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 Signal Interpreted Petri Nets (SIPN) modeling has been proposed as an 
alternative to Ladder Logic Diagram (LLD) modeling for programming 
complex programmable logic controllers (PLCs) due to its high level of 
abstraction and functionalities. This paper proposes an algorithm to 
efficiently convert existing SIPN models to their LLD models equivalences. 
In order to automate and speed up the conversion process, matrix calculation 
approach is used. A complex SIPN model was used to show that existing 
conversion technique must be expanded in order to cater for a more complex 
SIPN models. 
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1. INTRODUCTION 

Process control and automation are becoming increasingly complex due to the increases in the 
complexity of product specification, shorter design cycles, and shorter product life cycles. To speed up LLD 
processing, a new architecture was proposed in [2]. These more demanding systems requirements result in 
the need for the conversion of LLD models to high level of abstraction models. A high level of abstraction 
modeling paradigm such as Petri Net (PN) [6] or Signal Interpreted Petri Net (SIPN) [16] would allow the 
design specification to be defined closer to the product or system requirement while reducing the details of 
the lower level implementation. At this abstraction level, a co-design methodology [4] and [7] can be applied 
for PLC implementation - either in software, hardware, or a mixture of both. The design trade-offs can be 
easily calculated, optimized, and implemented. 

The rest of the paper is organized as follows: Section 2 reviews fundamentals of LLD and SIPN. 
Related works on PN, LLD and PN-to-LLD conversions are done in Section 3. Several conversion 
algorithms have been proposed in [1], [3], [10], [11], [14]-[16] to convert PN to LLD. The analysis of 
strengths and limitations are presented in Section 3.2. Section 4 proposes a novel algorithm for SIPN-to-LLD 
conversion. Case studies and results for the proposed conversions are discussed and analyzed in Section 5. 
Conclusion is in Section 6. 
 
 
2. LADDER LOGIC AND PETRI NET: A REVIEW 

Both PN and LLD were born in 1960’s but for different reasons. PN was invented by Carl Adam 
Petri to study asynchronous nature in communication. Meanwhile, LLD was invented due to the needs to 
minimize retraining time by mimicking the existing electromechanical relays when PLC was introduced. As 
PN grows with more functionality including as an analysis tool as proposed in [18], [20], and [20], LLDs 
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Figure 1. LLD for a simple safety circuit 

evolves into a very important tool in PLC implementation, research on both areas started to merge together at 
the end of 1990’s.  

 
2.1.  Ladder Logic Diagram 

An LLD models the actual combination of relay contacts. A relay contact or a step in LLD is either 
normally closed (NC) such as alarm, or normally open (NO) such as main in Figure 1. They are controlled by 
logical inputs and state variables which are represented by labels. When an input triggers the step, the 
corresponding relay state changes to the opposite state, i.e., the NC step is turned ON while the NO step is 
turned OFF. The combination of NC and NO will affect the Output Coil which corresponds to a relay state. 

In any LLD such as in Figure 1, the rungs are connecting the power source represented by the 
vertical bar on the left, and the ground represented by the vertical bar on the right. Each rung can be divided 
into two parts: at the end of the rungs on the right are the outputs, while the rest on the left are the step inputs. 
The combination of the step inputs in a rung is also known as the network input. The combination of all rung 
outputs in a LLD represents a state. The state can change if any of the output changes due to changes in any 
of the step input. Thus, the LLD state varies depending on the steps combination. The step inputs change 
either changes directly from external or physical inputs or due to the feedback from the other rungs outputs. 
 
 

 
 
 
This LLD implements the synchronous assignments of the Boolean equations as: 
 

start = main • safe • alarm  
stop = emgcy + power + pause 
run = (start + run) • stop   
 
Further, these output changes can be classified either as synchronous process, sequential process, or 

combination of both. Sometimes, the difference is hard to notice without any systematic analysis. 
 
2.1.  Signal Interpreted Petri Net 

Signal Interpreted Petri Nets (SIPN) is an extension of Condition/Event Petri Nets which allows the 
handling of binary I/O-signals in a well-defined way. They are well suited to design control algorithms for 
discrete event systems resulting in languages standardized in IEC 61131-3. SIPN are defined as a 10-tupel 
SIPN = {P, T, F, m0, I, O, φ, ω, Ω, v} where {P, T, F, m0} is ordinary Petri Net. To become SIPN, the 
extensions are as: 

  
I – input signals, |I| > 0,  
φ – Boolean function in I at T,   
Ω – output function combines the output ω of all marked places  
O – output signals, |O| > 0 and I ∩ O = Ø  
ω – a mapping associating evert Place with an output  
v – variable definition assigns a numerical data type  

main safe alarm start 

start 

run 

 run stop 

Cyclic 
scan 

emgcy 

power 

pause 

stop 

1

2

3



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  
 

Algorithm to Convert Signal Interpreted Petri Net models to Programmable … (Z. Aspar) 

907

For a more formal definition of SIPN, see [1], [5] and [18]. The dynamic Behavior of an SIPN is 
given by the firing process defined by four rules: 
1. A transition is enabled, if all its pre-places are marked and firing ensures binary marking of all its post-

places. 
2. A transition fires immediately, if it is enabled and its firing condition is fulfilled. 
3. All transitions that can fire and are not in conflict with other transitions fire simultaneously. 

The firing process is iterated until a stable marking is reached (i.e. until no transition can fire 
anymore). Since firing of a transition is supposed to take no time, iterative firing is interpreted as 
simultaneous, too. For that reason, no changes of input signals may occur during the firing process. After a 
new stable marking is reached, the output signals are computed according to the marking and the signal 
algebra. 
 

 

 
 

Figure 2. An SIPN model for a robot arm 
 
 
3. RELATED WORK 

Although PN has many advantages over LLD, PLC with LLD as the design entry is the most widely 
available in the world. In order to make PN being accepted by existing LLD users, it is important existing 
PLC tools and common design techniques can still be reused. 
 
3.1.  PN to LLD 

There are many works related to PN to LLD conversion e.g. [1], [3], [8]-[16]. Work [9] is an 
important survey on all related works on LLD. After some comparison on various techniques in [1], [3], [10], 
[11], [14]-[16], the work done in [1] is the best for the job. Their method provides systematic conversion, 
isolation from input and output networks, and make the LLD program more readable in order to locate the 
fault in LLDs which is a vital issue. These consideration is important to reduce design time and also 
debugging and maintenance time. Their method can be extended for SIPN, Timed and Coloured PN. 

The conversion process is important due to two important factors: maintaining LLD modeling 
paradigm so that users can verify their work using known concept, and validate the PN model that it is 
constructed as it was intended to be. Another important thing about their method is the LLD outcome is very 
neat and systematic. 
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3.2.  Previous PN to LLD Conversion 
The method proposed in [1] was to identify PN subnets for four different patterns as summarized in 

Figure 3. The patterns can be divided into four types in two pairs of set and reset a rung. The set rule is the 
condition to activate a rung while the reset rule is the condition to deactivate a rung. The set rules consist of 
two general structures known as Type I and Type II. Meanwhile the reset rules consist of two general 
structures known as Type III and Type IV. The detail explanation of the rules can be referred in [1]. 

 
 

 
 

Figure 3. Types of SET and RESET 
 
 
4. PROPOSED PN TO LLD CONVERSION 

In order to automate and speed up the conversion process, both PN and LLD subnets were analyzed 
in their equivalent sub-Incidence Matrices (sub-IM) and sub-Boolean equations (sub-BE) as shown in the 
sub-sections 4.1. 

 
4.1. Incident Matrices Method 

The output coil in a PLC is denoted by a place, P is renamed as Pj, the k-th feedback input step is Pk,  
the n-th step inputs t as T1, T2, to tn as Tn, the analysis on the sub-IM and sub-BE were done on all types of 
pattern as illustrated in Figure 3. By referring to previous researcher [1], basically there are four types of 
patterns to be identified in the PN. These incudes Type I, Type II, Type III and Type IV. The rule is the value 
‘1’ is the output of the transition, (Pj), while the value ‘-1’ is the input of the transition, (Pk). The sub-
incidence matrix and sub-Boolean equation for each Type is discussed: 

i. The sub-incidence matrix for Type I:  

 

ii. The sub-incidence matrix for Type II:  

 

iii. The sub-incidence matrix for Type III:  

      Pj    P1   P2    P3 ... Pk 
T1   1    -1   -1   -1  ... -1 

The sub-Boolean equation for Type I can be written as: 
Pj = (P1.P2.P3. ... .Pk).T1 
The Boolean equation is generalized as : 

  ikj TPP .        (1) 

      P0    P1   P2  P3 ...  Pn 
T1  1    -1    0    0  ...  0 
T2  1     0   -1    0  ...  0 
... 
Tn  1     0    0    0  ... -1 

The sub-Boolean equation for Type II can be written 
as: 
P0 = (P1.T1) + (P2.T2) + (P3.T3) + ... (Pn.Tn) 
The Boolean equation is generalized as : 

  ikj TPP .     (2) 

      P0   P1   P2  P3  ... Pn 
T1  -1    1    1    1  ...   1 
 

The sub-Boolean equation for Type III can be written 
as: 
P0 = ... + P0.(Pk + T1) 
The Boolean equation is generalized as : 

).( ikjj TPPP     (3) 
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iv. the sub-incidence matrix for Type IV: 

 
Where, 
௝ܲ	 ൌ  ݆	݊݉ݑ݈݋ܿ	ݎ݋݂	݈݁ܿܽܲ

௞ܲ ൌ ሺ݇	݇	݊݉ݑ݈݋ܿ	ݎ݋݂	݈݁ܿܽܲ ് ݆, ݇ ൏  ሻݔܽ݉ܲ
௜ܶ ൌ  ݅	ݓ݋ݎ	ݎ݋݂	݊݋݅ݐ݅ݏ݊ܽݎܶ

 
The equations are analyzed column by column (k) and row by row (i) starting with the top row 

(i=0). These general forms equations are important in the subsequent analysis. 
 

4.2. Custom Transition for LLD 
For PLC implementation using LLD model, it is a common practice to have a single step input to 

activate or deactivate a rung. In a PN model, the equivalent element to activate or deactivate an output coil is 
done by source and sinks transitions respectively. By using them, there is no need to initialize any place with 
a token. But this will result in the PN sub-net incomparable with any of pattern types proposed in [1]. 
Previous analysis shows that the Boolean equation can be automated only if there are value ‘1’ as the 
output/input and value ‘-1’ as input/output respectively in a row. The algorithm does not have a solution if in 
the row there is only positive numbers or negative numbers as shown in example LLD Type I in Figure 4 and 
LLD Type II in Figure 7. The patterns do not exist in the PN model to be converted due to; 

a) All positive or all negative coefficients which indicate the source transition or sink transition only. 
However, these types of incomplete pattern always exist in PLC applications.  

b) Meanwhile, for Type I or Type III does not exist complete pair of transition 
c) On the other hand, Type II or Type IV does not have complete pair of input and output transition. 

In order to obtain the correct results, PN models should have the complete pair of transition. 
Meanwhile, to generate a Boolean equation if there are only value ‘1’ and value ‘0’, or value ‘-1’ and value 
‘0’ is by adding a temporary (temp) Place in Petri Nets and it will become wire in the Ladder Logic Diagram. 
Type I 

Type I PN subnet presented in [1] consists of one transition, one place and one arc as shown in 
Figure 4 which has incomplete pair of arc.  

 
In order to solve the problem, the incident matrices is used to provide complete pair of input and 

output arcs by adding a temporary (Temp) Place in Petri Nets as illustrated in Figure 5. The temporary place 
also acts as the current activated place denoted by a token. 

 

 
The equivalent LLD rung by using type I is shown in Figure 6 on the left. Since step Temp is always 

ON, the input is always connected and acts as a wire as shown in Figure 6 on the right. This procedure will 

      P0   P1  P2   P3 ... Pn 
T1  -1    1    0    0  ...  0 
T2  -1    0    1    0  ...  0 
... 
Tn  -1    0    0    0  ...  1 

The sub-Boolean equation for Type IV can be written 
as: 
P0 = + P0.(P1 + T1).(P2 + T2).(P3 + T3).  ... .(Pn + Tn) 
The Boolean equation is generalized as : 

  ikjj TPPP  .    (4) 

 
Figure 4. A subnet with only one output arc 

 
Figure 5. A subnet with input and output arc 
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ensure technique in [1] can always be used in a source transition. The similar procedure is also applied for 
Type II pattern where the temporary input step will be replaced with a wire. 
 
 
 

 
 

 
Figure 6. Final LLD rung for PN subnet Type I 

 
 

Type III 
Type III PN subnet presented in [1] consists of one transition, one place and one arc as shown in 

Figure 7 which has incomplete pair of arc.  
 
 
 
 
 
 
 
 

Figure 7. A PN subnet with a sink transition 
 
 
In order to solve this problem, the incident matrices is used to provide a complete pair of the arcs by 

adding temporary (Temp) Place in Petri Nets as depicted in Figure 8. The temporary place also acts as the 
token destination when the current token is removed from the active place.  

 
 
 
 
 
 
 

Figure 8. A subnet to be deactivated by T1 
 
 
Since it is a reset activity, the equivalent LLD rung by using type III is shown in Figure 9 on the left. 

Since step Temp will be OFF when it is activated, the input is always opened and acts as an open connection 
as shown in Figure 9 on the right. This procedure will ensure technique in [1] can always be used in a sink 
transition. The similar procedure is also applied for Type IV pattern where the temporary input step will be 
replaced with an open connection. The technique to use temporary step in generating the equivalent subnet 
LLD is important to ensure consistency in the original algorithm in [1]. Once it is consistent, it is easier to 
develop the program in a computer. 

 
 

 
Figure 9. Final LLD rung for PN subnet Type III 

 
 

4.3. Critically Unavailable Pattern 
In a complicated PN model such as in Figure 2, certain places cannot be converted since the subnets 

do not resemble any existing pattern types in [1]. Previous proposed technique in Section 4.2 cannot be 
applied since the subnets in Figure 2 are complete subnets. Thus, further adjustment is needed. 

T1 

   P1  P1 
T1 Temp 

Incomplete pair 
with only an input 
arc 

T1 

  P1 

          T1 
    P1     -1 

Complete pair 

with input and 

output arcs 

          T1 

   P1      ‐1 T1 

P1 
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       Pj   Ps1   Ps2  Ps3  ... Psk 
Ti     1    -1    -1    -1    ... -1 
And Pd1 = Pd2 = ... Pdn = Pj 
 

The sub-BE can be written as: 
a) Pj = (Ps1.Ps2.Ps3. ... .Psk).Ti 
b) The Boolean equation can be generalized by 

following this formula: 
  ikj TPsP .     (5) 

i. SET 
Figure 10 shows a P4 subnet of SIPN from Figure 2. The subnet is going to be activated or set at P5. 

This type of structure does not exist in type I, II, III and IV. If the process is automated, the pattern can be 
wrongly interpreted as Type III since both look similar. But Type III is for reset. 

There is more than a single place connected to transition TP1. If the transition is activated, all the 
places connected to the transition will be activated. This also means P9 can be ignored since the place to be 
set is P5. Based on this assumption, the subnet has become a Type I pattern. 

 
 
 
 

 
 
 

 
Figure 10. A PN subnet from Figure 2 to set 

 
 
Given one or more source places, Ps and a set of destination places, Pd a single destination place, Pj 

can be converted at a time by ignoring the other destination places so that Type I subnet can be generalized 
as: 

 
௝ܲ	 ൌ  ݆	݊݉ݑ݈݋ܿ	ݎ݋݂	݈݁ܿܽܲ

௞ܲ ൌ ሺ݇	݇	݊݉ݑ݈݋ܿ	ݎ݋݂	݈݁ܿܽܲ ് ݆, ݇ ൏  ሻݔܽ݉ܲ
௜ܶ ൌ  ݅	ݓ݋ݎ	ݎ݋݂	݊݋݅ݐ݅ݏ݊ܽݎܶ

 
 
 
 
 
 
 
 

ii. RESET 
Figure 11 shows a subnet of SIPN from Figure 2. The pattern can be wrongly interpreted as Type I 

since both look similar. But Type I is for set while this is a reset. 
 
 

 
 
 
 
 
 
 

 
Figure 11. A PN subnet from Figure 2 for reset 

 
 
A transition at T6 is shared with P1 and P7. To disable P1, P7 must also active so that T6 can be 

activated. Using transformation technique, one of the place can be combined with the transition and eliminate 
the combined place from the subnet as shown in Figure 11 on the right. After the transformation process, the 
PN can be categorized as Type III. Now, result from transformation is no longer pure PN, it is known as 
signal interpreted petri net (SIPN). The subnet IM is as: 

The subnet IM is as: 
            P4    P5    P9    
TP1      -1     1      1            

The subnet IM can be generalized further as: 
             Ps1   Ps2 ... Psk   Pd1     Pd2 ... Pj  
T          -1     -1       -1      1        1   ...  1           

P5 P9 

P4 

TP1 = T2.*P5 

P1 P7 

T6 

P4 

P1 

TP2 = T6.P7 

P4 
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Given one or more source places, Ps and a set of destination places, Pd a single destination place, Pj 

can be converted at a time by transforming other source places so that Type III subnet can be generalized as: 
 

 
௝ܲ	 ൌ 	݆	݊݉ݑ݈݋ܿ	ݎ݋݂	݈݁ܿܽܲ
௞ܲ ൌ ሺ݇	݇	݊݉ݑ݈݋ܿ	ݎ݋݂	݈݁ܿܽܲ ് ݆, ݇ ൏ 	ሻݔܽ݉ܲ
௜ܶ ൌ 	݅	ݓ݋ݎ	ݎ݋݂	݊݋݅ݐ݅ݏ݊ܽݎܶ

 
iii. SET 

Figure 12 shows a subnet of SIPN from Figure 2. The subnet is going to be activated or set at P4. 
This type of structure does not exist in type I, II, III and IV. To simplify the subnet, place P8 can be ignored 
for the same reason as in Type I. P1 and P7 places are combined to transform into a new subnet as shown in 
Figure 12 on the right. The transformation is like in Type III but the subnet is more complicated than the 
example in Type III. 

 
 
 
 
 
 
 

 
 

Figure 12. PN for Type II 
 
 

After the transformation process, the PN can be categorized as Type II. Without transformation 
process, the result becomes wrong. Now, result from transformation is no longer pure PN, it is known as 
signal interpreted petri net (SIPN). The original subnet IM is as: 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

P14 P1 

T1 

P4 

P7 

T6 

P8 

T1 

TP3 = P1.P7 

T6 

P4 

P14 

             P1    P4   P7     
T6         -1     1    -1           
After transformation: 
              P1   P4      
TP2       -1     1  

The subnet IM can be generalized further as below: 
 

            Ps1    Ps2 ...  Pj    Pd1    Pd2 ... Pdk 
Ti          -1     -1       -1      1        1   ...  1        

             Pj     Pd1    Pd2 ... Pdk  
TPi        -1      1        1   ...  1           
Where TPi = Ti . Ps1. Ps2 ... Psn 

The sub-BE can be written as: 
a) P0 = ... + P0.(Pk + T1) 
b) The Boolean equation can be generalized by 

following this formula 
 ikjj TPdPP  .    (6) 

           P1   P4     P7    P8    P14 
T1        0     1      0      1     -1      
T6        -1    1     -1     0      0    
After transformation: 
          TP3   P4    P14 
T1        0      1     -1      
T6        -1     1      0    

The subnet IM can be generalized further as below: 
             Pj     Ps1   Ps2   Ps3   Ps4   
Ti           1      0     -1      -1     0           
Ti + 1       1     -1      0       0     0  
Ti + 2       1      0      0       0    -1             
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Given one or more source places, Ps for one transition, Pj can be converted at a time by transforming 
other source places so that Type II subnet can be generalized as: 

 
Where: 
௝ܲ	 ൌ 	݆	݊݉ݑ݈݋ܿ	ݎ݋݂	݈݁ܿܽܲ
௞ܲ ൌ ሺ݇	݇	݊݉ݑ݈݋ܿ	ݎ݋݂	݈݁ܿܽܲ ് ݆, ݇ ൏ 	ሻݔܽ݉ܲ
௜ܶ ൌ 	݅	ݓ݋ݎ	ݎ݋݂	݊݋݅ݐ݅ݏ݊ܽݎܶ

Analyze column by column (k) and row by row (i)  starting with the top row (i=0) 
 

iv. RESET 
Figure 13 shows a subnet of SIPN from Figure 3. The subnet in Figure 13 is the most complex 

subnet due to feedback places and shared transitions at T7.P5. Due to feedback places and shared transitions, 
the PN can be seen as Type I due to two input transitions which indicates the SET rung. However, Figure 13 
(middle) shows the RESET rung, and the simplification and by eliminating redundant of P5, the Figure 13 
(right) gives the correct interpretation of Type IV RESET rung 

 
 

 
 
 
 
 
 
 
 

Figure 13. PN for Type IV 
 
 
 
 
 
 
 
 
 
 
 
 

Given one or more source places, Ps for one transition and one or more destination places, Pd for one 
transition, Pj can be converted at a time by transforming other source and destination places so that Type IV 
subnet can be generalized as: 

 
 Pj    Ps2  Ps3 TP4  Pd3   
 Ti         -1      0     0     0      1          
 TT4      -1       0     0    0      0 
 

Where TT4 = Ti.Ps1.Ps2….Psn  
Ti here is the transition with more than one source places and Ps is the source places. 
TP4 = Pd1 + Pd2 + …. Pdn   
where Pd here is the destionation places of one transition. 

 
The sub-BE can be written as: 

P4 

T2.P5 

P5 

T7.P5 

P9 P11 

P4 

T2.P5 

P5 

T7.P5 

P9 P11 

P5 P4 

T2.P5 
TT4=T7.P5.P5 

TP4 =P9 + P5 

P11 

             Pj    Ps1    TP2    Ps4   
Ti           1      0      -1       0           
Ti + 1       1     -1       0       0  
Ti + 2       1      0       0      -1             
Where TP2 = Ps2. Ps3 ... Psn 

The sub-BE can be written as: 
a) P0 = (P1.T1) + (P2.T2) + (P3.T3) + ... (Pn.Tn) 
b) The Boolean equation can be generalized by 

following this formula: 
  ikj TPP .     (7) 

Original subnet IM is as below: 
             P4   P5     P9    P11   
T2         -1     1      1      0    
T7         -1    -1      0      1     

After transformation: 
           P4    TP4    P11 
T2        -1     1       0      
TT4     -1      0       1    

The subnet IM can be generalized further as below: 
 
Pj   Ps1  Ps2  Ps3  Pd1  Pd2  Pd3   

Ti          -1      0     0     0     1      1      0  
Ti + 1      -1     -1     0     0     0      0      1 
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a) P0 = + P0.(P1 + T1).(P2 + T2).(P3 + T3) . ... . (Pn + Tn) 
By using matrix calculation, the results is shown: 
 

  ikjj TPPP  .          (8) 

 
Where: 
௝ܲ	 ൌ  ݆	݊݉ݑ݈݋ܿ	ݎ݋݂	݈݁ܿܽܲ

௞ܲ ൌ ሺ݇	݇	݊݉ݑ݈݋ܿ	ݎ݋݂	݈݁ܿܽܲ ് ݆, ݇ ൏  ሻݔܽ݉ܲ
௜ܶ ൌ  ݅	ݓ݋ݎ	ݎ݋݂	݊݋݅ݐ݅ݏ݊ܽݎܶ

 

 
 

Figure 14. LLD for robot arm system from SIPN in Figure 2 
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5. RESULT AND ANALYSIS 
Figure 2 is a complete and complex SIPN model which is used to control a robot arm. The controller 

was developed using a PLC. SIPN modeling was used so that any change can be done quickly using a high 
level abstraction. Then, the SIPN model will be converted to the equivalent LLD model using the proposed 
algorithm in Section 4.3. Figure 14 shows the equivalent LLD for the SIPN in Figure 2 which was converted 
using the proposed algorithm. The LLD model was simulated and tested on an actual robot arm machine to 
verify the design. This LLD shows 13 of rungs that indicates the solution for each Place. Looking at equation 
(5), (6), (7) and (8), the proposed algorithm used existing equation as in [1]. However, several techniques to 
identify unavailable patterns and how to simplify them so that existing formula in [1] can still be reused. 

 
 

6. CONCLUSION AND FUTURE WORKS 
SIPN model for PLC applications are more complicated than the example used in [1]. However, 

their PN to LLD conversion method is good enough to be used in an extended work for a more complex 
models. This research has shown that in a complete system design, SIPN modeling is useful to model a 
complete system and the proposed conversion process can be used by extending the work done previously. 
To make the extension work more easily being adopted, and to avoid using two different set of formulas, the 
formulas used in previous work were expanded so that the proposed algorithm can be used in both simple and 
complex SIPN models. The proposed algorithm also ensures there is only a single set of formulas to be used 
at any time to reduce software development complexity. 
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