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 This paper presents a single port rectangular ring resonator sensor for 
material characterizations. The proposed sensor is designed at operating 
resonance frequency of 4 GHz. The sensor consists of micro-strip 
transmission line and ring resonator with applying the enhancement method 
to the coupling gaps. The using of enhancement method is to improve the 
return loss of the sensor and sensitivity in terms of Q-factor, respectively. 
Furthermore, the proposed sensor is designed and fabricated on Roger 5880 
substrate. Standard materials with known permittivity have been used in 
order to validate the sensor’s sensitivity. Based on the results, the percentage 
of error for the proposed rectangular sensor is 0.2% to 8%. It can be 
demonstrated that the proposed sensor will be useful for various applications 
such as medicine, bio-sensing and food industry. 
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1. INTRODUCTION 

In recent years, material characterization techniques have been introduced. Many techniques are 
available to measure the real part of the complex permittivity or dielectric constant. In a material, there is the 
mixture of different size of molecules. Then, from the structure of molecule inside the material, the 
permittivity can be determined (1). The response of material to the electrical signal depends on the 
permittivity of the material. Generally, the accurate determination of the permittivity is an important task for 
microwave or radio frequency circuit design, antenna design and of course to the microwave engineering (2–
5). Furthermore, the changes of dielectric properties of material or material characterization are widely used 
in many fields such as food industry, quality control, bio-sensing or medical industry (6–9). 

Microwave measurement is an excellent sensing technique where it is used because of its non-
invasive characteristics, ability of penetration sensing, real time and highly accurate detection methods. There 
are two types of methods that can be used to measure the dielectric through a microwave technique which are 
non-resonant and resonant methods. Resonant method acquire high accuracy compared to non-resonant 
method; the reason of choosing resonant method instead of non-resonant method. Then, through resonant 
method, the material under test (MUT) is introduced to the resonator; change the electromagnetic boundaries 
of the resonator. Instead of that, the electromagnetic properties of the sample being used are deducted 
because there is a change of resonant properties of the resonator. In other words, the resonant method is being 
used to gain the precise dielectric properties only at a single frequency or several discrete frequencies. 
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Meanwhile, the non-resonant method is used to get the electromagnetic properties of the material over a 
frequency range. 

The resonator is usually applied as an accurate instrument for electromagnetic properties of a 
material like complex permittivity, permeability and the resistance for microwave frequencies compared to 
non-resonant. Furthermore, it is widely being used for low-loss, small size sample and also sample with 
irregular shape due to its high accuracy. The high quality factor (Q-factor) of the resonator cause a high 
sensitivity device where it can be used to sense the difference in physical quantities; depends on the complex 
permeability of MUT (10–14). 
 
1.1. Perturbation Technique 

The most popular technique for measuring the complex permittivity of lossy material is known as 
the perturbation technique. Perturbation technique has been used for many decades for measuring the 
electromagnetic characteristics between the empty and partially loaded MUTs (15). This technique is the 
most common used technique due to its simplicity and accuracy. When a small piece of dielectric material 
(MUT) is introduced into the resonant cavity, the resonance frequency is shifted by a small amount (16). 
Plus, the selectivity of the cavity is lowered. These effects are commonly used in the measurement of 
properties of the material; the relation between the shifted of resonance frequencies, selectivity and the 
permittivity of the sample. The MUTs is placed at a specific location on the resonator where the electric field 
(e-field) is at a maximum condition. Then, the insertion of the MUTs within the cavity causes the effect of 
perturbation to the overall circuit. The perturbation cause a shifting of the resonance frequency and a 
decrease in the unloaded Q-factor. 

The response of the cavity in the perturbation is particularly related to the dielectric properties of the 
tested material through the cavity perturbation theory. Based on the theory of perturbation, it is anticipated 
that the fractional change in the resonant frequency has increased with the increasing of the dielectric 
constant of the MUTs (13,17,18). The resonance frequency is shifted to the lower frequency when the MUTs 
are being placed on the resonator sensor. This is because of the maximum electric field of the resonator 
sensor when it is perturbed to the sample. Besides, more fringing field is focused into the overlay sample. 
While, the other changes that can be seen when the sample is placed on the resonator sensor is the changes in 
dB level. The changes in dB level is due to the effective dielectric properties of the sample; the permittivity. 

 
1.2. Reflection Method 

Reflection methods is a method which able to measure only one of the parameters, either the 
permittivity or the permeability. In this project only the permittivity parameter is measured. The 
electromagnetic waves are directed to the MUT, then the properties of the sample can be detected from the 
reflection coefficient that occur in the defined reference plane. To apply the reflection method in the 
measurement of the dielectric property, one port resonator is mainly used. The single port capability to 
transmit the signal in one port, then, the received signal is reflected back from the MUT to the same port it 
transmits before. The measured S-parameter is S1,1 or S2,2. The dynamic range of reflection measurements 
is limited by the directivity of the measurement port. 

The one port calibration is needed in order to improve the accuracy and sensitivity of the 
measurement of the system. Through the calibration, it can measure and remove the three systematic error 
terms in the measurement of the system; the directivity, source match and also the reflection tracking. But, in 
the standard cases, the high accuracy and sensitivity like “short” or “air” are not required. The simple 
calibration is enough to be conducted (17). In Figure 1, it shows the graph of S-parameter, S1,1. The value of 
the S1,1 can be determined by using the equation 1; for determining the half-power width. In the equation 
1.1, the S1, 1b is the base line of the resonance for S1, 1 value. While, the S1, 1fo is the resonance frequency 
value for the S1,1 (19) . Besides, from Figure 1 also the Q-factor of the resonator can be determined based on 
the bandwidth and the resonant frequency. 

 

S1,1∆f = 10log�10
s1,1b
10  +10

s1,1f0
10   

2
� (dB)      (1) 
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Figure 1. parameter for the reflection method 
 
 
2. GEOMETRY DESIGN & MATHEMATICAL ANALYSIS 

To design a micro-strip ring resonator, the principle that can be used to enable the changes of 
effective permittivity if any dielectric material is placed on the substrate surface; cause the changes in the 
resonant frequency. The resonant frequency is determined by using the equation of ‘f’ as shown in Equation 
2. 

 
f = 1

2π√LC
         (2) 

 
While the inductance, L can be approximated by: 

 
𝐿 = 𝜇𝑜 𝑅𝑚( ln 8𝑅𝑚

ℎ+𝑤
−  0.5)        (3) 

 
Rm: main radius of the ring 
h: Height of the substrate 
w: The width of the feed-line 
 
The capacitor, C can affect the resonant frequency and it can be determined by using below 

equation: 
 
𝐶 =  𝜀𝑟𝑟 𝜀𝑟𝐴

𝑑
         (4) 

 
A: Area of the gap 
d: Distance of the gap 
εr: Relative permittivity of dielectric presents between the plates 
 
To calculate the feed-line dimension and coupling the following equations are used, where the feed-

line width is: 
 

𝐴 =  𝑍0
60
�𝜀𝑟+ 1

2
+ 𝜀𝑟+ 1

𝜀𝑟− 1
�0.23 + 0.11

𝜀𝑟
�       (5) 

 
𝑤
𝑑

=  8𝑒𝐴

𝑒2𝐴− 2
         (6) 

 
Where d is the thickness of the substrate. 

 
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝐹𝐹𝐹𝑙𝑙ℎ, 𝜄 =  𝜆𝜆

4
        (7) 
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The coupling gap, λg =  c
f�εeff

       (8) 

 
Where λg is the wavelength at the given frequency 

 

Eff. permittivity, εe =  εr+ 1
2 

+  εr− 1
2

� 1

�1+ 12dw

�     (9) 

 

Coupling gap,∆L = 0.421d � εeff+ 0.3
εeff− 0.258

� �
w
d+ 0.262
w
d+ 0.818

�     (10) 

 
The micro - strip resonator sensor is a close-loop transmission line. To form the resonant frequency, 

the power is capacitive coupled through the feed-line and the gap between them. So, the resonant frequency 
happens when the mean circumstances of the ring are equal to the integral of the guided wavelength. 2πr = 
nλg for n = 1 ,2 ,3… 

 
Frequency dependent, λg =  λ

�εeff
= 1

�εeff

c
f
      (11) 

 
fo =  nc

2πr�εeff
         (12) 

 
r: Ring radius 
n: 1, 2, 3… 
c: 3×〖10〗^8 m/s (speed of light) 
εeff: Effective permittivity of the substrate 
 
Decreasing in gap cause the gap capacitance increases and make the coupling constricted. Then the 

increase in gap capacitance effect the resonator frequency; lower frequency. This circumstance is known as 
‘pushing effect’. 

The effective permittivity regarding the resonant frequency, fc: 
 

εeff = � nc
2π fcrm

�
2
         (13) 

 
The ring radius: 

 
Outer radius, Ro = r +  w

2
        (14) 

 
Inner radius, Ri = r −  w

2
        (15) 

 
Quality factor, Q = 2fc

BW
        (16) 

 
fc: Resonant frequency 
BW: Bandwidth of the resonant frequency 
 

The length of substrate, Lg can be determined by: 
 
Length of substrate, Lg = 2l +  2∆L + 2Ro      (17) 
 

While, for the width of the substrate, Wg 
 
Width of substrate, Wg = 2Ro + λg

4
      (18) 

 
Through this project of microwave sensor, the numerical result will be used for circuit design in the 

CST software. The schematic diagram for the proposed rectangular design sensor is shown in Figure 2. The 
parameters being used are illustrated in Table 1. 
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Table 1. Parameters in designing the single port 
rectangular resonator sensor 

Parameter Design value 
Substrate: Roger 5880 Frequency: 4GHz 
Substrate thickness 0.787mm 
Substrate permittivity, 𝜀𝑟 2.2 
Length of substrate (Lg) 68.12mm 
Width of substrate (Wg) 38.69mm 
Feed-line length (l) 25.35mm 
Outer ring (ro) 8.4mm 
Inner ring (ri) 5.9mm 
Gap (g) 0.62mm 
Width of feed-line (w) 2.5mm 

 

 
Figure 2. Schematic diagram of the proposed 

rectangular resonator sensor 

 

 
 

3. RESULTS AND DISCUSSION 
3.1. Simulated Result 

The single port rectangular resonator sensor with the resonance frequency of 4 GHz is designed on 
CST software. The dimension of the structure of the resonator sensor is calculated based on the mathematical 
analysis. While, there are three parameters have been measured through the sensor like the resonant 
frequency, Q-factor and the return loss with five different samples and permittivity; air, Roger 5880, Roger 
4350, FR-4 and Roger 3010. 

The sensor is constructed by using the Roger 5880 with the thickness of 0.787 mm and loss tangent 
of 0.009. The basic rectangular resonator sensor is demonstrated in Figure 3. But, based on the S11 result, it 
shows that the sensor operates on 3.992 GHz and has a large return loss which is -6.4881 dB; the targeted 
return loss is less than -10 dB. 

Although the basic resonator sensor able to shows a good performance in the resonant frequency 
and also in the strength of the electromagnetic field, the basic design needs a modification. Thus, a 
modification in the design is proposed in order to improve the return loss of the resonator sensor. The 
enhancement method is introduced in the design to overcome the problem of low performance in the 
resonator due to the large return loss. Figure 4 shows the structure of the rectangular sensor with the 
enhancement method. 

 
 

  
 

Figure 3. The basic rectangular resonator sensor. 
 
Figure 4. The structure of proposed resonator sensor. 

 
 
The performance of the proposed resonator sensor with the enhancement method is measured based 

on the S11 signal due to the usage of the reflection method. The bandwidth of the S1, 1 is gathered at -3dB 
from the base line of the resonance of S11; refer to Figure 5. So, the resonance frequency is occurring at 
3.992 GHz while the bandwidth of the S11 is 0.070678 GHz. The Q-factor of the proposed resonator sensor 
in the simulation is 113. 
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Figure 5. The S1,1 graph of the proposed design 
 
 
The material under test (MUTs) are placed in a maximum electric field (e-field) region as indicated 

in Figure 6 and Figure 7. Thus, the resonator sensor produces a reduction in the Q-factor as well as the 
reduction in the resonant frequency as associated with the loss of the material. Then, the resonator sensor can 
be used to measure the dielectric properties of the MUTs by using the perturbation method; based on the 
shifting of the resonance frequency. 

 
 

  
 

Figure 6. The e-Field in the Resonator Sensor 
 

Figure 7. The Overlay Sample on the Resonator 
Sensor 

 
 
In Figure 8, it shows the changes in the resonant frequency after different types of material is placed 

on the resonator sensor through simulation in CST software, the frequency is shifted. Four samples have been 
tested like FR-4, Roger 5880, Roger 4350 and Roger 3010. The resonant frequency with the sample of air 
refers to the without sample situation. Besides, based on Figure 8 also, it shows that the frequency is shifted 
to the lower frequency when the overlay sample is used. This situation happens because of the maximum 
electric field of the resonator when it is perturbed to the sample. Plus, more fringing fields are focused into 
the overlay sample. The return loss level (dB) also shows a variation when the sample is applied to the 
resonator sensor. This is due to the effective dielectric constant. 

The bar chart in Figure 9 shows the graphical representation of the percentage frequency shifting for 
the resonant frequency. Based on both data representations, it shows that the sensitivity of the sensor can be 
represented in terms of relative shift in resonance frequency with the permittivity of MUTs. It is concluded 
that the higher the permittivity of the samples causes the higher the percentage of frequency shifting. Roger 
5880 has the lowest percentage which is 2.6 %, followed by Roger 4350, 8.4 %, FR-4 16.8 % and Roger 
3010, 27.6 %. Where the permittivity of Roger 5880 is 2.2, Roger 4350 is 3.48, FR-4 is 4.4 and Roger 3010 
is 10.2. 
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Figure 8. The Changes of Resonant Frequency with 

Different Overlay Samples in Simulation 

 
Figure 9. The Percentage of Frequency Shifting of 

Different MUTS 
 
 
3.2. Measured Result 

The proposed resonator sensor is fabricated on Roger 5880 substrate and it is found to be working 
on 3.98GHz of resonant frequency. Figure 10 shows the experimental setup for the fabricated sensor. The 
changes of resonant frequency and return loss of the MUTs are measured by using the vector Network 
Analyzer (VNA). The S11 data gained from the measurement is imported to the CST software. Based on the 
S11 result, it shows that the return loss is -6.3575dB and the Q-factor is 174. The improvement of the sensor 
in term of Q-factor is 54%.  

 
 

 
 

Figure 10. Experimental Setup of the Sensor. 
 
 
While, Figure 11 shows the result of the measurement of different types of MUTs and permittivity. 

The data in Figure 11 is then represented in the bar chart; Figure 12. The measurement results show that the 
sample of Roger 3010 has the highest percentage of frequency shifting with an enormous difference of 
frequency when compared with the resonant frequency without shifting. The percentage of frequency shifting 
is 26.7%. The lowest percentage of frequency shifting happens with the sample Roger 5880, followed by 
Roger 4350 and FR-4. The measurement result also shows that the higher the permittivity of the sample, the 
larger the percentage of frequency shifting. 
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Figure 11. The Changes of Resonant Frequency 
with Different Overlay Samples in Simulation. 

 
Figure 12. The Percentage of Frequency Shifting of 

Different MUTs. 
 
 
Then, the simulation and measurement results of the sensor without sample (air) is demonstrated in 

Figure 13. There is a small deviation that occur between the simulated and measured results. The measured 
resonance frequency is slightly shifted from the simulation and the magnitude of the return loss is higher than 
the simulated results. This situation happens due to the mismatch between the feed-line and the connector of 
the port. Plus, it also happens because of the tolerance of fabrications which limits the simulation accuracy. 

The result shown in Figure 13 illustrates that the performance of the fabricated resonator sensor is in 
a good agreement with the sensor in the simulation. By using the measured data, the relationship between the 
shifting of resonant frequency and the standard permittivity can be modeled by using the second order 
polynomial. It is the derivation of numerical model which is used to calculate the permittivity of the MUT. 
The derivation model applied the curve fitting method instead; refer to Figure 14. Then, the measured 
permittivity of the tested MUT is mathematically expressed as Equation 19.  

 
εr= − 21.25f(x)2 +  128.5f(x) − 173.9      (19) 
 
 

  
 

Figure 13. Comparison between Simulated and 
Measured Results based on the S11. 

 
Figure 14 The Relationship between the Resonant 

Frequency and Permittivity. 
 
 
From Table 2, it shows the result of the calculated permittivity. The error of the permittivity 

regarding the usage of Equation 19 is in the range of 0.2% to 8%. The higher the permittivity of the sample, 
the lower the error. 

 
 

Table 2. The Calculated Permittivity based on Equation 19 
MUTs Frequency 

(GHz) 
Permittivity, 

𝜀𝑟 
Calculated 

𝜀𝑟 Error (%) 

Air 3.98 1 0.9215 7.85 
Roger 5880 3.944 2.2 2.3574 7.15 
Roger 4350 3.92 3.48 3.284 5.63 

FR-4 3.89 4.4 4.41 0.23 
Roger 3010 3.716 10.2 10.17 0.29 

4. COMPARED WITH EXISTING RESONATOR SENSOR 
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Two journals have been discussed about the resonator sensor which are being used for dielectric 
characterization of MUTs based on the permittivity are compared to the proposed sensor. Both of the journals 
proposed the same idea of design for the resonator sensor; based on the complementary split ring resonator 
(CSRR) structure. Only the shape of the design is different; one is circular while the other is rectangular. 
Each design has its own advantage and disadvantages. 

Table 3 shows the tabulated data which have been compared with the proposed resonator sensor. 
The comparison is made based on the resonance frequency, Q-factor and the return loss. From the table, it 
shows that the proposed resonator sensor has the highest Q-factor compared to other two designs. But, the 
return lost of the proposed sensor is the lowest. The result of the proposed sensor is due to the usage of the 
enhancement method in the design where it introduces the “pushing effect” on the sensor. The method being 
used by the M Arif Hussain et [17] shows the opposite result compared to the proposed rectangular sensor 
where the sensor has a very low Q-factor, ≈64 but the return loss can achieved until -22.34dB. Then, each of 
the methods has a different level of resonance frequency. 

 
 

Table 3. Comparison between Different Techniques with the Proposed Sensor (20,21) 
Method Specifications 

Frequency (GHz) Q-factor S2,1/S1,1 (dB) 
[17] 2.65 80 -21.00 
[18] 1.28 ≈64 -22.34 

Proposed sensor 3.98 174 -6.3575 
 
 
The percentage of error is calculated in order to measure the accuracy of the proposed rectangular 

sensor. The data is represented in Table 4. Through the tabulated data, it shows that the proposed sensor 
gains the lower range of error compared to the existing sensor. The percentage of error in the permittivity for 
the proposed sensor is 0.29% to 7.85%, while for the existing sensor, the percentage of the error in the 
permittivity is 0.57% to 12.70% instead. 

 
 

Table 4. Measurement Accuracy of the Proposed Sensor in Comparison with the Existing Resonator Sensor 
(20,22–24) 

MUTs Std. permittivity, 𝜀𝑟 Existing sensor Proposed sensor 
𝜀𝑟 % of error 𝜀𝑟 % of error 

Air 1 1.08 8.0 0.9215 7.85 
Roger 5880 2.2 1.92 12.70 2.3574 7.15 
Roger 4350 3.48 3.5 0.57 3.284 5.63 

FR-4 4.4 4.15 5.68 4.41 0.23 
Roger 3010 10.2 - - 10.17 0.29 

 
 
While analyzing Table 4, it shows that the percentage of error in the proposed sensor is decreased 

linearly. The higher the permittivity of the MUTs, the lower the percentage of error in the rectangular sensor. 
But, for the existing sensor, the data are taken from various sources. Thus, it cannot be analyzed based on the 
linearity of the error. But, in the existing sensor, the higher error is gained when there is Roger 5880 that act 
as the sample while the lowest error is gained when the Roger 4350 acts as the sample. When there is no 
sample overlay on the sensor, the error is 8%. For the FR-4 sample, the error of the permittivity is 5.68%. 

 
 

5. CONCLUSION 
The rectangular resonator sensor with the enhancement method is proposed in this paper. The 

proposed design of the resonator sensor is able to improve the return loss of the basic rectangular resonator 
sensor; less than -10dB. Regarding the simulated result, it shows that the performance of the proposed sensor 
is in good agreement with the calculated result. While, by measuring the permittivity of the known samples, 
it is found that the percentage of error for the proposed sensor is from 0.2% to 8%. The sensitivity and 
accuracy of the sensor has been analyzed in terms of Q-factor and return loss. In addition, it is noted that the 
shifting of the resonance frequency is affected by the permittivity of the sample. The higher the permittivity 
of the samples, the lower the resonance frequency. Thus, the fabricated resonator sensor is suitable to be 
applied in the real life like in the food industry, agriculture and so on. 
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