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ABSTRACT

Pedestrian detection, face detection, speech recognition and object detection are some
of the applications that have benefited from hardware-accelerated Support Vector
Machine (SVM). Computational complexity of SVM classification makes it chal-
lenging for designing hardware architecture with real-time performance and low
power consumption. On an embedded streaming architecture, testing data are mostly
stored on external memory. Data are transferred in streams with the maximum
bandwidth limited to the bus bandwidth. The hardware implementation for SVM
classification needs to be sufficiently fast to keep up with the data transfer speed.
Prior implementation throttles data input to avoid overwhelming the computational
unit. This results in a bottleneck in the streaming architecture. In this work,
we propose a streaming-architecture multi-class SVM classification for an embedded
system that is fully pipelined and able to process data continuously without any need
to throttle data stream input. The proposed design is targeted for embedded platform
where testing data is transferred in streams from external memories. The architecture
is modeled using Verilog and the evaluation is targeted for Altera Cyclone IV field
programmable gate array platform. Performance profiling on the proposed architec-
ture is done with regard to the number of features and support vectors. For validation,
the proposed architecture is simulated using ModelSim and the results are compared
with LibSVM. Based on the simulation result, the proposed architecture is able to
produce a throughput of 1/Nf classification per clock cycle, where Nf is the number
of features.
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1. INTRODUCTION
Pervasive computing leads to emergence of applications that mandated computational intelligence

and analytics. Entertainment, sensor networks, health care and environmental monitoring are some of the
example applications that have embedded pervasive computing into their system [1]. These applications need
to process large amounts of data, and this requires massive data parallelism that needs high data bandwidth
transfer between the processors and off-chip memory. Such data access pattern renders on-chip caches mostly
ineffective [2]. At the same time, some of these applications require a low size, low power processor with real-
time operating performance especially for an embedded system [1]. There are several ways in dealing with this
demand. One method is to use a reconfigurable hardware such as field programmable gate array (FPGA) that
provides high performance computation at minimal cost overhead and power consumption [3].
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Support Vector Machine (SVM) is an accurate binary classifier that is based on a solid theoretical
background [4-6]. Some applications that have benefited from SVM hardware acceleration are pedestrian
detection [7], face detection [8], speech recognition [9] and object detection [10, 11]. Due to SVM computa-
tional complexity, designing a hardware architecture with low power consumption and real-time classification
performance still remains a challenge [12]. Many existing custom SVM hardware implementations focused on
accelerating the decision function that is application specific [8, 13]. These designs cannot be easily reused for
other applications as they are optimized for specific applications [8]. Works that targeted on acceleration of
SVM with a co-processor unit [2, 14, 15, 16] tend to focus on the kernel due to its compute-intensive task and
also its innate nature to be parallelized.

The performance of a single accelerator unit or a co-processor unit is highly dependent on the rate
of data transfer. With limited on-chip memory in an embedded system, data are stored in off-chip memory.
Data are transferred in streams and the maximum bandwidth depends on the bus width of a particular platform.
Kane et al. [12] proposed a fully-pipelined SVM architecture that supports multi-class classification which was
tested with a wide range of data sets. However, in their implementation input throttling was required to avoid
data input from overwhelming the processing unit. The throughput of their proposed architecture is limited
under high load.

In this work, we propose a multi-class fully pipelined SVM classification streaming architecture for
embedded system. The architecture is able to produce output at the same rate as the data input without the
need for data input throttling. The proposed hardware architecture is based on LibSVM model data structure.
Performance evaluation of the proposed hardware implementation is done with regard to the number of support
vectors and features. Results show that the proposed design has an initial latency approximately equivalent
to the number of support vectors and able to process data continuously without any need to throttle the data
transfer. This feature is crucial as training data are transferred in streams from external memory.

2. RESEARCH METHOD
Traditionally, there have been two fundamentally different types of tasks in machine learning: unsu-

pervised and supervised. The goal of unsupervised learning is to find patterns and structure in the data, while
supervised learning is to learn a mapping from a labeled data set [18]. SVM falls under the category of the
latter. In general, SVM tasks can be divided into two: training and classification. Based on a labeled data set,
SVM is trained to obtain its decision function. With the decision function, unknown data can then be classified.

2.1. Training
SVM is inherently a binary classifier; in the training phase, it determines the decision boundary that

maximizes the space between two classes [19]. In order to handle data which cannot be separated linearly in
low-dimensional feature space, kernel functions are used to project learning data into high-dimensional space
so that it can be linearly separated [20]. Equations (1) and (2) show the dual Lagrange problem to obtain
the SVM decision function. K(xi, xj) is the kernel function, b is the bias parameter and C is the trade-off
parameter between maximizing the margin and minimizing the error.

Maximize L =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjK(xi, xj)

Subject to

{
0 ≤ α ≤ C∑N
i=1 αiyi = 0

(1)

b = yi −
( N∑
i=1

αixiyi

)
(2)

where :
α Lagrangian multiplier
N Total amount of training data set
xi Training data (feature set)
yi Training data (label)
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The main aim of the training functions (equations (1) and (2)) are to obtain αi and b values. If αi is 0,
the corresponding training feature vector xi is not a support vector. If αi is very high, then the corresponding
training feature xi has high influence over the decision surface of the hyperplane (xi becomes a support vector).

2.2. Classification
Equation (3) shows the SVM decision function d(u) for classification. The computation only extends

to the number of support vectors Nsv , where the support vectors are a subset of the training data. The class of
unknown input u is determined by the sign of the function in equation (3).

d(u) = sign
( Nsv∑
i=1

αiK(xi, u) + b
)

(3)

2.3. Kernel Function
Kernel functions efficiently map non-linear datasets to a high dimensional linear feature space. Kernel

function allows SVM to handle non-linear data. The type of kernel to be employed is entirely dependent on
the characteristics of the application data sets, which is beyond the scope of this paper. Some of the main
kernel functions that are used in literature are linear (equation (4)), polynomial (equation (5)), Gaussian radial
function (RBF) (equation (6)) and sigmoid (equation (7)).

K(xi, u) = xi · u (4)
K(xi, u) = (α(xi · u) + r)d (5)

K(xi, u) = e(−γ)xi−u2

,where γ > 0 (6)
K(xi, u) = tanh(α(xi · u) + r) (7)

3. RELATED WORKS
Extant works on accelerating SVM on FPGA can be divided into two main groups: training and

classification. Accelerating training phase focuses on certain applications where online learning is required.
Applications such as adaptive channel equalization [21] and sketch recognizer [22] demand short training
time for fast adaptation since the characteristics of data change over time. On the other hand, accelerat-
ing classification phase is important when a task requires a fixed classification module with large data to be
classified [8, 13].

Sequential Minimal Optimization (SMO) [23] is considered as one of the commonly used algorithms
for optimizing SVM training problem. However, the SMO algorithm itself was designed in such a way that
it caters for single-threaded computer [16]. Besides SMO, there are also Gilbert’s algorithm [24] and Least
Squared Support Vector Machine (LS-SVM) [25] for training. Works that are targeted for training either
implement the whole system-on-chip or offloaded to a co-processor [2, 14, 15, 16] to accelerate the training
process. The task that is targeted for hardware implementation is the kernel as it is a compute-intensive task that
benefits from parallelization. SVM training phase produces a model, which is used in the classification phase
later. This model then dictates the architecture, logic resource and memory bits utilization of the hardware
implementation for SVM classification.

For the classification part, many existing custom hardware implementations focused on accelerating
the decision function for a specific task [8, 9, 11, 13, 26]. These designs cannot easily be reused for other
purposes as these were targeted for a fixed number of support vectors and classes. Another approach towards
SVM classification on FPGA system is cascaded SVM [27]. The cascaded SVM architecture by [27] contains a
combination of a high and a low precision module that are implemented depending on the rate of the incoming
testing data. The low precision module processes incoming data since it has higher throughput potential. Data
which are not able to be classified with certainty is transferred to the high precision module which has lower
throughput potential but is able to classify the data more accurately. However, [27] focused was solely on the
binary classification problem.

The implementation of SVM classification in hardware requires many multipliers especially the
kernel modules. This has led to the use of the CORDIC algorithm in implementing SVM classification
accelerator module. Ruiz-Llata et al. [1] proposed an SVM classification with multi-class support using the
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CORDIC algorithm to replace multipliers [1]. However, timing performance was not reported and the work
was not benchmarked with any CPU or GPU implementation. As the CORDIC method is iterative, this would
result in a reduction in performance for more complex data sets with a larger amount of support vectors and
classes. CORDIC unrolled loop can be implemented with fixed pipelined stages. However, this would consume
additional hardware and would affect accuracy for certain input conditions. Multiplications in FPGA were
avoided in earlier implementations since it was resource-hungry. However, newer FPGA families have
dedicated hardware multipliers and MAC units [17].

Kane et al. [12] proposed a fully pipelined SVM decision architecture for multi-class with a generic
design, which was then tested with a wide variety of datasets. This work performed better than GPU and
CPU implementations in terms of throughput with practically a negligible trade-off in accuracy. However,
in their proposed work, a stalling mechanism was used to stop input data from overflowing the processing
unit. The rate of input data needs to be throttled to match with the maximum rate of the data output of the
proposed hardware.

In this work, we propose a streaming architecture for embedded systems that is fully pipelined and
is able to operate without the need to throttle the rate of input data. This allows the proposed architecture
to achieve maximum allowable throughput depending on the rate of data input. The proposed architecture is
targeted for embedded system platform where training data are stored in external memory source and continu-
ously streamed-in through a fixed memory bandwidth. Training data are computed as they arrive, which result
in the throughput of the data output to be equivalent to the data input. The architecture has an initial latency
approximately equivalent to the number of support vectors.

4. LIBSVM MODEL
The proposed architecture is based on the model generated by LibSVM [28]. During the training

phase, based on a set of training data, LibSVM creates an SVM model file. This file contains important
parameters for the decision function. Besides that, the classifier model also contains information on types
of classification, kernel type, kernel parameters, number of support vectors from each class and a bias value.
For each binary training problem, LibSVM generates a set of α that is used in the decision function. There are
many multi-class approaches in SVM, such as pairwise, DAG, and one-versus-all. LibSVM uses the pairwise
method. Therefore for each multi-class SVM model, there will be n!

2(n−2)! sets of α coefficient for computation,
where n is the number of classes.

Figure 1 shows the format for the SVM classifier model with four classes as generated by LibSVM.
Nsv represents the number of support vectors, Nf is the number of features, and Nc is the number of classes.
During the training phase, each support vector is compared with other support vectors to ensure that no
redundant SVs are stored in the model. In the coefficient column for SV belonging to another binary classier,
the α coefficient is set to zero. Based on this structure, each data input can be multiplied with all SVs and α
coefficients without requiring a multiplexer for selection in the SVM hardware module.

Figure 1. SVM Model format
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5. PROPOSED ARCHITECTURE
This section presents the proposed architecture. Figure 2. shows the overview of the architecture.

The architecture is divided into four sections: kernel computation, α coefficient weighting, voting summation,
and vote sorting. Each of this module is structured in such a way to produce output at every clock cycle.
Our implementation design is parameterizable in terms of Nsv and Nf in order to handle various types
of application. The input of the proposed architecture is an external memory connected to the FPGA.
Unlike on-chip memory where data can be accessed simultaneously, for external memory, the bandwidth is
limited. For FPGA devices that have higher memory transfer bandwidth with external memory, the proposed
design can be expanded with the same structure to support the high bandwidth data input. For our implemen-
tation, we fixed the input to be one feature per clock cycle.

Figure 2. Proposed architecture overview

5.1. Kernel Computation
This module performs kernel computation as the input data is streamed-in continuously every clock

cycle, resulting in the throughput of the system to be 1/Nf . In each clock cycle, a single feature is transferred
to the module.

Figure 3 shows the overview of the linear kernel architecture. The number of multipliers needed is
based on the number of SVs that are available in the model. The linear kernel implementation is based on
LibSVM. This structure is maintained so that it can easily be substituted with a different type of kernel for
future implementation. From the SVM model in Figure 1, parallelization of the kernel computation can be
done based on either the Nf or the Nsv . Parallelizing based on Nf will result in a match with the input data
rate. Therefore for proposed design parallelization based on the number of SVs is chosen.

Figure 3. Linear Kernel architecture

In our implementation, each input data is transferred through a shift register in comparison to the work
proposed by [26], where input data is broadcasted to each SV at the same time. This is done in order to reduce
the fan-out from input data, which spans across the support vector memory output, which would be large for
application with many SVs.

Since data traverse through the SV memory with a clock cycle delay, each SV is also accessed with
one clock cycle delay. Therefore, in order to avoid multiple individual memory blocks, a counter and a
complicated control unit, we concatenate all the support vectors into a single memory block based on the
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format in Figure 4b. With this scheme, only a single memory block and counter are required. Figure 4a shows
the conventional method [28] for storing support vectors in memory. The proposed method (Figure 4b) is based
on the conventional method (Figure 4a) where each SV column is shifted one row from left to right.

(a) Conventional storage format of support vectors memory [28] (b) Proposed storage format of support vectors memory

Figure 4. Storage format of support vectors memory

5.2. Coefficient weighting
Based on SVM classification equation (3), resultant kernel computation for each SV will be multiplied

with its corresponding coefficient. The resultant is then summed together with its bias. The final result sign is
then compared to see if its greater or less than zero. Based on this the class is determined.

Piecewise multi-class approach from [28] compares one class with other classes. During the training
phase, one class is assigned to be in the positive class while the other is in the class negative. Generated α
coefficients will be based on this notation. The sign on SVM model coefficients for multi-class with four
classes is shown in Figure 5. If the α coefficients from 1vs2 are positive, the corresponding 2vs1 would be
negative. Based on this, equation (3) is expanded to equation (8). The bias parameter b can be placed on either
side of equation (8) depending on its sign. Based on equation (8), the hardware module does not require for
signed integer computation.

Figure 5. α coefficient sign notation for SVM model with 4 classes

(Nsv+∑
i=1

αiK(xi,x)± b
)
>
(Nsv−∑

i=1

αiK(xi,x)± b
)

(8)

Figure 6 shows the structure of the α coefficient weighting module. The α values are loaded into the
FPGA as constant values. The resultant value from each SV will be summed and stored in each individual
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FIFO. The FIFOs are needed for this architecture to store the result from the coefficient weighting module
before it is computed in the next module. Testing data are computed from quadrant 1 until 4 (Figure 5).
Once the data reaches quadrant 2, comparison for class 1 and 2 can be performed. In quadrant 3, comparison
for classes 1 and 2, with 3 can be performed, and finally at quadrant 4, comparison for classes 1,2 and 3 with 4
can be performed. The FIFOs are loaded in depending on the SV that has been completed.

Figure 6. Alpha coefficient weighting architecture

5.3. Voting summation
The outputs of α coefficient weighting module are connected to the comparator to determine the

winner for each class comparison (Figure 6). Based on Figure 1, training data inputs are computed with SV
from class 1 followed by class 2, class 3 and finally class 4.

The results of each comparator are stored in another set of FIFOs. Figure 7 shows an overview of the
voting summation module. The FIFOs are shifted out depending on the SVs that have been completed. The
inverter produces an inverted result for the opposing class. Once SVs from all classes are completed, the results
are summed up and stored in a register. Each register corresponds to a particular class.

Figure 7. Voting Summation architecture

5.4. Voting sort
Finally, the results of all summations are sorted to determine the class. Figure 8 shows the architecture

of the sorting mechanism. Each result register from voting summation is concatenated with the class index.
Once sorted, the index will be shown as the labeled class. The architecture is based on bitonic sort [29], but
in our proposed architecture it only determines the maximum value within a list. Similar to LibSVM, if two
classes show the identical summation result, the class with the smaller index number will be the winner.
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Figure 8. Voting sort architecture

6. RESULT AND DISCUSSION
Depending on the targeted application, the number of SVs, features and class vary. Based on the

implementation of [12] with linear kernel for DNA dataset [30], the SVM model has three classes, 180 features
and 402 SVs while for Vowel [31] dataset the SVM model has 11 classes, 10 features, and 268 SVs. SVM
configurations for certain applications differ based on these parameters. Our analysis has been carried in
two scenarios. For Experiment 1, the number of support vectors is fixed to 20 and the size of input data is
16-bit integer. The proposed architecture has been evaluated with a different number of features and SVs. The
number of features is adjusted from 10 onwards with increments of 10 until 100 features. For Experiment 2,
the number of features is fixed to 32 and the size of input data is also 16-bit integer. The numbers of support
vectors are adjusted from 10 onwards with increments of 10 until 100 support vectors. The number of classes is
kept constant to four classes. For both experiments, the logic resource utilization, internal memory bits usage,
maximum operating frequency (in MHz) and the number of embedded multipliers are analysed. Performance
profiling experiment on the proposed architecture was done using Quartus II v13.0 software and the target
FPGA device is Cyclone IV EP4CE115F29C7. For validation, the proposed architecture was simulated using
ModelSim v10 to obtain cycle accurate results and the results are compared with LibSVM.

Tables 1 and 2 show the results for Experiments 1 and 2, respectively. The number of SVs has a greater
impact on logic utilization. As the number of SVs increases, the number of multipliers increases, whereas if
the number features increases, only the number of adders will increases. The number of internal memory bits
utilization also increases with the number of SVs. This is mainly due to SV memory and the FIFOs that are
needed to store the temporary results. The number of SVs does not have a significant impact on the maximum
operating frequency (Table 2). The minor differences are mainly due to placement and routing. On the other
hand, as the number of features increases, the maximum operating frequency decreases is due to the increase
in the size of adders and multipliers for the architecture.

Table 1. Performance evaluation of the proposed architecture towards different number of features.
No. of Logic Memory Multipliers Max

features Elements Bits Frequency (MHz)
10 6408 27776 320 90.46
20 7706 36736 376 85
30 9056 40576 432 79.13
40 10322 54656 488 76.34
50 12429 58496 532 71.78
60 14027 62336 532 68.48
70 16688 86656 532 66.54
80 19223 90496 532 63.4
90 21308 94336 532 60.51

100 23777 98176 532 58.2
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Table 2. Performance evaluation of the proposed architecture towards different number of support vectors.
No. of Logic Memory Multipliers Max
SVs Elements Bits Frequency (MHz)
10 4810 20672 244 79.94
20 9300 41344 488 81.31
30 15836 46464 532 80.75
40 24276 82688 532 76.38
50 33080 87808 532 77.22
60 42538 155136 532 74.77
70 52110 160256 532 76.16
80 59679 165376 532 75.41
90 69094 170496 532 71.12
100 80540 175616 532 75.48

The performance evaluations are targeted for a generic SVM classification hardware implementation.
A 16-bit data input was assumed to be a 16-bit integer, therefore the adders, multipliers, and registers that
follow after the linear kernel module (Figure 3) increase in width in order to maintain a lossless computation.
For real application implementation depending on the tolerance of the application towards a lossy result, the
proposed architecture can be optimized to have smaller numerical adders and multipliers, which will lower the
logic utilization and increase the maximum operating frequency.

For this implementation, the focus was only on the linear kernel. The proposed design can be expanded
to different types of the kernel with some minor changes in the kernel computation module. For RBF kernel
implementation (equation (6)), exponential computation is required. For a pipelined architecture, a lookup
table is more suitable in comparison to CORDIC since it can produce results with a predictable time frame.
Based on our architecture, since the input data traversed through the shift register, a shared lookup table for
RBF kernel implementation can be used without compromising the throughput of the system. For application
where the number of SVs is less than the number of features, the proposed architecture would be able to share
a single exponential lookup table. However, if the number of SVs is larger than the number of features, the
number of required exponential lookup tables will be equivalent to Nsv/Nf . Since Nsv determines the number
of clock cycles needed for all support vectors to share a single lookup table, whereas Nf represents the number
of clock cycles needed for each SV to be computed.

In our performance analysis, the focus was only on the linear kernel. The proposed design can be
expanded to different types of kernels with some minor changes in the kernel computation module. For RBF
kernel implementation (Eq. ) exponential computation is required. For a pipelined architecture lookup table is
more suitable in comparison to CORDIC since its able to produce results with a predictable time frame. Based
on our architecture, since the input data traversed through the shift register, a shared lookup table for RBF
kernel implementation can be used without compromising the throughput of the system. For application where
the number of SVs is less then the number of features, the proposed architecture would be able to share a single
exponential lookup table. However, if the number of SVs is larger then the number of features the number
of exponential lookup table needed will be equivalent to Nsv/Nf . Nsv determines the number of clock cycle
needed for all SVs to share a single lookup table whereas Nf represents the the number of clock cycle needed
for each SV to be computed before the next input data starts to be computed.

7. CONCLUSION
The proposed streaming architecture for SVM classification is able to produce output at the same

rate as data input. The throughput of the implementation is equivalent to 1/Nf . Based on the performance
profiling experiments, the proposed architecture resource utilization is dependent on the number of SVs, while
the e resource utilization is dependent on the number number of features determines the maximum operating
frequency. For future work, the proposed architecture needs to be tested with real-world data sets. From this,
the trade-off of accuracy between the software and hardware implementations can be observed. Besides that,
explorations on different streaming hardware architecture for different multi-class SVM method need to be
done. Other multi-class approaches can be applied to the same problem, which can result in different hardware
utilization and accuracy.
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