
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 11, No. 3, September 2018, pp. 1027~1034

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v11.i3.pp1027-1034  1027

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

Modified SHA-1 Algorithm

Rogel L. Quilala
1
, Ariel M. Sison

2
, Ruji P. Medina

3

1,3Technological Institute of the Philippines, 938 Aurora Blvd., Cubao, Quezon City, Philippines
2Emilio Aguinaldo College, 1113-1117 San Marcelino St., Paco, Manila 1000, Philippines

Article Info ABSTRACT

Article history:

Received Feb 27, 2018

Revised Apr 21, 2018

Accepted Jun 14, 2018

 Hashes are used to check the integrity of data. This paper modified SHA-1

by incorporating mixing method in every round for better diffusion. The

modification increased the hash output to 192-bits. Increasing the output

increases the strength because breaking the hash takes longer. Based on the

different message types, avalanche percentage of modified SHA-1 showed

better diffusion at 51.64%, higher than the target 50%, while SHA-1

achieved 46.61%. The average execution time noted for modified SHA-1 is

0.33 seconds while SHA-1 is 0.08 seconds. Time increases as the number of

messages hashed increases; the difference is negligible in fewer messages.

On character hits, that is - no same character in the same position, modified

SHA-1 achieved lower hit rate because of the mixing method added. The

modifications’ effectiveness was also evaluated using a hash test program.

After inputting 1000 hashes from random strings, the result shows no

duplicate hash.

Keywords:

Hash

Data integrity

Security

Cryptography

Avalanche

Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Rogel L. Quilala,

Technological Institute of the Philippines

938 Aurora Blvd., Cubao, Quezon City, Philippines.

Email: rlquilala@gmail.com

1. INTRODUCTION

In checking data integrity, cryptographic hash algorithms performs significant part to information

security [1], [2]. Data files used hashes for verifying its integrity, where a little change will cause a different

hash value [3].Hash assure that the recipient obtained the message sent by the source and that there is no

form of alteration done during transmission [4]. The representation of the message in compressed form is

called message digest or hash value. Hash value act as a digital fingerprint of the message or file, wherein a

message can only have one distinct hash value thus no two messages should have the same hash [4]. If the

hash value differs, hackers did alterations during transit resulting in the compromised integrity of the

message. Electronically transmitted files, digital signature, tamper detection, password protection, and

security in protocols apply hash for integrity verification [5], [6].

Seven approved hash algorithms are in Secure Hash Standard (SHS) Federal Information Processing

Standards Publication (FIPS PUB 180-4) namely: SHA-1, SHA-224, SHA-256, SHA-384 SHA-512, SHA-

512/224, and SHA-512/256 with hash length of 160, 224, 256, 384, 512, 224 and 256 bits, respectively [7].

SHA family uses the traditional iterative structure by Merkle-Damgard (M-D) [8], [9]. Even though M-D

construction ensures the security of hash functions, it suffers from some vulnerabilities due to structural

weakness [10]. That is why more hash functions that address shortcomings in the M-D construction are being

suggested incorporating minimal changes [11] such as wide and double pipe construction, 3C, prefix, chop,

sponge, and others each exhibiting their strengths and weaknesses. In this paper, the construction will be

modified by adding a counter and XORing the number to the intermediate hash value. With this additional

process, the modified SHA-1 strengthened the construction because of the addition of the counter which

changes at every step.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 11, No. 3, September 2018 : 1027 – 1034

1028

National Institute of Standards and Technology (NIST) published Secure Hash Algorithm 1

(SHA-1) as a cryptographic hash function [7], [12]. SHA-1 produces 160-bit hash value and is considered

fast [13]. It is the most widely used hash algorithm in a vast range of applications such as Digital Signatures,

TLS/SSL, SSH and PGP [14]-[16] due to its time efficiency and robustness [17]. At present, 21% of websites

in the world still use SHA-1 in signing certificates [18]. SHA-1 based fingerprint is used widely and

supported for verification [19].

Other hash functions also exist such as MD5 by Ronald L. Rivest released in 1992 that can compress

any data length to a hash value of 128bits [20], but real collision broke MD5 entirely in 2004 [21], [22].

SHA-0 in 1993 is an MD4 hash function used for authentication, is believed to be not safe after several

successful collision attacks in 2004 and 2005 [1]. SHA-2 and SHA-3 provide more extended hash value that

is more complicated to break [11], [13], but they are more complex and not as time efficient as SHA-1 [14]

[23], [24]. The increased number of rounds in SHA3 makes it less susceptible to collision resistance and

preimage resistance attacks when measured against SHA2, MD5, and SHA1 and others [25] but the use of a

sponge function construction can be considered neither as an advantage nor a disadvantage because this

function is a new construction that is not yet very well analyzed [26].

Though SHA-1 is popular, widely used and accepted as standard by NIST. Some noted that it does

not seem to offer sufficient avalanche effect with regards to the distribution of the input differences, while

other noted some unexpected weaknesses in the construction of all the step updating functions [1], [27]. This

problem will lead to the possibility of having two different input that will yield the same output value in the

middle of algorithm or compression function [20] [28]. Therefore, it is necessary to design a function with

better diffusion to spread the output in each round and prevent the same output in the next coming stages

[20], [29]-[30].

 Several studies made several enhancements on SHA-1 to attain additional diffusion [31], [32] but

did not show the bit-difference on the simulation of result or have shown lower bit difference. One study has

added the MD5 hash to SHA-1 [29] that indicates that the bit-difference of SHA-192 is lower than SHA-160.

This approach might suffer from the same weakness as that of MD5 [21], [22]. Others have not included the

actual message in the comparison of bit-difference. [23]. Therefore, the researcher has decided to improve

SHA-1 algorithm by increasing hash size output from 160 to 192 bits and provide better diffusion. Another

enhancement of SHA-1 makes use of 320-bit hash by doubling the message digest size and hash size [14].

This enhancement decreases the chances of the collision, but this approach requires more processing time

since it makes use of a higher block size. Notice that all enhancements made on SHA 1 uses the chaining

variables A, C, and D in each round as is and is just shifted to the next chaining variables and sends it to the

next round. From here, the researcher proposed to devise the mixing method to diffuse variables A, C, and D

better for each iteration.

This study intended to modify SHA-1 algorithm by increasing the output to 192-bits and

strengthening the hash function by adjusting the compression function through the incorporation of additional

mixing method in every round with the intention of attaining better diffusion. The objectives of this study are

to evaluate the performance of the modified SHA-1 through avalanche effect and to test the modified SHA-1

algorithm regarding time and message complexity.

The main impact of this work is the improvement of SHA-1 by introducing additional mixing

method in every round to achieve better diffusion characteristics. The study will contribute to the

improvement of the compression function used by SHA1 by increasing the output of the hash value to 192-

bits to strengthen the algorithm. Higher time will be needed to break the hash.

2. RESEARCH METHOD

2.1. Research Procedure

Figure 1 shows the proposed modified SHA-1 construction with the counter. An added counter was

XORed to the intermediate hash value. The addition of this process strengthened the M-D construction

because of a number assigned to the counter that changes in every step. The counter will start at an initial

value of zero and is incremented by 1 for every message block until the last block.

The proposed SHA algorithm of the compression function retained the eighty rounds. The modified

SHA-1 increased the message digest from 160-bits to 192-bits to strengthen the algorithm. To achieve this,

one additional chaining variables F was added. Next, F was XORed to the output of E before going to A. All

researchers have used variables A, C, and D as is. In every round, these variables were injected into the

mixing function to achieve better diffusion. The variables are mixed every round and send it to the next

round. This mixing function guarantees that the input values will spread out thus promoting good diffusion in

each round because the contents of the variables will not be the same in the coming rounds. Variable E goes

to variable F after own addition operations. Figure 2 shows the proposed modification on SHA-1 with the

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Modified SHA-1 Algorithm (Rogel L. Quilala)

1029

added mixing method. In the proposed hash algorithm, we note significant changes in the elementary

function.

Figure 1. Proposed modification on SHA-1 construction

Figure 2. Proposed modification on SHA-1 compression with added mixing method

The modified SHA-1 follows the same step in SHA except for the computation of the message

digest. The padded message is used to compute for the message digest. The computation uses two buffers (A,

B, C, D, E, F and H0, H1, H2, H3, H4, H5). The first buffer uses five 32-bit words, and the second buffer

comprises of eighty 32-bit words (W0, W1 ... W79). This process also uses TEMP1 and TEMP2 buffers.

{Hj} are initialized before processing any blocks with values of

67452301, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0, 40385172 (H1-H5). Let hash value length be m.

Modified SHA-1 steps to process the message in 16-word blocks:

a) Split Mi into 16 words starting from left to right, W0, ... W15

b) When t = 16 to 79, we do Wt =S
1
(Wt-3 XOR Wt-8 XOR Wt-14 XOR Wt-16).

c) Then let A=H0, B=H1, until F=H5, counter = m

d) When t = 0 upto 79 do

mixedACD= mixingACD(A, C, D)

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 11, No. 3, September 2018 : 1027 – 1034

1030

A’=mixedACD;C’=mixedACD;D’=mixedACd

TEMP1 = S
5
(A) + ft (B, C, D) + E + Wt + Kt;

 TEMP2 = F xor TEMP1

 E = D’; D = C’; C = S
30

(B); B = A’; A = TEMP2; F=TEMP1

e) counter+= m, then do H0 = (H0 + A) xor counter, H1 = (H1 + B) xor counter, H2 = (H2 + C) xor

counter, H3 = (H3 + D) xor counter, H4 = (H4 + E) xor counter, H5 = (H5 + F) xor counter.

After processing Mn, these words represent the computed 192-bit hash value:

H0 H1 H2 H3 H4 H5

The purpose of the Mixing (A, C, D) function is to accept the working variables A, C, and D as the

input column then spread the bits out to different places in the output column A', C,' and D'. The mix is

arranged from right to left in row-wise fashion as illustrated in Figure 3.

Figure 3. Mixing function

2.2 Evaluation Metrics
The performance of the modified SHA-1 was evaluated through avalanche effect, time and message

complexity.

Avalanche effect is a suitable characteristic in a hash function which indicates that a change in the

input bit of the hash results to a difference on the probability of the output bit. If the chance is close to 50%,

the hash function is considered good. A 50% avalanche percentage shows that the difference of the output

hash value and the input change is at least half and a probability higher than 50% displays improved

statistical performance [33].

Time notes the speed to generate the hash in seconds. Classification of the message type is two

message with 1-bit change, 24 messages with a difference in a few bits, two messages with distinction in the

last few bits, length difference, and random strings. Performance of the hash function is also measured by

comparing hash values with each other and then counting characters located at the same location with the

same content [34], in this study referred to as character hit.

3. RESULTS AND ANALYSIS

For performance analysis, we consider different messages during the testing and time, and avalanche

effect was noted for each test. The first message type is a 1-bit change in the message input. Consider the two

message: Message 1: “The quick brown fox jumps over the lazy dog” and Message 2: “The quick brown fox

jumps over the lazy mog”.

The second message type was tested using an input with a difference in only a few bits. Table 1 lists

the twenty-four messages used. The researcher inserts different characters at the beginning, middle, and last.

For the third message, consider the two words: “abc123_owlstead_1255” and

“abc123_owlstead_59131”.

The fourth message input is the length differences, that is the message “a a a” has a length of 5

versus message ”a a” which has a length of 3. The length of message considered was listed in Table 2

A C D

A0,0 C0,1 D0,2

A1,0 C1,1 D1,2

A2,0 C2,1 D2,2

A3,0 C3,1 D3,2

A’ C’ D’

A2,0 A1,0 A0,0

C1,1 C0,1 A3,0

D0,2 C3,1 C2,1

D3,2 D2,2 D1,2

Mixing (A, C, D)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Modified SHA-1 Algorithm (Rogel L. Quilala)

1031

Table 1. Message inputs with a difference of a few bits

No. Message Input

1 @AAA

2 CAAA

3 EAAA

4 IAAA

5 QAAA

6 aAAA

7 AAA

8 ÁAAA

9 AA

10 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA@AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
11 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

12 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

13 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
14 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

15 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAaAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

16 AAA

17 AAA@

18 AAAC

19 AAAE
20 AAAI

21 AAAQ

22 AAAa
23 AAA

24 AAAÁ

Table 2. Message inputs with different length
No. Message Input

1 a

2 a a
3 a a a

.......
23 a

24 a

The fourth type is a random string of message. For this test, the message consists of characters a...z,

A...Z, and 0...9. An online tool helps generate hashes from 500 random strings each of length 64 [35].

Table 3. Summary of results

Message Type
Avalanche

(%)
Time

(seconds)

MSHA-1 SHA-1 MSHA-1 SHA-1

1 Two messages with 1-bit change 56.77 46.25 0.02 0.02

2 24 messages w/diff. in a few bits 50.09 48.37 0.09 0.05
3 Two messages w/diff. in last few bits 50.00 38.75 0.02 0.02

4 Length difference 51.13 49.76 0.06 0.05

5 Random strings 50.19 49.90 1.28 0.28
Average (%) 51.64 46.61 0.33 0.08

For message type 1, the proposed modified SHA-1 achieved 56.77% while SHA-1 obtained 46.25%.

Hashing time for both tests is 0.02 seconds. For message type 2, avalanche effect of the proposed

modification on SHA-1 obtained 50.09%. The original SHA-1 attained 48.37%, slightly lower than the

desired 50%. Concerning the execution time, as reflected in Table 3, it took the modified SHA-1 0.09

seconds to complete while SHA-1 took 0.05 seconds. The modified SHA-1 is a bit higher. For message type

3, the modified SHA-1 achieved exactly 50.00% while SHA-1 got 38.75%, which is significantly lower.

Hashing time for both tests is 0.02 seconds. For message type 4, the modified SHA-1 achieved 51.13% while

SHA-1 attained 49.76%. The hashing time shows 0.06 and 0.05 for modified SHA and SHA-1. There is a

very minimal difference when it comes to the hashing time. Lastly, for message type 5, the modified SHA

achieved 50.19% while SHA-1 arrived at 49.90%5. The modified SHA-1 hashed the random string of

message in 1.28 seconds while SHA-1 produced the hash in 0.28. A difference of 1.00 seconds can be noted.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 11, No. 3, September 2018 : 1027 – 1034

1032

Based on the average, the avalanche effect of all has increased due to the modifications made. The

testing showed better diffusion result because out of the five different message types, the average avalanche

percentage of modified SHA-1 was 51.64% which is higher than the target 50% while SHA achieved only

46.61%. Regarding the time it takes to produce the hash, the time recorded was the same for two-message

comparisons. An increase in time appears as the number of the message to be hashed enlarges. The average

time noted for modified SHA-1 is 0.33 while SHA-1 is 0.08. The increment is mostly due to the added

mixing method and XOR operation. Although the time associated with hashing a message using modified

SHA is a bit higher, there is evident character hits as shown in Table 4.

Table 4. Summary of character hits

Message Type
Total Character Hits Max No. Of Equal Character Hits

MSHA-1 SHA-1 MSHA-1 SHA-1

1 1-bit change 0 0 0 0

2 24 messages w/diff. in a few bits 0 2 0 1
3 Two messages w/diff. in last few bits 0 5 0 5

4 Length difference 1 6 1 2

5 Random strings 38 48 1 2

Average (%)
(2:5)

40

(4:5)

80

In the modified SHA-1, message types 1, 2, and three doesn't have any character hits. For message

type 4, out of the 24 hashes generated, there was one instance where the same character was at the same

position. For message type 5, out of the 500 random messages, 38 hash pairs contains one character hit.

Character hits are noted more frequently in SHA-1. For message type 2, there were two hits

recorded. There were five hits observed for message type 3 and the number of characters per hit ranges from

1-5 characters per hash. For message type 4, 6-character hits and the number of characters that match ranges

from 1-2 per hash. For message 5, there were 44 hash pairs containing one character hit per hash and two

hash pairs with 2 character hits for a total of 48 hits. Notice that the hits for the original SHA-1 are higher

compared to the adjusted version.

The modified SHA-1 simulation indicates that out of the five message types, there were two

instances where a character hit was noted (2:5 or 40%) while in SHA-1, character hits occur 4 out of the five

different message types (4:5 or 80%). When considering the number of hits, the modified SHA-1 has a much

lower hit rate compared to the original SHA-1 on all tests made and on all test cases.

Figure 4. Hash list for a message with the difference in a few bits

To understand character hits, using the 24 message inputs and their hash value in SHA-1, the

researcher count the values that have the same hexadecimal value at the same position. Two hexadecimal

value is equal to 1 hit. Using traditional SHA-1 as shown in Figure 4, the hash of the message having a

difference in a few bits found two hits (Hash 8 and 9, hash 23 and 24). Figure 5 illustrates another example

using two messages with the difference in a few bits. In the modified SHA-1, the computed hash found no

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Modified SHA-1 Algorithm (Rogel L. Quilala)

1033

values on the same location. In SHA-1, there are nine hexadecimal values or 5 ASCII characters located at

the same place.

Figure 5. Hash list of two messages with the difference in a few bits

The hash value produced by the modified hash was also tested using a hash function testing

program [36]. This program takes hash values and counts how many duplicates the hash function produces.

1000 hashes from random strings were generated using the modified SHA-1 algorithm, and after running the

hash test, modified SHA-1 found no duplicates. Figure 6 shows the screenshot of the hash function test.

Figure 6. Hash function test

4. CONCLUSION

This study intended to modify SHA-1 algorithm by increasing the output to 192-bits and

strengthening the hash function by adjusting the compression function through the incorporation of additional

mixing method in every round with the intention of attaining better diffusion. Looking at the results of the

tests done, the modified SHA-1 have better diffusion compared to the original SHA-1. The diffusion is

evident by the increase in the avalanche percentage. There is an increase in the avalanche percentage

although the time also increased when messages increased. The additional mixing method and XOR

operation contribute to the increment in time. It is also evident that the number of hits using the modified

SHA-1 was minimal or lower compared to the original SHA-1 leading to no collision. Upon using the hash

function testing program, the hash values found have no duplicates. Based on the results, the modified SHA-1

can be used to test the integrity of messages. Further improvement is suggested to minimize the time

consumed by the modified SHA-1 hash by studying the effect of lessening the number of rounds.

REFERENCES
[1] N. Kishore and B. Kapoor, “Attacks on and advances in secure hash algorithms,” IAENG Int. J. Comput. Sci., vol.

43, no. 3, pp. 326–335, 2016.

[2] M. A. Alahmad, “Design of a New Cryptographic Hash Function – Titanium,” Indones. J. Electr. Eng. Comput. Sci.,

vol. 10, no. 2, pp. 827–832, 2018.

[3] I. Alsmadi and M. Zarour, “Online integrity and authentication checking for Quran electronic versions,” Appl.

Comput. Informatics, vol. 13, no. 1, pp. 38–46, 2017.

[4] R. P. Arya, U. Mishra, and A. Bansa, “A Survey on Recent Cryptographic Hash Function Designs,” Int. J. Emerg.

Trends Technol. Comput. Sci., vol. 2, no. 1, pp. 117–122, 2013.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 11, No. 3, September 2018 : 1027 – 1034

1034

[5] W. Chankasame and W. San-Um, “A chaos-based keyed hash function for secure protocol and messege

authentication in mobile ad hoc wireless networks,” Proc. 2015 Sci. Inf. Conf. SAI 2015, pp. 1357–1364, 2015.

[6] R. K. Ibraheem, R. A. J. Kadhim, and A. S. H. Alkhalid, “Anti-collision enhancement of a SHA-1 digest using AES

encryption by LABVIEW,” 2015 World Congr. Inf. Technol. Comput. Appl., pp. 1–6, 2015.

[7] Q. H. Dang, “Secure Hash Standard,” Gaithersburg, MD, Jul. 2015.

[8] R. C. Merkle, “One Way Hash Functions and DES,” in Proceedings of the 9th Annual International Cryptology

Conference on Advances in Cryptology, 1990, pp. 428–446.

[9] I. B. Damgård, “A Design Principle for Hash Functions,” CRYPTO`89 Proceedings, vol. 435. pp. 416–424, 1990.

[10] H. Tiwari and K. Asawa, “Building a 256-bit hash function on a stronger MD variant,” Open Comput. Sci., vol. 4,

no. 2, pp. 67–85, Jan. 2014.

[11] R. Sobti and G. Geetha, “Cryptographic hash functions: a review,” IJCSI Int. J. Comput. Sci. Issues, vol. 9, no. 2,

pp. 461–479, 2012.

[12] NIST, “FIPS 180-1 - Secure Hash Standard,” FIPS PUB 180-1, no. April 17, 1995.

[13] P. Garg and N. Tiwari, “Performance Analysis of SHA Algorithms (SHA-1 and SHA-192): A Review,” Int. J., vol.

2, no. 3, pp. 130–132, 2012.

[14] S. Rao, “Advanced SHA-1 Algorithm Ensuring Stronger Data Integrity,” Int. J. Comput. Appl., vol. 130, no. 8, pp.

25–27, 2015.

[15] R. A. N. Karthik, A.K. Parvathy, “Non-convex Economic Load Dispatch using Cuckoo Search Algorith,” Indones.

J. Electr. Eng. Comput. Sci., vol. 5, no. 1, pp. 48–57, 2017.

[16] T. Mantoro and A. Zakariya, “Securing E-mail Communication Using Hybrid Cryptosystem on Android-based

Mobile Devices,” TELKOMNIKA (Telecommunication, Comput. Electron. Control., vol. 10, no. 4, pp. 827–834,

2012.

[17] K. Saravanan and A. Senthilkumar, “Theoretical Survey on Secure Hash Functions and issues,” Int. J. Eng. Res.

Technol., vol. 2, no. 10, pp. 1150–1153, 2013.

[18] Venafi, “Venafi Research: Twenty-One Percent of Websites Are Still Using Insecure SHA-1 Certificates and Putting

Users at Risk,” Venafi Press Release, 2017. .

[19] M. Stevens and D. Shumow, “Speeding up detection of SHA-1 collision attacks using unavoidable attack

conditions.,” USENIX Secur., vol. 2017, p. 173, 2017.

[20] A. Kumarkasgar, J. Agrawal, and S. Shahu, “New modified 256-bit MD5 Algorithm with SHA Compression

Function,” Int. J. Comput. Appl., vol. 42, no. 12, pp. 47–51, Mar. 2012.

[21] X. Wang, D. Feng, X. Lai, and H. Yu, “Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD.,”

IACR Cryptol. ePrint Arch., vol. 5, no. October, pp. 5–8, 2004.

[22] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions,” Adv. Cryptol. – EUROCRYPT 2005, pp. 19–

35, 2005.

[23] S. Verma and G. S. Prajapati, “Robustness and security enhancement of SHA with modified message digest and

larger bit difference,” in 2016 Symposium on Colossal Data Analysis and Networking (CDAN), 2016, pp. 1–5.

[24] K. kumar Raghuvanshi, P. Khurana, and P. Bindal, “Study and Comparative Analysis of Different Hash Algorithm,”

J. Eng. Comput. Appl. Sci., vol. 3, no. 9, pp. 1–3, 2014.

[25] J. Sharma and D. Koppad, “Low power and pipelined secure hashing algorithm-3(SHA-3),” in 2016 IEEE Annual

India Conference (INDICON), 2016, vol. 3, pp. 1–5.

[26] A. Breust and F. Etcheverry, “Why not SHA-3?,” pp. 1–13, 2013.

[27] X. Wang, Y. L. Yin, and H. Yu, “Finding Collisions in the Full SHA-1,” Adv. Cryptol. – CRYPTO 2005, no.

90304009, pp. 17–36, 2005.

[28] P. Karpman, T. Peyrin, and M. Stevens, “Practical Free-Start Collision Attacks on 76-step SHA-1,” vol. 2012, 2015.

[29] G. Gupta and S. Sharma, “Enhanced SHA-192 algorithm with larger bit difference,” Proc. - 2013 Int. Conf.

Commun. Syst. Netw. Technol. CSNT 2013, pp. 152–156, 2013.

[30] X. Xu, Q. Zhao, and C. Li, “Advanced framework for iterative hash functions,” Proc. - 2012 Int. Conf. Comput. Sci.

Electron. Eng. ICCSEE 2012, vol. 2, pp. 599–602, 2012.

[31] C. C. G. San Jose, B. T. Tanguilig III, and B. D. Gerardo, “Enhanced SHA-1 on Parsing Method and Message

Digest Formula,” pp. 1–9, 2015.

[32] L. Thulasmani and M. Madheswaran, “Security and Robustness Enhancement of Existing Hash Algorithm,” 2009

Int. Conf. Signal Process. Syst., pp. 253–257, 2009.

[33] M. Asgari Chenaghlu, S. Jamali, and N. Nikzad Khasmakhi, “A novel keyed parallel hashing scheme based on a

new chaotic system,” Chaos, Solitons & Fractals, vol. 87, pp. 216–225, Jun. 2016.

[34] S. Deng, Y. Li, and D. Xiao, “Analysis and improvement of a chaos-based Hash function construction,” Commun.

Nonlinear Sci. Numer. Simul., vol. 15, no. 5, pp. 1338–1347, 2010.

[35] “Text Mechanic - Random String Generator Tool.” [Online]. Available: http://textmechanic.com/text-

tools/randomization-tools/random-string-generator/.

[36] N. Smudge, “Hash Function Test Program,” 2008. [Online]. Available: http://nickmudge.info/?post=84.

