i== chicks Update its solution/location using equation (8) EndIf

 Evaluate the new solutions

 If the new solution is better than its previous one update it

 End for

End While

4. A NOVEL DISCRETE CHICKEN SWARM OPTIMIZATION TO SOLVE TRAVELING

SALESMAN PROBLEM

This paper proposes a novel adaptation of the Chicken Swarm Optimization (CSO) to solve the

Traveling Salesman Problem. This adaptation is established by the redefinition of operators and operations

and respects the general process of the CSO algorithm. This section describes the different proposed

improvements of operator and operations.

4.1. Operator Improvement

The position 𝑋𝑖 of a selected chickeni is the solution represented by a Hamiltonians cycle of

the 𝑛 cities 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛}.𝑋𝑖 = [𝑣1, 𝑣2, … , 𝑣𝑛] 𝑤ℎ𝑒𝑟𝑒 (𝑖 ∈ [1, … , 𝑛])

4.2. Operations Improvement

4.2.1. The Chicken Movement
There are 3 types of chickens (hens, chicks and roosters). Each one has a determined process of

movement that can be determined as follows:

a) Roosters

Roosters that have better fitness value can look for food in a larger space. This concept is

represented by Equation (3). Based on these preps, we can define this movement as:

1 2(0)t t

i ix x Randn    
 (9)

Where ⨂ means a self-permutation and 𝑅𝑎𝑛𝑑𝑛(𝑂, 𝜎2) defines a random number of permutations.

An example of this operation is represented as follows:

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Improved Chicken Swarm Optimization Algorithm to Solve the Travelling Salesman… (Fayçal Chebihi)

1057

Let’s 𝑋𝑖
𝑡 = [1,2,3,4,5] and Rand = 2

Figure 1. Example of movement of a rooster

The new solution becomes: 𝑋𝑖
𝑡+1 = [1,3,2,5,4]

b) Hens

Hens follow their group-mate rooster to look for food. However, they randomly steal food from

other chickens. These movements are defined in Equation (2). In this adaptation, we represent the movement

of hens following the group-mate rooster as a local search around the rooster. In the same way, we represent

the movement of hens while stealing food from other chickens as a local search around the chicken.

The movement equation of hens become:

1

1

2

()

()

t t t t

i i r i

t t

r i

x x Rand x x

Rand x x

   

 

!

! (10)

Where A⊖B presents a list of permutations to go from solution B to solution A.

Example: Let’s A= [1,2,3,4,5] and B= [2,4,3,1,5]

Step1: (1 2) Step2: (4  2)

Figure 2. Example of movement of a hens step 1 and step 2

Finally, to go from solution A to solution B the list of permutation is: A⊖B = [{1,2}, {4,2}].

The ⊕ operator indicates that we add the next operation to the new solution created by the

last operation.

c) Chicks

The chicks find the food around their mother. This concept presents a fatal disadvantage because the

chicks can only learn from their mothers. Therefore, the chicks can easily fall into local minimum.

Dinghui [24] proposes a new equation to go through this problem by adding the probability of learning from

the main rooster and a self-learning operation. The new equation becomes:

1 ()

()

t t t t

i i m i

t t

r i

x w x FL x x

C x x

    

 

!

! (11)

Where w is a self-permutation parameter that indicates the number of permutations and FL is a learning

factor which means that the chick learn from its mother in the same way C is a learning factor from the

rooster.

A =

B =

1 2 3 4 5

2 4 3 1 5

A =

B’ =

1 2 3 4 5

1 4 3 2 5

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 3, December 2018 : 1054 – 1062

1058

4.3. The Neighborhood
To improve the solution quality, neighborhood methods are required. This article proposes a 2-opt

local search to improve the quality of the solution proposed by the DSCO algorithm.

Figure 3. Move from solution (B) to solution (A) with a simple permutation

he 2-opt movement causes a small perturbation to the solution in order to find a good solution in its

neighborhood. This operation is demonstrated in Figure 3.

4.4. Discrete CSO Algorithm
Step 1: Initialize a population of N chickens and define related parameters (N the number of

chickens in the swarm, Rand [0, 1], r1 [1… N] is an index of rooster r2 r1 [1, …, N] is an index of chickens,

FL [0,1], C and w.

Step 2: Use a 2-opt local search to improve the quality of solutions

Step 3: Evaluate The N chicken’s fitness values at t=0 and save the global best solution.

Step 4: Rank the chickens and establish a hierarchal order in the swarm and improve the solution

using 2-opt local search.

Step 5: Randomly divide the swarm into different groups and determine the relationship between

the chicks and the mother-hens in a group.

Step 6: Find a new solution by updating the position of each rooster, hens and chicks using the new

Equations (9), (10) and (11).

Step 7: Update the new solution when it is better than the previous one.

Step 8: Return to step 4 until the maximum number of iterations is reached.

5. EXPERIMENTAL RESULTS

This section illustrates performance tests of CSO algorithm on Euclidean instances of TSPLIB. All

experiments are performed on an Intel computer processor (R) Core (TM) i7-6500 CPU @ 2.5GHz @ 2.60

GHz and 16 GB of RAM. The program is coded in the programming language C # Visual Studio 2015 and

for each instance TSPLIB we test 100 times.

To run the program, a list of parameters has been set. Table 2 shows the values of the

parameters used:

Table 2. The Parameters Values
Parameters Values

PS (population size) 100

RN (Number of roosters) 2%

HN (Number of hens) 20%

CN (Number of chicks) 78%

G (Number of tours to update the algorithm) 2

C (Rooster learning factor) 0,4

FL (Hens learning factor) 0,4

W (self-learning factor) 0.9

5.1. Parametric Analysis
There are eight parameters in the DCSO algorithm. The purpose of the algorithm is that the hens

must look for a new solution around a good one represented by the rooster. As a result, the number of

roosters must be higher than the number of hens (NR > NH). Similarly, the chicks are seeking a new solution

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Improved Chicken Swarm Optimization Algorithm to Solve the Travelling Salesman… (Fayçal Chebihi)

1059

around their mothers, and for a good intensification, the number of chicks must be higher than the number of

hens (NC > NH). If the value of G is very high, the algorithm cannot converge quickly to the optimal

solution. Otherwise, if the value of G is very low, the algorithm may fall into a local optimal. After several

tests, G=2 may achieve a good result in a much reduced time. As for G, the value of this parameter has a

significant impact on the result. Furthermore, to avoid the problem of falling into minimum optimal in the

chick’s movement, the self-learning parameter gives to the chick the possibility to find a good solution in a

bigger space of solutions by the value of w=0,9. The FL parameters give the chicks the possibility to learn

from the mother. Moreover, the best value must be a random number between 0,4 and 1 (FL∈ [0.4,1]).

In order to give more robustness to the algorithm, the chicks can also learn from roosters using a C parameter

with a learning factor randomly chosen between 0.4 and 1 (C∈ [0.4,1]).

Figure 4 shows the evolution of the average running time for 100 executions while varying the

parameter G and the size of the population using TSPLIB instance with a different number of the city (ST70

and KroA100).

Figure 4. Run time obtained by varying G parameter

Figure 5. Run time obtained by varying population

size

Figure 6. Run time obtained by varying the number of roosters

The results reveal that there is an increase in the execution time when increasing the value of the

parameter G on Figure 2 and the size of the population on Figure 5.

For more details, other experiments have been performed to detect the best value of the parameters

RN, HN and CN.

The experiments in Figure 6 show that the percentage of the rooster should be low to ensure

faster convergence.

Table 3 shows the numerical results obtained when applying the DCSO to the TSP using some

TSPLIB instances. The first column contains the name of the instance, the second column contains the

number of nodes in the instance, the third column contains the optimal solution found in TSPLIB Library,

and the fourth column contains the best solution obtained by the DCSO algorithm. Moreover, the fifth

column contains the worst solution, the sixth column contains the average solution, the seventh column

denotes the standard deviation of solution obtained over 30 independent runs, the eighth column contains the

percentage deviation of the average solution over 30 independent runs, the ninth column contains the

percentage deviation of the best solution in 30 independent runs, the tenth column is represented by tow

parameters. The number for optimal solution (Copt) and the number of solution (over 30 runs) for which the

deviation from optimal solution is less than or equal to 1, and the last column represents the best time

0

200

400

600

2 5 10

Ti
m

e
(s

)

st70 KroA100

0

100

200

300

100 200 400
Ti

m
e

(s
)

st70 KroA100

0

200

400

2 5 10

Ti
m

e
(s

)

st70 KroA100

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 3, December 2018 : 1054 – 1062

1060

obtained by the DCSO algorithm in 30 independent runs. The algorithm stops when the best solution is found

or if the execution time exceeds 3000s.

Table 3. Numerical Results Obtained by DCSO Applied to Some TSP Instances of TSPLIB

Instance Size Opt Best Sol Worst Sol Average PDav (%) PDbest (%) C1%/Copt Time (s)

Eil51 51 426 426 426 426 0.00 0.00 30/30 0,32

Berlin52 52 7542 7542 7542 7542 0.00 0.00 30/30 0,09

St70 70 675 675 675 675 0.00 0.00 30/30 0,04

Eil76 76 538 538 541 239.5 0.27 0.00 30/21 5,78

Pr76 76 108159 108159 108159 108159 0.00 0.00 30/30 8,35

Rat99 99 1211 1211 1211 1211 0.00 0.00 30/30 11,79

KroA100 100 21282 21282 21282 21282 0.00 0.00 30/30 0,05

KroB100 100 22141 22141 22141 22141 0.00 0.00 30/30 3,17

KroC100 100 20749 20749 20749 20749 0.00 0.00 30/30 2,68

KroD100 100 21294 21294 21294 21294 0.00 0.00 30/30 7,49

KroE100 100 22068 22068 22156 22112 0.19 0.00 30/05 11,52

Rd100 100 7910 7910 7910 7910 0,00 0.00 30/30 10,55

Eil101 100 629 629 637 632.43 0.54 0.00 30/05 16.9

Lin105 105 14379 14379 14379 14379 0.00 0.00 30/30 2,2

Pr107 107 44303 44303 44326 44314,5 0,02 0,00 30/25 20,02

Pr124 124 59030 59030 59030 59030 0,00 0,00 30/30 1,9

Bier127 127 118282 118282 118657 118469,5 0,15 0,00 30/7 64,62

Ch130 130 6110 6110 6155 6124,1 0,23 0,00 30/5 15,05

Pr136 136 96772 96772 97468 96995 0,23 0,00 30/4 20,75

Pr144 144 58537 58537 58537 58537 0,00 0,00 30/30 2,01

Ch150 150 6528 6528 6584 6550,3 0,34 0,00 30/2 23,7

KroA150 150 26524 26524 26649 26560,2 0,13 0,00 30/7 20,02

KroB150 150 26130 26130 26266 26146,63 0,06 0,00 30/7 21,21

Pr152 152 73682 73682 73818 73759,06 0,10 0,00 30/20 13,4

Rat195 195 2323 2324 2360 2340,7 0,76 0,04 20/0 -

D198 198 15780 15780 15870 15802,83 0,14 0,00 30/3 45,07

KroA200 200 29368 29368 29740 29449,23 0,27 0,00 30/2 49,05

KroB200 200 29437 29448 29819 29542.49 0.29 0.03 28/0 -

Gil262 262 2378 2382 2410 2390,7 0,53 0,08 26/0 -

A280 280 2579 2579 2611 2586,83 0,30 0,00 30/6 102,17

Pr299 299 48191 48191 48552 48311,7 0,25 0,00 30/2 125,11

Lin318 318 42029 42154 42713 42462.16 1.03 0.29 12/0 -

Rd400 400 15281 15336 15574 15465.3 1.20 0.35 7/10 -

Nrw1379 1379 56638 58951 59837 59349.53 4.78 4.08 0/0 -

The results in Table 3 confirm that the DCSO algorithm can solve most of the TSPLIB instances in a

very fast execution time.

To prove the robustness of the algorithm, Table 4 compares the average solution proposed by the

DSCO algorithm with other methods recently used and which are applied to solve TSP using TSPLIB library.

Table 5 compares the best execution time achieved by the algorithm compared to new bio-inspired algorithm

that solves the TSP.

Table 4. The Average Results Obtained by Some Methods on Some TSPLIB Instances
Instance Opt DSCO ACO [25] [26] PSO [13] GA [27] [28]

Eil51 426 426 430 436,9 429

Berlin52 7542 7542 7594 7832 7738

St70 675 675 750 697,5 -

Eil76 538 538 552,6 560,4 -

KroA100 21282 21282 21475 - 21445

According to the results in Table 4, the average time obtained by the DSCO algorithm gives good

results than the other methods. Table 5, Figure 7, and Figure 8 compare the average time obtained by the

DSCO algorithm compared to new bio-inspired algorithms.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Improved Chicken Swarm Optimization Algorithm to Solve the Travelling Salesman… (Fayçal Chebihi)

1061

Table 5. The Average Time Results Obtained by Bio-inspired Methods on Some TSPLIB Instances
Instance Opt DSCO CS [20] BA [18] HUS [21]

Eil51 426 0,32 1,16 0,20 0,51

Berlin52 7542 0,09 0,09 0,03 0,16

St70 675 0,04 1,56 0,43 1,42

KroA100 21282 0,05 2,70 1,36 7,18

KroB100 22141 3,17 8,74 3,35 11,25

KroC100 20749 2,50 3,36 2,51 6,48

Figure 7. Comparing execution time of bio-inspired

algorithm in a small TSP instances

Figure 8. Comparing execution time of bio-inspired

algorithm in a large TSP instances

The experimental results show that execution time of DSCO algorithm is better than the other bio-

inspired algorithms in most of TSPLIB instances used to test the performance of the algorithm. Especially in

large instance, our algorithm can find the best solution in the best time, which will be used to solve other NP-

hard combinatory problems like TSP.

6. CONCLUSION

This paper presents a new discrete Chicken swarm optimization (DCSO) algorithm to solve the

symmetric Traveling salesman problem (TSP) by applying a local search to improve the quality of the

solutions. The adaptation of the algorithm is based on the behaviors of chickens in a swarm. The algorithm

has been tested on a set of benchmark instances of TSPLIB. Its performance exceeds the recent methods used

to solve the TSP such as ACO, PSO and GA, the effectiveness of the algorithm is due to the diversification of

operations and operators based on the different kind of chickens (roosters, hens and chicks).

In the future researches we will improve the DCSO algorithm in order to obtain a better results by

applying an hybrid approaches. Moreover, the DCSO robustness and rapidity encourage the use of algorithm

to solve other combinatorial optimization problems.

REFERENCES
[1] S. Arora, “Polynomial time approximation schemes for Euclidean traveling salesman and other geometric

problems,” J. ACM, vol. 45, no. 5, pp. 753–782, Sep. 1998.

[2] R. G. Bland and D. F. Shallcross, “Large travelling salesman problems arising from experiments in X-ray

crystallography: A preliminary report on computation,” Oper. Res. Lett., vol. 8, no. 3, pp. 125–128, Jun. 1989.

[3] H. D. Ratliff and A. S. Rosenthal, “Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling

Salesman Problem,” Oper. Res., vol. 31, no. 3, pp. 507–521, Jun. 1983.

[4] J. K. Lenstra and A. H. G. R. Kan, “Some Simple Applications of the Travelling Salesman Problem,” J. Oper. Res.

Soc., vol. 26, no. 4, pp. 717–733, Dec. 1975.

[5] M. Zachariasen and M. Dam, “Tabu Search on the Geometric Traveling Salesman Problem,” in Meta-Heuristics, I.

H. Osman and J. P. Kelly, Eds. Boston, MA: Springer US, 1996, pp. 571–587.

[6] J.-Y. Potvin, “Genetic algorithms for the traveling salesman problem,” Ann. Oper. Res., vol. 63, no. 3, pp. 337–

370, Jun. 1996.

[7] Abid, M. M., & Muhammad, I. (2015). Heuristic Approaches to Solve Traveling Salesman Problem. Indonesian

Journal of Electrical Engineering and Computer Science, 15(2), 390-396.

[8] Y. Marinakis, A. Migdalas, and P. M. Pardalos, “Expanding Neighborhood GRASP for the Traveling Salesman

Problem,” Comput. Optim. Appl., vol. 32, no. 3, pp. 231–257, Dec. 2005.

[9] X. Geng, Z. Chen, W. Yang, D. Shi, and K. Zhao, “Solving the traveling salesman problem based on an adaptive

simulated annealing algorithm with greedy search,” Appl. Soft Comput., vol. 11, no. 4, pp. 3680–3689, Jun. 2011.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 3, December 2018 : 1054 – 1062

1062

[10] Al-Obaidi, A. T. S., Abdullah, H. S., & Ahmed, Z. O. (2018). Meerkat Clan Algorithm: A New Swarm Intelligence

Algorithm. Indonesian Journal of Electrical Engineering and Computer Science, 10(1), 354-360.

[11] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo, “Parallel Ant Colony Optimization for the Traveling Salesman

Problem,” in Ant Colony Optimization and Swarm Intelligence, vol. 4150, M. Dorigo, L. M. Gambardella, M.

Birattari, A. Martinoli, R. Poli, and T. Stützle, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006,

pp. 224–234.

[12] M. Clerc, “Discrete Particle Swarm Optimization, illustrated by the Traveling Salesman Problem,” in New

Optimization Techniques in Engineering, vol. 141, Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,

pp. 219–239.

[13] X. H. Shi, Y. C. Liang, H. P. Lee, C. Lu, and Q. X. Wang, “Particle swarm optimization-based algorithms for TSP

and generalized TSP,” Inf. Process. Lett., vol. 103, no. 5, pp. 169–176, Aug. 2007.

[14] D. Teodorovic, P. Lucic, G. Markovic, and M. D. Orco, “Bee Colony Optimization: Principles and Applications,”

2006, pp. 151–156.

[15] Zong Woo Geem, Joong Hoon Kim, and G. V. Loganathan, “A New Heuristic Optimization Algorithm: Harmony

Search,” SIMULATION, vol. 76, no. 2, pp. 60–68, Feb. 2001.

[16] M. BOUZIDI and M. E. RIFFI, “ADAPTATION OF THE HARMONY SEARCH ALGORITHM TO SOLVE

THE TRAVELLING SALESMAN PROBLEM,” Journal of Theoretical and Applied Information Technology,

04-Oct-2014.

[17] X.-S. Yang, “A New Metaheuristic Bat-Inspired Algorithm,” in Nature Inspired Cooperative Strategies for

Optimization (NICSO 2010), vol. 284, J. R. González, D. A. Pelta, C. Cruz, G. Terrazas, and N. Krasnogor, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 65–74.

[18] Saji, Y., & Riffi, M. E. (2016). “A novel discrete bat algorithm for solving the travelling salesman problem,”

Neural Comput. Appl., vol. 27, no. 7, pp. 1853–1866, Oct. 2016.

[19] X.-S. Yang and Suash Deb, “Cuckoo Search via Lévy flights,” 2009, pp. 210–214.

[20] A. Ouaarab, B. Ahiod, and X.-S. Yang, “Discrete cuckoo search algorithm for the travelling salesman problem,”

Neural Comput. Appl., vol. 24, no. 7–8, pp. 1659–1669, Jun. 2014.

[21] amine AGHARGHOR and M. E. RIFFI, “HUNTING SEARCH ALGORITHM TO SOLVE THE TRAVELING

SALESMAN PROBLEM.,” Journal of Theoretical and Applied Information Technology, 10-Apr-2015.

[22] X. Meng, Y. Liu, X. Gao, and H. Zhang, “A New Bio-inspired Algorithm: Chicken Swarm Optimization,” in

Advances in Swarm Intelligence, vol. 8794, Y. Tan, Y. Shi, and C. A. C. Coello, Eds. Cham: Springer International

Publishing, 2014, pp. 86–94.

[23] J. Monnot and S. Toulouse, “The Traveling Salesman Problem and its Variations,” in Paradigms of Combinatorial

Optimization, V. Th. Paschos, Ed. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013, pp. 173–214.

[24] D. Wu, F. Kong, W. Gao, Y. Shen, and Z. Ji, “Improved chicken swarm optimization,” 2015, pp. 681–686.

[25] C. Tsai, “A new hybrid heuristic approach for solving large traveling salesman problem*1,” Inf. Sci., vol. 166, no.

1–4, pp. 67–81, Oct. 2004.

[26] A.Puris, R. Bello, Y. Martínez, and A. Nowe, “Two-Stage Ant Colony Optimization for Solving the Traveling

Salesman Problem,” in Nature Inspired Problem-Solving Methods in Knowledge Engineering, vol. 4528, J. Mira

and J. R. Álvarez, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007, pp. 307–316.

[27] S.-M. Soak and B.-H. Ahn, “New Genetic Crossover Operator for the TSP,” in Artificial Intelligence and Soft

Computing - ICAISC 2004, vol. 3070, L. Rutkowski, J. H. Siekmann, R. Tadeusiewicz, and L. A. Zadeh, Eds.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 480–485.

[28] I.-H. Kuo, S.-J. Horng, T.-W. Kao, T.-L. Lin, C.-L. Lee, Y.-H. Chen, Y. Pan, and T. Terano, “A hybrid swarm

intelligence algorithm for the travelling salesman problem: A hybrid swarm intelligence algorithm for the travelling

salesman problem,” Expert Syst., vol. 27, no. 3, pp. 166–179, Jun. 2010.

