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 The emergence of modern portable software, start to behaved hybrid short-
long running combined applications, in which an active apps may invoked 
others to fulfill task requirements. Thus the implementation of Dynamic 
Translation and Optimisation (DBTO) into heterogeneous multicore system-
on-chip (SoC) will require careful re-study, to ensure efficient usage of most 
available cores. In order to improve efficiency in supporting this Instruction 
Set Architecture (ISA) diversity of computing platforms, mix modes of 
statically and dynamically Binary Translation and Optimization system, or 
DBTO, need to utilize concurrent compilation techniques, to better service 
the combined applications processing. This research deep dived into finer-
grained DBTO overhead analysis, to provide categorization and 
characterization of overhead sources in breakdown stages during concurrent 
instruction processing. A dual-engine of translation and optimization is 
constructed for finer managemnt of start-up overheads. Helper functions, i.e. 
LoadLink/StoreCondition (LL/SC) are derived from atomic instructions, to 
create multiple helper thread supported by multiple host cores, for better 
instruction translation and optimization operation concurrently. Our 
experiment platform, evaluated through PARSEC-3.0 benchmark suite, 
shows performance improvement approaching 2.0x for apps based programs 
and 1.25x for kernel based programs, for x86 to X86-64 emulation. This 
technique possess great potential and serve as research based platform for 
future binary translation technique development, including adaptive method.

Keywords: 

Binary optimisation 
Binary translation 
Multicore 
Multi-ISA processor 
Multithreaded 

Copyright © 2018 Institute of Advanced Engineering and Science. 
All rights reserved. 

Corresponding Author: 

Joo-On Ooi,  
Department of Computer and Communication Technology, 
Universiti Tunku Abdul Rahman, 
Jalan Universiti, Bandar Barat, 31900 Kampar, Malaysia. 
Email: ooijo@utar.edu.my 

 
 
1. INTRODUCTION 

Dynamic Binary Translation (DBT) has been commonly used in cross-ISA process virtual  
machines [20] to enable system or application migration from one ISA to another [17]. Some popular 
application of this DBT includes Android emulator using QEMU [1] to develop ARM based code running on 
x86 machine [16, 17]. This fast emulation technique dynamically translates guest executables (eg. ARM 
binary) to native instructions on the host machine (eg. x86 server), and store the translated native code in 
cache memory to avoid re-translation [3, 8]. The translated code runs many times faster than the traditional 
interpretation approach, it can be further optimized through Dynamic Binary Optimization (DBO) process, in 
which redundant and superfluous instructions can be eliminated to reduce code size for faster code 
processing [2, 10]. However, to further speed up the emulation through generating highly optimized code has 
ever become more challenging since optimizations require longer translation time, which is a portion of the 
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system runtime, and potentially produced unreliable code if optimizations are not carefully tested [12]. The 
performance of a DBT-DBO emulator is greatly determined by turn-around time, in which execution time 
plays a main contributor. This overheads are non-negligible during dynamic process of transforming a piece 
of code into another, which caused the emulated program or system to pause progress momentarily [9]. Such 
overheads impact directly the overall system performance, which is not the only important metric, due to 
overheads from start-up or reactive code translation become significant as compare to relatively smaller 
overall overheads once an application has been executed. Past experiments done by researchers have shown 
that a typical DBT with DBO emulation process will goes through a series of common primitives despite the 
level at which it operates [5,18,20]. Some of the functions perform by the optimizer includes following, 
which may not necessarily in this sequence: (i) code profiling in order to detect hot regions, (ii) build regions, 
(iii) decode instructions, (iv) optimize regions, (v) code scheduling, (vi) code caching etc [2,10].  In this 
research , the essence of faster code translation in QEMU and rich optimizations possess by LLVM is 
combined into single hybrid translator-optimizer system, known as Dual-Engine DBTO, which is capable of 
handling multi-ISA guest code towards multi-ISA host processing, and produced both good translated code 
quality with relatively low translation overhead [20]. 

Furthermore, this paper look into overhead characterization in finer grained level, focusing on the 
specific parameters’ delay time incurred during the activation of multiple helper threads by LL/SC instruction 
call, in which aimed to assist the simultaneous binary translation and optimization processing for this newly 
constructed DBTO system. Through reviewing the overhead process a set of formula for code transition 
overheads is derived, and this formula is validated through the simulation experiment using the DBTO 
system constructed. 

Thus the main contributions of this research work are as follows: 
a. A detail analysis on DBTO overheads, include classification, characterization and formulae derivations 

involving related influencing parameters. 
b. A multi-threaded retargetable DBTO on multicores processor, capable for simultaneous binary translation 

and optimisation, is developed for hypothesis validation. 
c. A novel fine-grained overhead characterization with formula derivation, caused  by multiple helper 

threads creation through LoadLink and StoreCond instruction. 
d. An experiment framework to validate the proposed fine-grained overhead characterization of the multiple 

helper threads supported DBTO system. 
This research also intend to explore the possibility of other method(s) to reduce translation and 

optimization overheads incurred, as well as providing a useful platform for researcher, hopefully to produce a 
useful development tool or experimental prototype for embedded application, for instance Internet of Thing 
devices.  
 
 
2. THEORETICAL BASIS 
2.1    Dynamic Binary Translation ad Optimisation operation 

During DBT, in order to achieve guest to host binary translation, DBT system uses a globally shared 
code cache, so that all executing threads shared a single code cache, and each guest block has only a single 
translated copy in the shared code cache [19]. All the threads will maintain one director that records the 
mapping from a guest code block to its corresponding translated host code region. An execution thread 
initially looks up the directory to locate the translated code region. Once not found, it activates the Tiny Code 
Generator (TCG) to translate the untranslated guest code block. As all the execution threads share the code 
cache and the mapping directory, QEMU uses a critical section to serialise all accesses to the shared 
structures, as shown in Figure 1 [15]. Typically TCG is meant to be lightweight optimizer, which provide an 
ideal platform for emulating short-running applications with few hot blocks, such as during the booting of an 
operating system. The problem observed from lower quality translated code during cross-ISA binary 
translation has encouraged the exploration and development of additional translation process, commonly 
known as Dynamic Binary Optimization, in which several “heavy” optimization passes being employed to 
improve the quality of translated code [10]. Hybrid type of DBT with DBO combined the advantages of 
faster guest code translation with potential for code optimization to yield reduced size binary code for faster 
host machine execution. 

The translation and optimisation in DBTO operation aims to converting a code from one format to 
another, which cause various stages of overheads, mainly classified into native and instrumentation 
overheads [11]. Native overheads mainly due to startup and re-active overheads. Start-up overheads is the 
overheads occurred until the system reaches steady-state, where the vast majority of the executed code comes 
from the translated and optimized code cache. Re-active overheads are caused by re-translation and re-
optimisation of regions of code that have been evicted from the translation cache, particularly in the case of a 
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multiprogrammed environment with shared translation cache [20]. All these overheads can cause significant 
slowdown to DBT processing, as shown in Figure 2, thus, reducing the total DBT and DBO overheads is of 
utmost importance [9]. 
 
 

 
 

 

Figure 1. Dynamic binary translation operation, (a) 
overview block, (b) DBTO overview block disgram 

Figure 2. Slowdown analysis of DBT, in breakdown 
of fine-grained overheads [3] 

 
 

 
 

 

Figure 3. Breakdown of binary translation total 
overheads [32] 

Figure 4. Equation for various fine-grained 
overheads [9] 

    
 

2.2  Overhead Characterisation of DBTO 
Overhead of the Dynamic Binary Translation and Optimization can be characterize by different 

fine-grain categories, namely initialization, cold code translation, profiling and hot trace building, and 
translated code execution; which will be further described. Initialisation overhead, the overhead incurred 
during loading of DBT system into memory [11]. The overhead is measured by executing the native code 
immediately after the DBT initilisation. The overhead formula as proposed by  [9] is shown in  Equation (1). 
Typical initialisation overhead is around 0.2%. The Cold Code Translation is the metric associated with the 
newly encountered code or not-yet-translated-code, reside in code cache. At the same time DBT also updates 
the previously translated blocks to branch into this newly translated code. 
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A DBT configuration which utilising persistant traces, known as DBTPTraces removes the profiling 
and hot trace building overhead, but still suffers from cold code translation overhead. To eliminate this cold 
code translation overhead, a newer configuration with code patching addition, known as DBTPTrace+CP 
(Code Patching) is constructed. This configuration load the persistant hot traces and the native code is 
patched with instructions to jump to the loaded traces, the patched code is then executed, thus eliminating 
cold code translation process. 

Measurement for this overhead is shown in equation (2), with 11.91% as typical value. Profiling and 
Hot Trace Building:The application execution can be accelerated by optimizing frequently executed code, or 
known as hot code, by a  mean of detection mechanism using runtime information, commonly using profiling 
technique to obtain hot traces, measurement as shown in Equation 4. This process involves two types of 
overheads, namely Profiling Instrumentation and Profiling Execution. Profiling Instrumentation overhead is 
the time required to perform the instrumentation, or tool infrastructure set up preparing for profiling code 
translation process. Whereas Profiling Execution overhead is the time spent during executing the profiling 
instructions [9]. The persistent trace loading overhead (Equation 3) is measured by comparing the execution 
time of specific benchmarking using DBTLT+Native and DBTNative configurations. This DBTPTraces 
approach removes the profiling and hot trace building overhead but adds the overhead to load the persistent 
traces from the target file, with typical values around 22.73%, as shown in Figure 3.Translated Code 
Execution: Ideally, eliminating the initialisation and translation overheads would make the translated code 
run at least as fast as the native code. 

However, the translated code is not exactly the same as original code and the specialized hardware 
unavailability may cause extra overhead, which can be broken down into guest code emulation overhead, 
code cache control transfer overhead, Code Duplication and Return Address Stack (RAS) overhead, which 
will be described in the following section. Code Emulation overhead occurred due to the need to keep the 
original program behavior, thus translated code must emulate partial of the native instructions during 
execution, which involved more instruction emulations that potentially cause increment overheads. Code 
Cache Control Transfer will employs three modes of operations to perform the control transfer between 
traces and basic blocks inside the code cache, including code block chaining, code dispatching and inline 
dispatching. In typical situation, chaining does not incur extra overhead during the translated code execution. 
Due to inlined dispatching method, the Code Dispatcher is only called to resolve addresses from cold code.  

However, cold code is not often executed and the overhead caused by calls to the Code Dispatcher is 
minimized. In this way, majority of the address resolution overhead occurs with the inlined dispatching, 
which is used within frequently executed hot code, and may represent a significant portion of address 
resolution overhead, in which its measurment is shown in Equation (5). Experiment done by other researcher 
[9] shows that the address resolution overhead cause by indirect jumps and return instructions accounts for 
approximately 31.5% of the total translation overhead, as shown in Figure 3. Researcher’s experiment shows 
that some processor relies on RAS to efficiently predict the target address of return instructions, which form a 
norm by most modern microprocessors.  However, return instructions cannot be executed inside the 
translated code and are normally emulated through indirect jump instructions,which greatly increases the 
indirect branch predictor cache pressure. Experiment indicated that typical DBTO overhead due to RAS is 
33.6%, which accounted the highest weightage among all the related overheads. 

 
 
3. RESEARCH METHOD  

This research intend to provide concurrent binary translation usilising multithreading services on 
multicore, by constructing an infrastructure for atomic instruction which implemented in QEMU, chosen 
through hypothesis being made by the evidence of researcher’s work that shown it’s capability to perform 
parallel tasks processing through multiple compute units emulation [4, 6]. 

Through providing new TCG helpers act as sort of softmmu helpers, atomicity behavior can be 
guaranteed to some memory accesses. More specifically, the new softmmu helpers behave as LoadLink and 
StoreConditional instructions, and are called from TCG code by means of target specific helpers. The 
implementation heavily uses the software TLB together with a new bitmap that has been added to the 
ram_list structure which flags, on a per-CPU basis, all the memory pages that are in the middle of a 
LoadLink (LL), StoreConditional (SC) operation. LoadLink instruction is the instruction that reads the value 
from a shared memory location and stores the content into a register of the calling CPU. It also establishes a 
link and records the CPU with the accessed address (xaddr), to properly handle the subsequent SC operation. 
StoreConditional instruction is the instruction that writes to the address xaddr only if it belongs to an 
exclusive memory region (EMR) previously created by an LL. The SC is not always successful since another 
CPU can nullify the EMR by writing or reading to it. Since all these pages can be accessed directly through 
the fast-path and alter a vCPU’s linked value, the new bitmap has been coupled with a new TLB flag for the 
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TLB virtual address which forces the slow-path execution for all the accesses to a page containing a linked 
address. This new slow-path implemention demonstrates the following features: 
a. The LL behaves as a normal load slow-path, except for clearing the dirty flag in the bitmap. The 

cputlb.c code while generating a TLB entry, checks if there is at least one vCPU that has the bit cleared 
in the exclusive bitmap, in that case the TLB entry will have the EXCL flag set, thus forcing the slow-
path. The TLB cache of all the other vCPUs is flushed to ensure that all the vCPUs will follow the slow-
path for that page. The LL will also set the linked address and size of the access in a vCPU’s private 
variable. After the corresponding SC, this address will be set to a reset value. 

b. The SC can fail by returning 1, or succeed by returning 0. It has to come always after a LL and has to 
access the same address ‘linked’ by the previous LL, otherwise it will fail. If in the time window 
delimited by a legit pair of LL/SC operations another write access happens to the linked address, the SC 
will fail.  

In theory, the provided implementation of TCG LoadLink/StoreConditional can be used to properly 
handle atomic instructions on any processor architecture. During implementation work, two new instructions 
are created into existing 132 TCG ops instruction set, mainly to handle load linking and conditional store 
operation between related registers and host memory. This two instructions are introduced as helper 
instructions known as helper_ldlink_name and helper_stcond_name. 

Operations of One of the major problems when dealing with multi-threaded programs is the 
occurrence of race conditions. In the context of this work, a race condition can be associated to an inconsistency 
of the whole machine state, which is in charge of translating atomic instructions. The direct negative result of 
such a state is the failure of a StoreConditional (SC) operation that should have succeeded, or even worse, the 
success of a SC operation that had to fail. In the subsequent sections, all critical points that result in race 
conditions are explored, where the implemented approach is also documented. Updates of the exclusive bitmap 
can lead to inconsistencies due to the out-of-order execution of load/store operations as seen, for instance, on 
ARM architectures [16]. For this reason all accessors to such a bitmap are atomic, an outcome that is possible 
by means of host atomic instructions. It is important to note, that this can be possibly achieved only in the case 
where bitmap accessors are QEMU functions and not implemented through TCG generated code. In fact, other 
guest CPUs, different from the one issuing the LL, could have already generated TLB entries for the same page, 
forcing the execution to follow the fast-path (as shown in in Figure 5). To avoid this dangerous behaviour, TLB 
entries of these CPUs will be flushed, forcing them to recreate the TLB entry that covers the page in the EMR. 
This flush request will also prevent race conditions that are related to the delayed new state propagation of the 
exclusive bit. Our implementation also ensure the evaluations and updates of the EMRs have been safeguarded 
using a mutex, due to updating this structure is not possible with a single atomic instruction. Another related 
aspect that requires additional caution, relates to the actual memory accesses made by the LL and SC 
instructions. More specifically, the results on memory brought by these instructions has also to be done jointly 
with the update of the EMR values. The Listings 1, 2 and 3 represent respectively the algorithms for LL, SC and 
normal store access. In these examples, the critical region is delimited by two calls LOCK and UNLOCK. 
LoadLink as in Listing 1, only works as long as the normal local is done inside the critical section, otherwise the 
loaded value can be potentially updated by another CPU, which might or might not be inside the critical region. 
For the same reason, the SC operation (Listing 2) has also to rely on the same critical region to be consistent 
with the rest of the atomic instruction emulation. Without entering the critical region, it can potentially declare 
the operation as successful (returning 0), but performing the store after another CPU modified the value. 
Similarly, the store operation (Listing 3) enters the critical region to check for a possible conflict in EMR, but 
also to perform the regular access. 

 
 

 
 
Listing 1 (left): LoadLink pseudo code, load ( ) denotes a plain  load from memory of size z                     
Listing 2  (middle): StoreCond pseudo code, store ( ) denotes a  plain store to memory of size z  
Listing 3 (right): Plain write access trapped by the slow-path 
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Figure 5. Code region transition between guest CPU registers and code cache 
 
 

The overheads involved during this LL/SC operation includes helper function calls and code transition. 
During the QEMU system-mode emulation process, the LoadLink instruction operation takes place while the 
code transition is in process. Upon activation, helper function which comes in a piece of C code will be called 
from translated code, so to store the current address and load the value. Firstly a bit in the exclusive bitmap will 
be set to enforce slow path, which means helper function call for achieving multiple helper thread. DBT need to 
set the link address of guest CPU memory by first obtaining a lock for the target guest CPU memory segment to 
access the critical region, then the address size is determined, followed by setting the address range into the 
targeted vCPU thread register. Upon conditional store instruction activation, all vCPUS are halted, DBT to 
check if this process has been interrupted since last LL call, through checking the TLB table by comparing 
current address and value with the saved copies in the TLB table, if unchanged store process is allowed and 
success operation reported, the cpu states from current guest CPU will then be save into code cache. Else the 
TLB entry table needs to be updated through TLB flushing for all vCPUs. This process is repeated for different 
basic blocks inside the code cache, thus to generate multiple helper function thread to assist in binary translation 
as well as optimization process. Based on the LoadLink and StoreCond operation described previously, the 
overhead of code transition due to Load Linking process can be modeled by constructing overhead formula. As 
we have described previously, Load Linking process is affected by process including critical region inside 
memory locking, address and it’s size setting, flushing TLB, loading cpu state and unlocking critical region of 
memory. Thus the Load link overhead can be derived as below: 

 
 
 
 
 

The overhead of code transition due to Store Conditional process, influenced by halting all vCPUs, comparing 
values, and saving values, is derived: 
 
 
 
Thus the code transition overhead due to LoadLink and store conditional process is then given: 
 
 
 
 
4. RESULTS AND ANALYSIS 

Experiment is done through simulation of selected PARSEC-3.0 benchmark programs [14], 
compiled with gcc version 4.8.3,as depicted in Table 1. All performance evaluation is done on a system with 
one 1.7 GHz quad-core Intel Core-i7 processor and 4 GBytes main memory. The operating system is 64-bit 
Ubuntu 14.04 LTS Linux with kernel version 3.19.0-33-generic. The selected PARSEC 3.0 [15] benchmark 
programs are evaluated with the simlarge input sets resemble real inputs using larger problem size of data 
sets, for x86-32 guest ISA on the x86-64 host platform. All the selected benchmark programs are parallelized 
with the Pthread model and compiled for respective guest ISAs with PARSEC default compiler optimization 
and SIMD enabled. The benchmarks simulation performance is compared through using simlarge inputs 
between three different configurations: (i) Hybrid-QEMU with single-thread mode, denote as Hybrid-Q-s, 
and (ii) Hybrid-QEMU with multi-thread mode, denote as Hybrid-Q-m. During experiments, atomic 
instructions are emulated with lightweight memory transactions, for all the experiment configurations, so that 
the benchmarks can be emulated correctly. 

unlockmemloadstatecpuflushTLB

setsizeaddrsetaddrlinklockmem

TTT

TTT=L

____

_____load_link





valuesavecmphaltvCPU TTT=L __store_cond 

condstorelinkload TT=L __.code_trans 
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Table 1. Selected Benchmark programs features 

 
 
 

 
 
  Figure 6. PARSEC-3.0 benchmark results of x86 to x86-64 

 
 
4.1.  Static and Dynamic Binary Translation performance 

 It is observed that translation time by single thread support were seen to be much shorter than those 
multithreaded support for all apps based benchmark programs, as seen in Figure 6(a) to (d). Whereas for 
kernel based programs, i.e. streamcluster and canneal, translation time for multithreaded support were seen 
shorter or at most closely similar to single thread support, as seen in Figure 6(e) and (f). The relatively poorer 
translation performance of multithreaded support for benchmark apps were mostly due to accumulated 
overheads incurred by thread contention due to multiple thread supporting initializations stage, which can 
result in significant performance degradation, despite the fact that the concurrent execution supported by 
multithreading should result in translation time reduction. In the other way round, improved translation with 
optimization time performance was observed for kernel based programs for H-Q-m, due to they are either 
fine-granular or coarse-granular programs geared for parallelism in nature, thus benefited through 
multithreaded process support scheme during the binary translation process.The apps based programs are 
typically short running program, thus they will gain beneficial from DBT, which can be observed from the 
shorter elapsed time taken for H-Q-s. Whereas kernel based apps are towards longer running program, in 
which they will be benefited from DBT and DBO.  
 
4.2.  Concurrent Dynamic Binary Translation performance 

 As shown in Figure 6 for almost all PARSEC-3.0 benchmark programs, the increment of the elapsed 
time is seen to be reduced with the growing of the number of worker threads. It is observed that this translation 
time increment gradually reach saturation stage when number of worker thread exceed 32 threads. This 
phenomenon is due to the contribution from our built-in concurrent features, which amortise the start-up 
overheads at certan period after start-up process, eventually reaching steady state when number of of activated 
worker threads reaching 40. 

Model Granularity Sharing Exchange

blackscholes apps
Financial
Analysis

data-parallel coarse small low low

bodytrack apps
Computer
Vision

data-parallel medium medium high medium

canneal kernel Engineering unstructured fine unbounded high high

ferret apps
Similarity
Search

pipeline medium unbounded high high

streamcluster kernel Data Mining data-parallel medium medium low medium

vips apps
Media
Processing

data-parallel coarse medium low medium

Program Cat.
Application

Domain
Working Set

Data UsageParallelization
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4.3.  Program Start-up overhead analysis 

During the start-up stage of guest to host ISA binary translation, the average elapsed time for the 
helper threads spent in critical sections will increase significantly due to the helper threads contending for 
critical section within the QEMU dispatcher where the serialization lengthens the wait time. The delay is 
further worsten by critical section access wait time and branch target mapping directory lookup time. 
Furthermore this latency which increased from such serialisation is greater than the reduced execution time 
gained from incremental helper threads which assist in binary translation process. Thus this latency has 
generated high overheads which dominates the total translation time and hence the overall execution time, 
eventually causes the poor performance of the parallel PARSEC-3.0 benchmarking for the selected apps. 

 
 

5. CONCLUSION 
This paper presented detail fine-grained analysis of concurrent dynamic translation and optimization 

incurred on our newly constructed Dual-Engine DBTO architecture, with multi-threaded retargetable 
capability running on multicores processor. Experiments has shown that such multi-threaded hybrid 
translation and optimization approach can achieve relatively lower translation overhead and yet with good 
translated code quality on the target binary applications, especially for kernels based programs. In this 
experiment, the H-Q-m supported by multiple threads for binary translation processing, is more efficient for 
kernel based applications, as shown by up to 1.25x speedup of multithread versus single thread. Whereas 
apps based program are more beneficial through single threaded supported binary translation with up to 1.8x 
speedup versus multiple threads, as also reported in our previous paper [20]. We foresee the great potential of 
utilising the multithread technique for assisting binary translation and optimisation process, both for short 
running and long running program analysis. 
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