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This paper presents a proposed supervised classification technique namely 

flexible partial histogram Bayes (fPHBayes) learning algorithm. The 

traditional classification algorithms like neural network, support vector 
machine, first nearest neighbor, nearest subclass classifier and Gaussian 

mixture model classifier are accurate but slow when dealing with large 

number of instances. In additional to that these algorithms might require to 

be retrain when the classes changes. On the other hand, algorithms like naïve 

Bayes and nearest class mean are fast but not accurate. It is difficult and 
challenging to have a classification algorithm that is fast and accurate when 

dealing with large number of instances. In our previous work, partial 

histogram Bayes (PHBayes) learning algorithm showed some advantages in 

the aspects of speed and accuracy in classification tasks. However, its 

accuracy declines when dealing with small number of instances or when the 
class feature distributes in wide area. In this work, the proposed fPHBayes 

solves these limitations. fPHBayes is able to work fast with good accuracy 

with large and small number of instances. fPHBayes uses a probability 

distribution derived from smoothing the observed histogram in order to 

represent the class. Then it performs the classification using the Bayesian 
rule. fPHBayes was analyzed and compared with PHBayes and other 

standard learning algorithms like first nearest neighbor, nearest subclass 

mean, nearest class mean, naive Bayes and Gaussian mixture model 

classifier. The experiments were performed using both real data and synthetic 

data considering different number of instances and different variances of 
Gaussians. The results showed that fPHBayes is more accurate and flexible 

to deal with different number of instances and different variances of 

Gaussians as compared to other classifiers. 

Keywords: 

Classification 

Histogram probability 

Distribution 

Machine learning 

Naïve bayes 

PHBayes  

Copyright © 2018 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Haider O. Lawend,  

Center for Integrated Systems Engineering and Advanced Technologies (INTEGRA), 

Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 

43600 UKM Bangi, Selangor, Malaysia. 

Email: haiderbnomar@yahoo.com 

 

 

1. INTRODUCTION 

Classification is a process of assigning an instance in the data to the class that it belongs to. 

Classification is included in many applications of pattern recognition, machine learning and data mining. 

The classification task becomes more challenging when dealing with large databases especially when the data 

keeps changing from time to time. Data stream is an example in which new information and classes are 

continuously added and updated. This causes the expansion of the size of the data and may reduce the 

accuracy of classifiers [1]. Robotic technology is another example of learning large data in which the data is 

continuously updating. Dealing with large and dynamic data may reduce the learning process of the robot to 
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perform certain tasks [2]. The challenge of learning big data is also addressed in the work of [3]. For 

example, in the Apache Hadoop system, processing and storage big data is challenging because of large 

number of configurations. 

A network based classifier like artificial neural network (ANN) is not suitable for large database 

because it is slow in training phase. This is due to the complexity of its structure that contains the number of 

nodes, hidden layers and activation function [4]. ANN is also not suitable to deal with dynamic database as it 

requires to be retrained whenever a change occurs or new data is being added [5]. Instead of using the 

traditional nueral network, some researchers used extreme learning machine (ELM) which is a type of neural 

network with only one hidden layer. The work of [6] showed that ELM performed good in term of accura cy 

and speed in the field of pattern recognition. The work of [7] compared ELM with support vector machine 

(SVM) and the traditional neural network and showed that ELM is faster and more accurate than both 

algorithms. However ELM still requires to be retrained whenever a change occurs in the data which makes it 

not suitable to be used with large and dynamic data. 

Distance based classifiers perform the classification by assigning the testing instance to the nearest 

training instance or prototype in the space. A simple classifier like first nearest neighbor (1stNN) represents a 

class density in the space using all training instances. 1stNN is very accurate and fast in training phase even 

when dealing with large number of instances, but it suffers from curse of dimensionality and very slow in 

testing phase, which makes it impractical [8-11]. Many researchers attempted improving the speed and 

accuracy of 1stNN [10-14]. Nearest subclass classifier (NSC) represents a class density in the space as 

multiple prototypes, where K-means clustering algorithm is typically used to find the prototypes [9]. NSC is 

faster than 1stNN in the testing phase and it is very accurate if it gets correct choice of the prototypes 

number. However, NSC with k-means is not suitable for large data. The work of [15] showed that k-means is 

not suitable to be used with large data because it is an iterative algorithm and can be slow with big data. 

Nearest class mean (NCM) represents a class density in the space as one prototype, which is the cent er of the 

class. NCM is a special case of NSC that use one prototype. NCM tends to generalize well for the base 

configuration [16]. It is very fast in training and testing phases but not accurate especially when the class 

density in the space spreads wider [9], [11], [17], Support vector machine (SVM) represents a class density in 

the space as support vectors. The number of support vectors increases when dealing with large data using two 

approaches: one versus one and one versus rest. The work of [3] showed that SVM can provide good 

accuracy. However, SVM is slow in training phase especially when dealing with large data [17-20]. It also 

requires to be retrained whenever a change in the data occurs. 

Bayesian classifiers perform the classification by assigning the instance to the class with the highest 

posterior probability using Bayesian rule. Naïve Bayes (NB) represents a class feature probability density 

using only a single Gaussian function. NB is a simple, fast and accurate classifier when the class distribution  

is Gaussian. However, its accuracy decreases if the class distribution is not Gaussian [8]. Due to its 

simplicity, speed and accuracy in large databases, NB has become a popular classifier in many applications 

[21-24]. The accuracy of the NB classifier is  comparable to the ANN [25]. However, it is lesser than that of 

the SVM [26-28]. Gaussian Mixture Model Classifier (GMMC) represents a class feature probability density 

using Gaussian mixture model function. An iterative algorithm like Expectation Maximiza tion (EM) is 

normally used to estimate Gaussian mixture model (GMM) parameters  [29-33]. GMMC is more accurate 

compared to NB but slower in training phase due to EM. Flexible Naïve Bayes (FNB) represents a class 

feature probability density using kernel function [22], [34], [35]. Gaussian kernel function is normally used in 

FNB [36]. FNB with Gaussian kernel function is similar to GMMC in which both of them represent a class 

feature probability density as mixture of Gaussians.  

The main problem of classification is that it is difficult and challenging to have a classification 

algorithm that is fast and accurate when dealing with large number of instances. Reviewing the past researchs 

showed that the classification algorithms like ANN, SVM, 1stNN, NSC and GMMC are accurate but slow 

when dealing with large number of instances. In additional to that these algorithms might require to be 

retrained when the classes changes. On the other hand, algorithms like NB and NCM are fast but not 

accurate.  

In our previous work, PHBayes which is a Bayesian algorithm represents a class feature probability 

density using histogram [37]. Compared with other algorithms, PHBayes is fast in both training and testing 

phases. It is also very accurate when dealing with large number of instances. In this paper, a new Flexible 

Partial Histogram Bayes learning algorithm (fPHBayes) is proposed which is an improvement of PHBayes. 

Compared with PHBayes in our previous work [37], the proposed fPHBayes is more accurate to deal with 

small and large number of instances, more flexible to the class probability distribution and requires fewer 

parameters to be considered. fPHBayes uses a probability distribution derived from smoothing the observed 

histogram and performs the classification using Bayesian rule.  
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Our contributions in this work is proposing a new supervised learning algorithm fPHBayes which is 

an accurate algorithm, able to work with small and large number of instances and flexible to the distribution 

of the class. fPHBayes is also compared with other standard and most related and recent learning algorithms 

considering real data from UCI database and synthetic data analysis. 

The rest of this paper is organized as follows: PHBayes and the proposed algorithm fPHBayes are 

explained in more details in the methodology section. Results and analysis are provided in the results and 

discussion section and the conclusion is provided in the conclusion section. 

 

 

2. RESEARCH METHOD 

2.1. Partial Histogram Bayes Learning (PHBAYES) 

PHBayes is a supervised probabilis tic learning algorithm. It performs the classification by assigning 

a training instance, X, where X = (X1,…,Xn) represents a vector of a training instance with n features, to the 

class, C, with the highest posterior probability, P(C|X), applying the Bayesian rule as in Equations (1)  

and (2). The training phase of PHBayes consists of three steps: the generation of the observed histogram, 

estimation of noise level in the histogram and estimation of histogram probability. 
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The observed histogram, b = (b1,…,br), is generated directly from the instances of the class. The 

value of each bin in the histogram, bk, represents the frequency of occurrence. The histogram resolution, r, is 

an important parameter in order to generate more accurate histogram compared to its own probability 

function. 

Figure 1 shows observed histograms from small and large number of instances generated from 

mixture of Gaussian with two Gaussian components. In general, increasing the number of instances improves 

the accuracy of the observed histogram. The estimation of the noise level in the histogram is important 

procedure toward reducing the error in the histogram especially when dealing with small number of 

instances. The probability of chance, pch(bk), of each bin in the histogram is calculated using De-moivre 

Laplace theorem by treating the number of instances, s, as trials [38]. According to De-moivre Laplace 

theorem, when the number of instances is large, the probability of chance can be represented as Gaussian 

distribution with mean, µch = sp and variance, ∑ch = spq, where p = 1/r and q = 1-p. The probability of chance 

is given in Equation (3). Figure 2 shows De-moivre Laplace theorem applied on an observed histogram taken 

from six sided dice. Figure 3 shows how to estimate the level of noise in PHBayes for three steps of iteration. 

 

 

 
(a)    (b)    (c) 

 
(d)    (e) 

 

Figure 1. Observed histograms (a) is probability density function with two Gaussians. (b) and (c) are 

observed histograms from small number of instances using 32 and 64 bins. (d) and (e) are observed 

histograms from large number of instances using 32 and 64 bins. 
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(a)      (b) 

 

Figure 2. Calculating the probability of chance applied on the observed histogram of six sided dice. (a) The 

probability of chance. (b) The observed histogram of six sided dice. 

 

 

 
(a)   (b)    (c) 

 

Figure 3. Histogram level of noise estimation in PHBayes (hard approach). (a), (b) and (c) are three steps of 

iteration where the lower horizontal red line represents the mean of the chance or noise,µchand the upper 

horizontal black line represents the threshold fU. 

 

 

After determining the initial µch and ∑ch, an iteration procedure is performed to estimate the 

histogram level of noise. In each step of iteration, the instances of each bin, bk with low probability of chance 

are removed or subtracted from the total number of instances, s, resulting in the remaining instances or the 

instances that occur by chance, sch, as given in Equation (4), where the upper frequency, fU, is a threshold 

controlled by β parameter as in Equation (5). As a result of that, µch and ∑ch are also updated in each step of 

iteration from the value of sch. This iterative procedure stops when it converges. After it converges, the 

histogram level of noise and its variance are the latest update of µch and ∑ch. In Figure 3, the upper horizontal 

dark line represents fU and the lower horizontal red line represents µch while fL at zero. This approach is the 

hard thresholding approach. In each step of iteration, the parts of the histogram that are higher than the 

threshold fU are removed. 
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The histogram probability is estimated by smoothing the histogram bins bk that have high 

probability of chance pch(bk)around the level of noise µchthen rescaling it by the number of instances s. There 

are two conditions in the histogram smoothing. First, if the probability of chance of a bin is lower than the 

threshold pch(bk)<β, then no smoothing process occur. In this case, the bin of the histogram is considered to 

be reliable. Second, if the probability of chance of the bin is higher than the threshold, pch(bk)≥β, then the bin 
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of the histogram is not considered to be reliable and it is rescaled around the level of noise. The parameter α 

is used to control the scale of smoothing. The histogram probability, p(b), is calculated by rescaling the 

smoothed histogram by the number of instances. The smoothing and probability estimation is calculated 

using Equation (6). Figure 4 shows how to smooth the histogram and calculate its probability in PHBayes. 

Here, only the bins between fUand fLare smoothed around µch. 
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The testing phase of PHBayes is done by assigning the instance X to the class C with the highest 

posterior probability P(C|X) using the Bayesian rule as in Equation (7), where k  is the nearest bin to  

value of Xi. 
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Figure 4. Histogram smoothing (a) and probability estimation (b) in PHBayes. The lower horizontal red line 

represents the mean of the chance or noise µchand the upper horizontal black line represents the thresholdfU. 

 

 

The advantages of PHBayes are that it is fast both in training and testing phases. It is accurate 

especially when the number of instances increase as the error in the probability estimation reduces. It has low 

memory requirement since it only save bins of the histogram and probability for each class. It is also flexible 

to the shape and distribution of class by using histogram probability and is not required to be retrained 

although there are changes in the data and classes. 

The limitations of PHBayes is that its performance is highly dependent on the values of the 

parameters α, β and r. Using different values of these parameters may lead to different classification results. 

For example, using small r is good to estimate the histogram probability with small number of instances 

while using large r is better with large number of instances. PHBayes is also not very accurate when dealing 

with small number of instances or if the distribution of the class spread wider. This is because in these cases, 

estimation of the histogram probability becomes difficult. These limitations reduce the estimation accuracy of 

the histogram probability. 

 

2.2. Flexible Partial Histogram Bayes Learning (fPHBayes) 

In this paper, a supervised flexible partial histogram Bayes learning algorithm (fPHBayes) is 

proposed to overcome some of the limitations of the original PHBayes. Compared with PHBayes, fPHBayes 

requires fewer parameters to consider and its performance does not depend on the parameters α and β. It is 

also suitable to work with large and small number of instances using higher histogram resolution.  This 

property helps to increase the accuracy of fPHBayes. 

Similar to PHBayes, the training phase of fPHBayes also consists of the three steps: the generation 

of the observed histogram, estimation of the level of noise in the histogram and estimation of th e histogram 

probability. The procedure of generating the observed histogram in fPHBayes is similar to that in PHBayes 

with the exception that fPHBayes uses higher histogram resolution. 
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The procedure of estimating the level of noise in the histogram in fPHBayes is improved compare 

with PHBayes, where a soft approach is used instead of the hard one. The mean, µch and variance, ∑ch are 

calculated from the probability of chance in each step of iteration and the remaining instances, schis 

calculated using Equation (8). Compared with the calculation of the sch in the PHBayes that uses hard 

threshold fU which is controlled by the parameter β, the calculation of the schin the fPHBayes as in  

Equation (8) uses soft approach which does not have fUor fL and not controlled by the parameter β. In another 

word, to find the remaining instances sch, the reliable and non-noisy parts of all bkare subtracted from s.  

The non-noisy part for each bk, is the multiplication of the inverse probability of chance for the bin (1 - 

pch(bk)) by the difference between bkand µch. This is only applicable when bk>µch. As a result of that, in each 

step of iteration, µchand ∑chare updated based on the value of sch. This procedure stops when it converges. 

The histogram level of noise and its variance are the latest update of µchand ∑ch. 
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Figure 5 shows how to estimate the level of noise in fPHBayes for three steps of iteration. The soft 

approach in fPHBayes affects all the parts in the histogram that are higher than the level of chance or noise 

µch. The soft approach does not have fixed threshold like fUas in the hard approach. Instead of that, each bin 

in the histogram that has a value higher than the level of chance is effected differently based on the 

probability of chance of the bin pch(bk). For example in the first step of iteration, the bin number 7, b7 with the 

lowest probability of chance is the most effected bin by the soft approach. On the other hand, the bin b21 with 

high probability of chance is mostly not affected by the soft approach in the first step of iteration. The second 

and the third steps of iteration also show that when the level of chance µchreduces after removing the non-

noisy parts of the histogram, more parts of the histogram are affected becau se their probabilities of chance 

reduce. This is because the soft approach affects each bin based on its probability of chance. As a result of 

that the parameter β is not required. 

 

 

   
 

(a) 
 

(b) 
 

(c) 

 

Figure 5. Histogram level of noise estimation in fPHBayes (soft approach). (a), (b) and (c) are three steps of 

iteration where the horizontal red line represents the mean of the chance µch. 

 

 

The histogram probability estimation in fPHBayes is also improved compared with PHBayes. In 

fPHBayse, each bin in the observed histogram, bkis smoothed by redistributing the part that is higher than the 

level of chance or noise (bk-µch) among the neighboring bins bj, where 1 ≤ j ≤ r. The redistribution of the bin 

bkamong the neighboring bin bj, G(bj, bk) is following Gaussian distribution N(j, µG, ∑G(bk)) scaled by (bk -

µch)as in the Equation (9). The mean of the smoothing or redistribution, µG, is the histogram bin number, k , 

and the variance of the redistribution, ∑G, depends on the probability of chance of bin pch(bk) and can be 

calculated using Equation (10). Therefore, the smoothed value of the bin, θ(bk) is the summation of the 

redistribution of all neighboring bins G(bj, bk)plus the level of noise µchas in the Equation (11). Finally and in 

order to get 100% probability distribution, the histogram probability, p(b), is estimated by rescaling the 

smoothed histogram, θ(b), by the number of instances s as in Equation (12). This means the higher the 

probability of chance the bin has, the larger the variance of smoothing it has. Here, the parameter α is not 

required as each bin has a different variance of smoothing based on its pch(bk). This makes sure that only the 

noisy part of the histogram is smoothed and based on the amount of noise it has. This allows fPHBayes to 

work with small and large number of instances using larger histogram resolution compared with PHBayes. 

Figure 6 shows how to smooth the histogram and calculate it s probability in fPHBayes. Here as an example 
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in Figure 6, the highlighted bins b7 and b21 have different variance of smoothing represented by black lines. 

Since b7has lower probability of chance than b21, its instances are redistributed in smaller area compared with 

b21. Finally, the probability is estimated by redistributing all bins in the histogram. 
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Similar to PHBayes, the testing phase in fPHBayes is done by assigning the instance X to the class C 

with highest posterior probability P(C|X) using the Bayesian rule as in Equation (7). Figure 7 shows the 

histogram probability estimation of both PHBayes and fPHBayes using small and large number of instances. 

It is clear that both PHBayes and fPHBayes estimate the histogram probability better when the number of 

instances is large with respect to the histogram resolution. However when the number of instances is small, 

the estimation of fPHBayes is better than PHBayes. This is because the smoothing part in fPHBayes is 

improved. It tends to redistribute only bins with high probability of chance among other bins. This 

improvement makes sure that smoothing process only applies on the part that is not reliable in the histogram. 

This allows fPHBayes to work with large and small number of instances and with large and small variances 

using large histogram resolution. 

 

 

 
(a)     (b) 

 

 
(c)     (d) 

 

Figure 6. Histogram smoothing and probability estimation in fPHBayes. (a), (b) and (c) are the steps to 

smooth the histogram binsb7andb21. (d) The probability estimation by smoothing all bins  
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(a)   (b)    (c) 

 

 
(d)   (e)    (f) 

 

Figure 7. Probability estimation of PHBayes and fPHBayes. (a), (b) and (c) represent the probability 

estimation of PHBayes(32), fPHBayes(32) and fPHBayes(64) with small number of instances. (d), (e) and (f) 

represent the probability estimation of PHBayes(32), fPHBayes(32), fPHBayes(64) with large number of 

instances 

 

 

3.    RESULTS AND DISCUSSION 

3.1. Results of Synthetic Data  

In synthetic data experiments, two factors that affect the accuracy of the classifiers were considered. 

These factors were the number of training instances and variance of Gaussians. These factors were selected 

for these experiments to show the improvement in the proposed fPHBayes compared with PHBayes. 

Different classifiers were considered for the experiments. They were 1
st

NN, NCM, NSC with 5 components, 

GMMC with 5 components, PHbayes with r=16, PHBayes(16), PHBayes with r=32, PHBayes(32), PHBayes 

with r=48, PHBayes(48) and the proposed algorithm with r=64, fPHBayes(64). The values for α and β of the 

PHBayes were set to α=0.5 and β=0.005 [37]. The reason of using 64 bins of histogram in fPHBayes is to 

allow it to cover all ranges of histogram lower than 64 bins. This means fPHBayes with 64 bins of histogram 

is flexible to use any histogram lower than 64 bins. These different classifiers were selected for the test 

because they are standards and recent algorithms and used in many reseearchs. For example NSC was used in 

the works of [11, 17], GMMC was used in the work of [32, 33], and our previous PHBayes was  

proposed [37]. It is also important to mention that NCM is a special case of NSC in which a single prototype 

is used to represent a class density and NB is a special case of GMMC in which a single Gaussian component 

is used. The generation of the synthetic data was based on the representation of probability density functions 

of features of the classes as mixture of Gaussians. For all the classes, instances were derived from the 

probability density function and the number of training instance was the same as number of testing instances. 

The default value of the number of training instances per class was 300 and for the variance of Gaussians was 

around 0.1. Ten classes were used in each experiment. Each class had 16 features (8 independents an d 8 

dependents). Figure 8 shows the results of synthetic data experiments. 

Figure 8a shows an analysis on the impact of the number of training instance as one of the factors 

that affects the classification accuracy. Number of training instance was varied from 60 to 540. The values 

for other factors were fixed at their respective default values. In general, the accuracy of all the classifiers 

increased with the addition of number of instance. However, the performance rate of the classifiers was at the 

different rate. The accuracy of the NB and NCM was less affected with the addition  of the number of 

instance. PHBayes produced significant improvement as the number of instance increased. Large number of 

instance helped to improve the estimation of the histogram in the PHBayes. fPHBayes was very accurate 

when the number of instances was  small as well as when the number of instances is large compared with 

PHBayes. 

Figure 8b shows the results of variance of Gaussian that ranges from 0.02 to 0.18. Other factors 

were set to their default values. The increment of the variance typically reduced the classification accuracy of 

all the techniques. Compared to the other classifiers, the declining rate of the accuracy of the PHBayes was 
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more apparent because the class probability density was spread wider. fPHBayes was less effected by this 

factor than PHBayes. 

 

 
(a)     (b) 

 

 
(c) 

 

Figure 8. Accuracies results (a) Results from varying the number of training instances  (b) Results from 

varying the variances of Gaussians (c) Legends 

 

 

3.2.  Resuts of Real Data  

In real data experiments, twenty different databases from UCI machine learning database 

(http://www.ics.uci.edu/~mlearn/MLRepository.html) containing more than 50,000 instances from different 

classes were used. The database is presented in Table 1. Each database contains different classes, features, 

and instances. In order to standardize the analysis for all the classifiers, the features were scaled equally and 

nominal feature were ignored. About half of the instances were randomly selected as training instances and 

the other half were used for testing. fPHBayes was compared with other classifiers, 1
st

NN, NSC, NCM, NB, 

GMMC and PHBayes.  

Table 2 presents the accuracy results of the classifiers on the databases. In general, fPHBayes 

produced high accurate results in 12 of the 20 databases (60%) as compared to other classifiers. fPHBayes 

was the most accurate classifier with average accuracy 0.7888. Compared with PHBayes, fPHBayes is the 

winner for 16 out of 20 of the databases. 

The average computational time using the 20 databases is shown in Table 3. The time of fPHBayes 

was comparable to the fastest algorithm PHBayes in the testing phase, but slower in the training phase.  

 

 

Table 1. Twenty UCI databases used in the analyses  

No. Database name No. of instance No. of features No. of classes 

1 Abalone 4177 8 3 

2 Balance-scale 625 4 3 
3 Blood Transfusion Service Center 748 4 2 
4 Car evaluation 1728 6 4 

5 Connectionist Bench (Sonar, 208 60 2 
6 Contraceptive Method Choice 1473 9 3 
7 Glass identification 214 9 6 
8 Haberman's survival 306 3 2 

9 Hayes-Roth 132 5 3 
10 Hepatitis 155 19 2 
11 Ionosphere 351 34 2 
12 Iris 150 4 3 

13 MAGIC Gamma Telescope 19020 10 2 
14 Mammographic Mass 961 5 2 
15 Nursery 12960 8 5 
16 Pima Indians Diabetes 768 8 2 

17 Spambase 4601 57 2 
18 Statlog (Image Segmentation) 2310 19 7 
19 Wine 178 13 3 

20 Wisc. Breast Cancer (Diagnostic) 699 10 2 
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Table 2. Accuracy results  

No. 1
st
 NN NCM NSC NB GMMC 

PHBayes 
(16) 

PHBayes 
(32) 

PHBayes 
(48) 

fPHBayes 
(64) 

1 0.4756 0.3987 0.4158 0.4400 0.3574 0.4993 0.4938 0.4961 0.5036 
2 0.7994 0.7340 0.6875 0.8782 0.8750 0.7785 0.7785 0.7785 0.8772 

3 0.7064 0.6631 0.5992 0.7644 0.7468 0.7535 0.7591 0.7535 0.7623 
4 0.9060 0.7187 0.7141 0.6858 0.7541 0.8010 0.8010 0.8010 0.8135 
5 0.9346 0.9923 0.9481 0.9865 0.9865 0.9231 0.9635 0.9394 0.9942 
6 0.4359 0.4359 0.4088 0.4734 0.3971 0.5075 0.5026 0.5001 0.5043 

7 0.6168 0.5673 0.6037 0.5869 0.7449 0.7598 0.6402 0.6047 0.8065 
8 0.7085 0.7438 0.5699 0.7471 0.7392 0.7444 0.7216 0.7157 0.7608 
9 0.5485 0.5273 0.4970 0.6152 0.6182 0.5318 0.5242 0.5242 0.5576 

10 0.6519 0.7013 0.6714 0.6818 0.7143 0.8026 0.7766 0.7390 0.8117 
11 0.8097 0.7743 0.7034 0.7663 0.7926 0.8526 0.8589 0.8606 0.7817 
12 0.8867 0.4813 0.8080 0.5213 0.8520 0.8093 0.7493 0.7960 0.6640 
13 0.9935 0.9053 0.9171 0.9087 0.9687 0.9665 0.9927 0.9853 0.9950 
14 0.7558 0.7913 0.7527 0.8127 0.8285 0.8358 0.8327 0.8335 0.8340 
15 0.8889 0.8200 0.7869 0.7206 0.7744 0.8664 0.8664 0.8664 0.8717 
16 0.6411 0.6602 0.6331 0.6839 0.6859 0.6828 0.6690 0.6667 0.6909 
17 0.9203 0.8234 0.6483 0.7122 0.7956 0.9370 0.9384 0.9333 0.9438 
18 0.4423 0.4472 0.4239 0.3548 0.6072 0.6416 0.7106 0.7375 0.6523 
19 0.7101 0.7730 0.7416 0.8393 0.8146 0.7247 0.7494 0.7596 0.9753 
20 0.9613 0.9676 0.8914 0.9610 0.9642 0.9736 0.9736 0.9736 0.9759 

Total 

Average 
0.7397 0.6963 0.6711 0.7070 0.7509 0.7696 0.7651 0.7632 0.7888 

 

 

Table 3. Training and testing times on the 20 databases  
Algorithm Training T ime (s) Testing T ime (s) 

1
st
NN --- 354.3157 

NCM 1.7284 0.2485 

NSC 22.2335 1.1067 
NB 3.8252 0.5948 

GMMC 202.8376 3.5611 

PHBayes(16) 1.5672 0.1299 
PHBayes(32) 1.8040 0.1277 
PHBayes(48) 1.9970 0.1308 
fPHBayes(64) 4.8354 0.1315 

 

 

3.3.  Speed and Memory Analyses 

To analysis the speed and memory requirement for fPHBayes and PHBayes, it is important to look 

at their structures. The training phase in both algorithms consists of three steps: the observed histogram 

building, histogram level of noise estimation and histogram probability estimat ion. Both algorithms build the 

observed histogram the same way, thus the required time of building the observed histogram is snτ where τ is 

unit of time. Both soft approach in fPHBayes and hard approach in PHBayes require the same number of 

operands to estimate the histogram level of noise. As a result, the required time to estimate the histogram 

level of noise in both algorithms is lrnτ where l is the number of iterations. Smoothing process and estimating 

the histogram probability in fPHBayes is slower than PHBayes since it redistributes the noisy instances of the 

bins among neighboring bins. This makes fPHBayes takes longer time equal to r
2
nτ compared with only rnτ 

in PHBayes. The total required times for fPHBayes and PHBayes are (s+lr+r
2
)nτ and (s+lr+r)nτ 

respectively. In the testing phase, both algorithms assign a testing instance to the class with the highest 

posterior probability applying Bayesian rule. Because of both algorithms use histogram probability, their 

total testing time is only nτ. The memory size of both algorithms is 2rnM. This is in order to save the 

observed histogram rnM plus the histogram probability rnM, where M is unit of memory. 

 

3.4.  Discussion 

Our contributions in this work is proposing a new supervised learning algorithm fPHBayes which is 

an accurate algorithm, able to work with small and large number of instances and flexible to the distribution 

of the class. fPHBayes is also compared with other standard and most related and recent learning algorithms 

considering real data from UCI database and synthetic data analysis. 

fPHBayes demonstrated more accurate results than other tested algorithms in most of the 

experiments. It is able to work with small as well as large number of instances and flexible to the class 

distribution. fPHBayes is a Bayesian algorithm which does not fall into curse of dimensionality. It is also 

important to mention than by using histogram probability, it is easy to handle the changes in the data. This is 
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because it is easy to update the histogram probability compared with retraining like in SVM, ANN, GMMC 

and NSC. 

Speed and memory analysis demonstrated that fPHBayes is fast in training and testing phases and 

requires small memory. Speed analysis showed that the iteration part of the training phase does not depend 

on the number of instances for histogram algorithms which make them very fast in training phase. It also 

showed that the speed of these algorithms does not depend on the number of instances in the testing phase. 

This makes them have the fastest speed in testing phase compared with other tested algorithms. Results 

showed that histogram algorithms are very fast in training phase and the fastest in testing phase compared 

with NCM, NSC, KNN, NB and GMMC. Memory analysis showed that the memory requirement of 

histogram algorithms does not depend on the number of instances but only on histogram resolution, which is 

very small. 

Limitation of fPHBayes can be inherited from the limitation of Bayesian algorithms. All Bayesian 

algorithms like NB, GMMC, FNB, PHBayes and fPHBayes assume that all features are independents which 

may lead to lost in the accuracy if the features become more dependent. 

In general, fPHBayes showed very good accuracy, remarkable speed and small memory requirement 

with the flexibility to handle changes. With these characteristics, it is expected to use this algorithm in the 

applications that require continuous learning like humanoid robots and expert systems. Future work will 

focus on the accuracy and how to improve it in the case of working with dependent features. 

 

 

4.    CONCLUS ION 

In this paper, fPHBayes is proposed to work fast and accurate with large and small data  and to 

cover some limitations in our previous work PHBayes. Compared with other tested algorithms, fPHBayes is 

more accurate and more flexible to handle different number of instances with different variances of 

Gaussians. Compared with PHBayes, the level of noise estimation and the probability estimation  in 

fPHBayes is improved. fPHBayes does not require the parameters α and β as it applies soft approach and 

redistributes the instances based on the probability of chance. These features allow fPHBayes to work with 

higher resolution and provide better accuracy than PHBayes. The speed and memory analysis showed that the 

speed and memory of fPHBayes do not depend on the number of instances. The experiments on synthetic and 

real data showed that fPHBayes provided the most accurate results compared with PHBayes, 1stNN, NSC, 

NCM, NB and GMMC. 
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