
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 12, No. 3, December 2018, pp. 933~940 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i3.pp933-940      933 

  

Journal homepage: http://iaescore.com/journals/index.php/ijeecs 

A SoC-IP Core Test Data Compression Scheme Based on Error 

Correcting Hamming Codes 
 

 

Sanjoy Mitra1, Debaprasad Das2 

1Department of Computer Science and Engineering, Tripura Institute of Technology, Agartala, India 
2Department of Electronics and Communication Engineering, TSSOT, Assam University, Silchar, India 

 

 

Article Info  ABSTRACT  

Article history: 

Received Feb 26, 2018 

Revised May 21, 2018 

Accepted Aug 19, 2018 

 

 As system-on-chip (SoC) integration is growing very rapidly, increased 

circuit densities in SoC have lead a radical increase in test data volume and 

reduction of this large test data volume is one of the biggest challenges in the 

testing industry. This paper presents an efficient test independent 

compression scheme primarily based on the error correcting Hamming codes. 

The scheme operates on the pre-computed test data without the need of 

structural information of the circuit under test and thus it is applicable for IP 

cores in SoC. Test vectors are equally sliced into the size of ‘n’ bits. 

Individual slices are treated as a Hamming codeword consisting of ‘p’ parity 

bits and‘d’ data bits (n = d + p) and validity of each codeword is verified. If 

a valid slice is encountered ‘d’ data bits prefixed by ‘1’ are written to the 

compressed file, while for a non-valid slice all ‘n’ bits preceded by ‘0’ are 

written to the compressed file. Finally, we apply Huffman coding and RLE in 

order to improve the compression ratio further The efficiency of the proposed 

hybrid scheme is verified with the experimental outcomes and comparisons 

to existing compression methods suitable for testing of IP cores. 
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1. INTRODUCTION  

The prime objective of test data compression is to lessen the volume of binary bits in original ATPG 

generated test cube. is stored in the  An automatic test equipment’s (ATE) internal memory is used to store 

the compressed test vectors and an on-chip decompression hardware is applied to decompress this ATE 

stored data which is subsequently applied to circuit under test (CUT)[1], shown in Figure 1.  

The decompression hardware is specifically designed for any distinct compression approach and is suitable 

for all the original test set which using this compression approach. 

 

1.1.   Background 
The test data compression methods may ordinarily be grouped in three types: code-based schemes, 

linear-decompression-based schemes and broadcast- scan-based schemes [2]. Code-based schemes mostly 

target the given test sets, in which original test data are broken into different symbols and each symbol is 

substituted by a code word to form the compressed test data. Here, prior knowledge of the internal structure 

information of the circuit under test (CUT) is not needed; besides, the fault simulation and test generation are 

not required. Thus, these schemes are especially handy for test data compression with SoC IP core circuits. 

These coding methods can be categorized into two different classes based on the differences of symbol 
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division. In ‘fixed’ category, fixed numbers of input bits are encoded by the underlying compression 

mechanism. Analogously in ‘variable’ category; variable numbers of input bits are encoded by the 

compression algorithm. Huffman coding is the idle instance of such “fixed” scheme. The Huffman encoding 

algorithm encodes frequently occurring symbols with shorter code words and on the other hand,  

least frequent ones are assigned relatively longer code. Other instances of such ‘fixed’ category are selective 

Huffman coding (SHC) [3] and optimal selective Huffman coding (OSHC) [4], dictionary-based coding [5] 

and block merging coding [6] and so on. Single run-length and double run-length encoding method fall in the 

category of ‘variable’ scheme. Runs of ‘0’ s are encoded in case of single run-length coding techniques and 

examples of this include Golomb code [7], frequency-directed run-length (FDR) code [8] and variable input 

Huffman code (VIHC) [9]. In case of double run-length code compression techniques, both runs of 0 s and 

runs of 1 s are encoded. Extended FDR code (EFDR) [10] alternating run-length coding (AFDR) [11] and 

mixed double run-length and Huffman coding (RL-HC) [12] are the examples of double run length encoding  

 

1.2.   Problem 

Faster development of Integrated Circuit fabrication process forcing an inevitable increase in the 

density of circuit components in a chip and this has raised test data volume a lot, which further not only 

enlarges the testing time but also surpasses the tester memory capacity [13]. System Integrators faces some 

difficulties while testing Intellectual property (IP) cores as the structure of the IPs is unknown to them and 

this complexity of IP cores and their size is the prime cause of larger test data volumes and obviously,  

longer test application time (TAT) is needed for quality post-production test. A large volume of test data is 

needed to be stored in the automatic test equipment (ATE) and transmitted deep into the chip as quickly as 

possible. Limited the size of memory and constant channel capacity of ATE triggers significant rise in the 

test application time and the test power. Test data compression techniques have the potential to resolute the 

problem of higher test data volume during SoC-IP testing. 

 

1.3.   Solution 

In this paper, error correcting Hamming codes are applied for test data compression. Although 

Hamming codes [14, 15] are mostly applied for error correction, it can also be applied in test data 

compression allowing a small amount of distortion [16–19]. In this paper, we introduce a hybrid compression 

scheme which is primarily based on the error correcting Hamming code. We claim on the basis of 

experimental outcomes that the scheme efficiently compresses the SoC-IP Core test data. 

 

 

 

  
 

Figure 1. SoC Test Model 

 

Figure 2. typical slicing of Test Data 
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2. THE HAMMING CODE BASED DATA COMPRESSION ALGORITHM 

The error-correcting code incepted by Hamming finds more extensive application in advanced 

information processing and communication systems. It is well equipped for distinguishing two bits error and 

corrects a single bit error. Furthermore, burst errors [14, 15] can likewise be corrected with the aid of 

Hamming codes. Let us assume a message with d data bits and it is to be coded using Hamming codes.  

The prime idea of the Hamming codes lies in the utilization of additional  parity bits (p) keeping in mind the 

end goal to recognize a single bit  and an identification of two bits errors. Here, the ‘n’ bits of coded message 

is generally constituted by the relation: n = d + p. Individual parity bit drives for the parity of several groups 

of data bits, including itself, to be odd (or even), where every parity is calculated on different subsets of the 

data bits. The bits of the codeword are numbered successively, beginning with bit 1 at the left end, bit 2 to its 

immediate right, and so on. In Hamming codes, the parity bits and data bits are positioned at a particular 

place in the codeword. The parity bits occupy positions 20, 21, 22. . . 2p-1 in the sequence which has at most 2p-

1− 1 positions. The leftover positions are preserved for the data bits, see Figure 2. For a codeword of n bits, 

there are 2n possible code words having values from 0 to 2n − 1, the only 2d of them are valid code words and 

2n – 2d are non-valid code words. 

 

 

3. PREPROCESSING OF TEST DATA 

Test data obtained from ATPG is subjected to preprocessing steps like don’t care bit filling and 

splitting of test data into suitable slices. 

 

3.1.  Slicing of Input Test Data 

We divide the input test data into scan chains of predetermined length. Let us assume that the test 

data TD consists of n test patterns. We divide the scan elements into m scan chains in the best-balanced 

manner possible. This result in each vector being divided into m sub-vectors, each of length, say l. 

Dissimilarity in the lengths of the sub-vectors are resolved by padding don’t cares at the end of the shorter 

sub-vectors. Thus, all the sub-vectors are of equal length. The m-bit data which is present at the same position 

of each sub-vector constitute an m-bit slice. If there are vectors at the beginning, we obtain a total of n × l   m-

bit slices, which is our uncompressed data set that needs to be compressed. 

 

3.2.  Don’t’ Care Bit Filling 

The test cube generated by automatic test pattern generator (ATPG) tool contains a great quantity of 

don’t care(X) bits. Such don’t care bits in test cube can be manipulated for enhancing the test data 

compression. In statistical coding techniques, test data is split into equal size slices of m bits. Test data 

compression may be improved by reducing the number of distinct slices in a given test set and also by 

increasing the frequency of occurrence for each distinct slice. In this hybrid compression scheme, we apply an 

existing don’t care bit filling algorithm namely MT -fill which has less computational complexity compared 

to other algorithms. We have chosen Minimum Transition Fill (MT-fill) over other techniques owing to the 

fact that it reduces the number of weighted transitions in the test vector, thereby reducing the test power. 

In MT-fill, a progression of X entries in the test vector is filled with an indistinguishable value as the 

first non-X entry on the right side of this arrangement. This limits the quantity of transitions in the test vector 

when it is scanned in. 

For example, consider the test vector: 100XX010X1X0. This vector, after MT-fill, would become 

100000101100. If the test vector has a string of X bits that is not terminated by a non-X bit on the right side, 

then it should be filled by the bit value to the left of the sequence. For example 1000001011XX should be 

100000101111 after MT-fill. 

 

 

4. THE PROPOSED METHODOLOGY 

We propose an implementation of a hybrid compression scheme for reducing the volume of test 

data. Our proposed scheme is primarily based on error correcting Hamming codes. The Hamming code 

introduces additional bits, known as parity bits, whose function is to validate the exactness of the original 

message sent upon receipt. This method transforms the slice of size m bits into n by adding up p parity bits, 

based on the size of the message m, which is encoded into a codeword of length n. Figure 4 shows the block 

diagram of the technique 

 

4.1.  Sequence of Compression Steps   

Our proposed approach takes the ATPG generated original test vector and implements a no. of steps, 

as follows:  
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Step 1: Stacking of the test data file for encoding.  

Step 2: Conversion of each m-bit slices into an n-bit length where (m>n) by applying the Hamming decoders 

on the input test vector. It is worth mentioning here that every slice of size m bits is not the code word;  

some non-code word m-bit slices may also exist. So, an extra bit is put in use to differentiate between non-

code words and code words. We append a bit ‘1’ if the bit slice is a codeword and bit ‘0’ if it is not a 

codeword to an additional file called an added bit file. The test data slice that is a valid codeword is 

converted to an n-bit slice instead of an m-bit slice. Invalid codeword is shifted as it is, without any 

compression, into the compressed binary file.  

Step 3: Further compression of test vector file by applying Huffman coding.  

Step 4: Run Length Encoding (RLE) and the Huffman encoding algorithm are applied to added bit file. 

Afterward the file is added to the header of the compressed binary file. As a result, we attain a pleasing result 

with noteworthy improvement in compression ratio. Figure 3 signifies the flow of the proposed method. 

 

4.2.  Decompression Mechanism 

A decompression process is carried out in order to reinstate the original test data from the 

compressed data file and is performed as follows:  

Step 1: Read the header of the compressed file and take out the added bit file from that, after that, decode the 

extracted file by applying the Huffman decoder. Apply the RLE decoder in order to reinstate the added bit 

file to its original form. 

Step 2: Decoding of the compressed data file by means of the Huffman algorithm.   

Step 3: Encoding of the Huffman decoded test data file by applying the Hamming error correction algorithm. 

In this phase, every bit of this file is accessed and thus the length of every slice is dependent on the value in 

the added bit file. If the bit of added bit file is 1, then the slice size is n bits, otherwise, the size of the slice is m 

bits. The Hamming encoder returns the slice of size n bits to its original size of m bits and returns the parity 

bits that were removed during Hamming decoding.  

Step 4: Lastly, the test data file is returned to its original status without any loss of data 

 

 

  

 

 

 

 

 

Figure 3. Flow of the compression scheme 

Figure 4. Scheme illustration using the block 

diagram 
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5. EXPERIMENTAL  RESULTS AND ANALYSIS 

In order to observe the likely improvements to be delivered by the proposed method, experiments 

are carried out on the seven ISCAS’89 [20] benchmark circuits. Synopsys Tetra MAX [21] ATPG tool is 

used to generate the test data. Synopsys Tetra MAX was functional with the dynamic compaction turned on 

and random-fill turned off. The proposed encoding scheme based on the Hamming code is analyzed from the 

several points of view of the test data compression and their effects on compression: the compression ratio, 

size of slice and number of parity bits etc.. The above issues are very important in the context of the proposed 

scheme. The compression ratio, 𝐶R(𝑇D), that is estimated with the following 
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Where |𝑇D| denotes the size of the original test data and the size of the compressed test data is represented  

by |𝑇E|  

 

 
Table 1. Some Details of Test Data in Single Scan Chain Architecture 

ISCAS 89 

circuit[20] 

Total no of 

patterns 

Bits per pattern Original Test data 

size(TD) in bits 

s5378 111 214 23,754 

s9234 159 247 39,273 

s13207 236 700 1,65,200 

s15850 126 611 76,986 

s35932 16 1763 28,208 

s38417 99 1664 1,64,736 

s38584 136 1464 1,99,104 

 

 

Table 2. Compression Ratio based Comparison with the Previously Proposed Techniques 

ISCAS 89 

circuit[20] 

Selective 

Huffman[4] 

Golomb 

[7] 

FDR[8] EFDR[10] ALT-

FDR[11] 

 RL-

Huffman[12] 

9C[22] Our 

Proposed 

s5378 42.32 37.11 48.02 53.67 45.39 46.17 51.56 64.60 

s9234 38.14 45.25 43.59 48.66 35.32 42.0 50.91 61.27 

s13207 66.95 79.74 69.59 82.19 29.11 69.51 72.31 63.65 

s15850 52.61 62.82 56.82 67.82 25.90 57.83 66.37 72.35 

s35932 50.71 43.21 44.07 39.41 34.30 55.08 57.45 58.30 

s38417 79.87 28.37 85.17 62.03 22.41 89.44 60.41 68.76 

s38584 57.80 57.17 60.84 61.12 23.60 61.52 65.53 72.60 

 

 

 

 

In order to verify the efficiency of the proposed method, implementation of the proposed 

compression method was carried out in the ‘C’ language on a Linux system. Test cubes were generated for 

the seven largest ISCAS-89[16] fully scanned test bench circuits. Tetra Max [14] ATPG tool was used to 

generate these test data cubes. Table 1 gives the description of the scan chain network scheme. In Table 1,  

we provide the details like number of patterns, bits per pattern and total bits of test data cube for the 

traditional single scan chain architecture etc. The the number of test patterns provided in column 2, may be 

further reduced by applying compaction. If the compacted test vector of the scan chain is exactly equal to 

other compacted test vectors, the test vector can be rejected from the test cube. 

Table 3. Evaluation of Compression Ratio based on Different Slice Sizes and Variation in the Number 

of Parity Bits 
 Slice Size(S) 

ISCAS 

89 

circuit 

S=7 S=10 S=15 S=20 S=25 

No of parity bits(p) No of parity bits(p) No of parity bits(p) No of parity bits(p) No of parity bits(p) 

p=3 p=4 p=5 p=3 p=4 p=5 p=3 p=4 p=5 p=3 p=4 p=5 p=3 p=4 p=5 

s5378 57.67 57.70 57.73 57.76 58.80 58.83 57.81 59.70 59.71 57.82 59.72 61.90 57.91 59.78 64.60 

s9234 54.30 54.36 54.46 54.33 55.30 55.41 54.50 56.30 56.32 54.53 56.45 58.36 54.67 56.52 61.27 

s13207 55.91 55.94 55.95 55.97 57.97 57.99 55.98 58.61 58.64 55.99 59.85 61.49 56.05 59.87 63.65 

s15850 62.37 62.42 62.45 61.40 63.21 63.22 61.42 65.71 65.78 61.50 65.90 68.21 61.50 65.94 72.35 

s35932 46.72          46.81 46.93 46.76          49.03          49.10          46.77          52.88          52.97          46.80          52.91          55.73          46.80          53.72          58.30          

s38417 60.10 60.15 60.24 60.14 61.40 61.44 60.32 63.90 63.97 60.49 64.12 66.38 60.40 64.21 68.76 

s38584 63.62 63.72 63.80 63.73 65.87 65.90 63.78 67.87 68.00 63.79 68.30 70.90 63.80 69.20 72.60 
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Table 2 presents a comparison of the compression ratio with selective Huffman coding [4], Golomb 

coding [7], FDR coding [8], EFDR coding [10], ALT-FDR Coding [11],], RL-Huffman coding [12], and  

9C [22]. For each test bench circuit, we have used five different test data slice sizes (i.e. S=7, S=10, S=15, 

S=20, S=25) and three different lengths of parity bits (i.e. p=3, p=4, p=5). Column 9 gives the best 

compression ratio of the proposed compression schemes based on the number of parity bits of error correcting 

Hamming code and size of the test data slice. This hybrid compression proposal outperforms most of the 

previously published compression schemes tabulated in Table 2 for the majority of the test bench circuits. The 

proposed scheme compresses the test data thrice in three consecutive distinct compression methods: firstly 

with Hamming code based compression, then by RLE and finally with the aid of Huffman coding and thus 

yields impressive test data compression ratio in most of the benchmark circuits used in the experiment. In 

Table 2, it can be observed that this test data compression scheme has resulted in significant improvement of 

the compression ratio in all the listed benchmark circuits except the benchmark s13207 and s38417. 

In Table 3, it can be seen that variation in the parameters like slice size(S) and no of parity bits 

during the compression with Hamming error correcting codes is influencing the overall compression ratio of 

this hybrid compression scheme. Here in Table 3, it is evident that in most of the cases, with the increase in 

test data slice size and no of parity bits, the compression ratio is also improved in contrast to the previous one. 

If we critically observe the compression ratio improvement pattern in Table 3, we can notice  that significant 

improvement is recorded  in case of { (S=7,p=3) to ( S=10,p=4)}, {(S=10,p=4) to (S=15,p=4)},{(S=15,p=4) 

to (S=20,p=5)} and (S=20,p=5) to (S=25,p=5)} for most of the  benchmark circuits  

 

 

Table 4. Variation of Compression Ratio with the Percentage of the Valid Slice, Size of Slice and 

Quantity of Parity Bits 
 

ISCAS 89 

circuit 

Slice Size(S), No of parity bits(p), Percentage of the valid slices (VS) 

S=7, p=3 

 

S=10, p=4 

 

S=15,p=4 

 

S=20,p=5 

 

S=25,p=5 

 %  of valid 

slice(VS) 

CR %  of valid 

slice(VS)  

CR %  of valid 

slice(VS) 

CR %  of valid 

slice(VS) 

CR %  of valid 

slice(VS) 

CR 

s5378 25 57.67 37 58.80 39 59.70 37 61.90 35 64.60 

s9234 28 54.30 40 55.30 41 56.30 40 58.36 32 61.27 

s13207 23 55.91 38 57.97 31 58.61 33 61.49 34 63.65 

s15850 34 62.37 41 63.21 37 65.71 34 68.21 30 72.35 

s35932 27 46.72 43 49.03 45 52.88 39 55.73 37 58.30 

s38417 32 60.10 28 61.40 41 63.90 40 63.38 38 68.76 

s38584 34 63.62 30 65.87 35 67.87 34 65.90 31 72.60 

 

 

It can be clearly understood from Figure 3 and Figure 4 that some of the hamming errors correcting 

codes are valid and some others are non-valid. In Table 4, we have shown the percentage of valid slices 

capable of generating valid codes which in turn produces the initial level of test data compression. In Table 4, 

the percentage of valid slices corresponding to various test data slices are shown. Here the valid slice 

percentage VS corresponding the pair (slice size, no of parity bits) against different benchmark test data and 

their respective compression ratio (CR) is also given. Highest compression ratio, 72.60 is achieved for the 

pair (S=25, p=5) having 31% of valid slices. 

Apart from the tabular representation of the experimental data, we have also put the glimpse of the 

experimental outcomes in graphical representation with the aid of a column-bar chart. In figure 5, benchmark 

wise comparison of compression ratio (CR) against the pair of slice size and no of parity bits is shown. The 

pairs: {(S=7, p=3), (S=10, p=4), (S=15, p=4), (S=20, p=5) and (S=25, p=5)} and their corresponding 

benchmark circuit wise compression ratios are plotted in Figure 5 for graphical staging of the comparison 

Comparison of different compression methodologies with our proposed method on the basis of the 

compression ratio in different benchmark circuits is plotted in figure 6. This proposed method was compared 

with other existing methods namely selective Huffman coding [4], Golomb coding [7], FDR coding [8], 

EFDR coding [10], ALT-FDR Coding [11], RL-Huffman coding [12], and 9C [22]and almost in majority of 

the benchmark circuits, the bar corresponding to our proposed compression scheme is standing highest with 

highest compression ratio among all other compression methods. 

The behavior of different benchmark circuits in terms of compression ratio(CR) corresponding to 

the pairs of slice size and number of parity bits is graphically depicted in Figure 7. Here, the compression 

ratio corresponding to the pairs: {(S=7, p=3), (S=10, p=4), (S=15, p=4), (S=20, p=5) and (S=25, p=5)} 

against the benchmark circuits used in this experiment are plotted in Figure 7. From this graphical 

presentation, we may correlate how the compression ratio is varying across different benchmark circuits 
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depending on the combination of the size of the slice and number of parity bits used in the Hamming error 

correcting codes. 

 

 

 
 

Figure 5. Benchmark wise comparison of CR based on the combination of slice size(S) and number of parity bits (p)  
 

 

 
 

Figure 6. CR based comparison of different compression methods with the proposed method on different benchmark 

circuits 
 

 

 
 

Figure 7. CR based behavior analysis of different benchmark circuits depending on the combination of slice size(S) and 

number of parity bits (p) 

 

 

6. CONCLUSION 
This paper presented a test compression algorithm that combines the advantages of the Hamming 

error-correcting codes, RLE and Huffman encoding. This paper developed the efficient utilization of 

Hamming error-correcting codes in combination with RLE and Huffman encoding algorithm for test data 

compression in order to improve compression ratio of SoC-IP core test data. We have applied our algorithm 

on various benchmarks and compared our results with existing test compression techniques. Our hybrid 
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compression scheme outperforms other existing test data compression in a significant manner, giving a best 

possible compression of 72.60%. Significant improvement in compression efficiency is observed at the cost 

of probably little increase in on-chip decoder area overhead. Further improvement of compression ratio and 

on-chip decoder area minimization for such hybrid test data compression schemes may be the future 

prospects of research in this particular sub-problem. Significant features from the compression  

approaches [23-25] may also be incorporated in ordr to frame up more efficient hybrid compression 

mechanism. 
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