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 The utilisation of higher frequency bands above 10 GHz by the satellite 

industries to provide the bandwidth (BW) required for broadband multimedia 

services, video conferencing, direct-to-home TV programmes and IP data 

requires the understanding of atmospheric losses and good link planning for 

satellite-to-earth links. The trade-off between the service availability, data 

rate and BW determine the type of modulation scheme and error corrections 

to be employed. These services also depend on the link performance under 

adverse atmospheric conditions, especially rain-induced attenuation. In this 

research, study measurements were conducted on space-to-earth satellite 

links using the beacon narrowband and broadband IP carrier signals of a 

Nigcomsat-1R satellite operating at 42.5°E. A VSAT receiving terminal at a 

latitude of 7.4°N, longitude of 9.04°E and altitude of 334 m above sea level 

was utilised to quantify the rain-induced attenuation of both the beacon and 

broadband signals during rain events. The measurements were then 

compared with the link performance under clear sky conditions. The 

performance revealed that, when compared with the broadband signal, the 

induced rain attenuation on beacon signal presented a disparity in the 

responses, resulting in significant variations of 10.14 dB in the carrier-to-

noise ratio (C/N) and 17.42 dB in the received signal level at a Ku-band 

frequency of 12.518 GHz. These observations were also compared with the 

Crane global rain map and ITU-R P.618-12. Both models disagreed with the 

measurement values for Abuja, Nigeria. 
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1. INTRODUCTION 

Broadband multimedia satellite application services require the use of a high bandwidth (BW) 

capacity to deliver the required data rate, especially for wireless communications systems and satellite 

communication networks. This can only be achieved at a higher frequency due to the high-capacity 

transponder BW in such a system. Conversely, signal propagation at higher frequencies is susceptible to 

atmospheric degradation because of their shorter wavelengths when colliding with rain drops along the 

propagation path, either by the scattering effect or total absorption of the carrier signal. Hence, there is a need 

for appropriate migration techniques for signals at frequencies above 10 GHz. Several propagation 

experiments have been performed to measure or characterise and model these propagation effects in both 

temperate and tropical regions; however, the challenges remain critical. The first propagation experiment 
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using satellite beacons was conducted by National Aeronautic and Space Administration (NASA) with 

Application Technology Satellite ATS-5 and ATS-6 satellites in the 1970s, while many more are still being 

conducted by both academic research groups and telecommunications industry development groups.  

Propagation campaigns have continued using different satellites, including INTELSAT satellite 

fleets, which are mostly employed in the United States, Japan and Europe, covering the temperate region. 

Different research campaigns have also been conducted using other satellite sources; however, these could 

not provide total global coverage. Among the satellites used for propagation studies are the COMSTAR, 

ETS-II, SIRIO, CS, OLYMPUS, ASTRA-2B, SES, KOREASATs, WINDS and SARACUS satellites. 

Similar campaigns have been undertaken with some commercial satellites, with either on-board or ground-

based generated beacon signals from the control stations; for instance, SINOSATs, INDOSAT, 

NIGCOMSATs, TUKSAT and BELINTELSAT-1 have been involved in propagation measurement missions. 

Among commercial satellite companies, beacon signals are mostly used as the reference signals, with an 

unmodulated or continuous wave (CW) carrier with a fixed frequency and power. In opposition to beacon 

satellites, broadband application carriers are generally information-modulated signals with certain defined 

transmission rates (TR) in bits per second (bps) occupying a certain BW at an assigned transmit power. For 

this reason, it is necessary to evaluate the performance of both the beacon and broadband signal relative to 

the same atmospheric conditions to compare the induced attenuation for the appropriate link margin. This 

will help the satellite operators in determining the type of fade mitigation technique and provide for the 

appropriate link design relative to the BW capacity requirements.  

Several rain attenuation models have been proposed, including those recommended by ITU-R study 

groups for the prediction of rain attenuation in satellite system design; nevertheless, most of these models 

disagree with the real-time performance measurements in tropical regions with heavy rainfall. In practice, 

satellite communication signals are modulated carriers, differing from beacon CW carriers in the required 

BW and power for a certain data rate to be achieved. The percentage of service availability above 99% and 

the quality of service, modulation scheme and error corrections are of equal concern in broadband signals, 

which are not considered for beacons.  

Satellite service applications are generally concerned with the delivery of information traffic, such 

as voice connectivity in voice over IP (VOIP), direct-to-home TV, video on demand for real-time 

conferencing and interactive multimedia sessions. These can only be achieved using broadband, and hence, 

there is a need for link performance assessment. A beacon signal, in contrast, is a narrowband signal 

transmission at a single point frequency. Satellite beacons have vital applications in satellite tracking and 

telemetry services in mission-critical operations, navigation systems, fleet management and global 

positioning, especially when used in the L-band frequency. In most cases, satellite beacons perform reliably 

even in bad weather conditions, including rain. However, they may not be reliable enough for link analysis 

carrying broadband data traffic.  

Studies have also shown that link availability is critical for the overall performance of satellite 

communications systems, which is equally a function of carrier power to the system’s spectral noise density 

ratio (carrier-to-noise ratio, C/N) relating to information quality for radiofrequency (RF) signals in terms of 

the data rate, video quality or audio fidelity [1]. Thus, the challenges of rain attenuation will require a 

different approach, since prediction and measurements using beacons has not performed optimally to mitigate 

the propagation impairments enough to compensate for the rain effect [2]. Beacon signals from ACTS 

satellites were similarly used for propagation research experiments, while beacons have principally been used 

for pointing and tracking in commercial satellite applications. They are also used for the 1-dB power 

compression reference during uplink power control (UPC) systems and high-power amplifier (HPA) 

saturation control (input and output back-off) for broadband data transmission, as provided in the 

NigComSat-1R satellite.   

Nigeria and the West African sub-region are covered by the footprint of the Nigcomsat-1R satellite, 

and they are situated in the heavy rain zone shown in Figure 2a in the global rain map’s rain zones N and P. 

These zones mostly experience a combination of convective and stratiform rain types, giving rise to a high 

rain rate, longer event duration and wider coverage radius [3]. While some measurements agree with the 

models in some studies, none have been compared with industry practice for either link budgets or broadband 

application services. Therefore, comparisons for fade mitigations should be based on the similarity in the 

application and type of services provided. 

 

1.1 Rain Attenuation and Satellite Links 

Satellite links’ response to rain attenuation defines the performance stability and percentage of time 

availability. Satellite-to-earth CW beacon signals and broadband downlink attenuation measurements using 

VSAT terminals at a Ku-band frequency were set up for evaluation. The parameters affected by the rain 

during signal propagation are the C/N for the RF signal, where higher values of C/N provide better link 
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performance, and bit error rate (BER) for digital systems due to the loss of energy in the link, in which a 

lower BER results in better link performance. [4].  

In satellite industry practice, link availability, rain attenuation and duration of outage determine the 

terms of service when subscribing to satellite transponders operating at higher frequencies of the Ku-band and 

above. The uplink to downlink composite losses from rain effects varies with the geographic location and local 

weather profile relative to the point rain rate and distribution [4]. 

 

1.2 The ITU-R P.618-12 Rain Attenuation Model 

The ITU-R P.618-12 rain attenuation model requires the computation of a rainfall rate at 0.1% to 

0.001% of time availability when the link is interrupted by a rain event for a given location for comparison 

between the prediction and measurement results to estimate attenuation due to rain [5]. The estimates of 

attenuation for the long-term statistics along the slant path of satellite-to-earth attenuation at any location for 

frequencies from 4–55 GHz are made using the following equation: 

 

0.01( ) [ / ]R k R dB km  .                    (1) 

 

1.3 ITU-R P.837-7 Rain Rate Model 

This prediction method calculates the rainfall rate exceeded for a desired annual average probability 

for time exceedance and a given location on the surface of the Earth using digital maps of the monthly total 

rainfall and monthly mean surface temperature. The annual rainfall rate data exceeded for 0.01% of an 

average year, R0.01 (mm/h), is also an integral part of this recommendation, and these data are available as 

digital maps. 

Input parameters:  

1. p: Desired annual probability of exceedance (%); 

2. Lat: Latitude of the desired location (degrees, N); and 

3. Lon: Longitude of the desired location (degrees, E).  

Output parameter: Rp: Rainfall rate exceeded for the desired probability of exceedance (mm/h). 

For each month number ii, convert Tii (K) to tii (°C). 

For each month number ii, calculate rii as follows: 

For each month number ii, calculate the monthly probability of rain as follows: 

 

0 100
24* *

ii
ii

ii ii

MT
P

N r
   (%).                  (2) 

 

For each month number ii, where ii = {01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11 and 12}, the monthly mean 

total rainfall, MTii (mm), at the desired location (Lat, Lon) has been determined from long-term local data. 

 

1.4 Application of Satellite Beacons 

 A satellite beacon is a single point fixed-frequency, fixed-power, unmodulated CW carrier radiated 

from the satellite. Beacons are used for different applications, ranging from telemetry and tracking in space 

missions to Earth atmospheric effects and mitigation studies. Commercial communication satellites use 

beacon signals for pointing and tracking satellite position, navigation, fleet management and optical 

experiments for medical research in deep space missions [9]. When accessing satellite resources, beacon 

signals are generally used for pointing the earth-station terminal to the satellite of interest. Beacon signals can 

also identify the presence of rain fade for automatic uplink power control (AUPC) for reference [10].  

 A satellite beacon can be an on-board CW signal or ground based, as in the case of the NigComSat-

1R system, where the beacon was transmitted as a CW (RF) carrier at a 14-GHz uplink using an Agilent 

E8257D signal generator. The uplink in horizontal polarisation is at 14 GHz, and the vertical downlink is at 

12 GHz [9-10]. The beacon signal even operates optimally in adverse weather conditions, making it a good 

reference for earth-station pointing and tracking. Rain-induced attenuation in a Ku-band beacon is usually 

estimated at 1–5 dB; however, due to the local climatology and rain rate (R0.01), this is not realistic for 

tropical rain regions [9]. The beacon signal stability in Figure 1 is in the range of ±2 dB; this was measured at 

the propagation site of the University Teknologi Malaysia (UTM) campus. 
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Figure 1. Continuous wave (CW) Beacon Signal Showing a Stability of 2 dB, Measured at University 

Teknologi Malaysia (UTM), Johor Bahru, Malaysia. 

 

 

The received beacon signal in Figure 1 shows the stability of the beacon signal during rain events 

measured at UTM, Johor Bahru, Malaysia, sampled at rates of 0.5 Hz and 1 Hz for fade dynamic analysis. 

This shows the stability of the beacon within 2 dB, even during wet events [10], illustrating that the level of 

attenuation is low compared with the link outages of direct broadcast satellite (DBS) television services. 

 

1.5 Induced Attenuation on a Composite Link 

A composite link comprises uplink and downlink loops along the return path of the satellite 

transmission network. The path losses induced along the return link due to atmospheric noise, including 

thermal and system sources [7], also contribute to link degradations and induced attenuation when comparing 

measurements and predictions for the link budget. SatMaster-Pro is a link budget software program that is 

commonly used to calculate the link budget and path losses to provide the link margin by satellite internet 

service providers (ISPs). These combined propagation path effects are presented in Tables 1, 2 and 3, using 

the ITU-R rain rate model value, Crane global map rain zones and rain gauge–measured rain rate, 

respectively. The output shows considerable variations in rain-induced attenuation, as follows: 21.84 dB, 

18.75 dB and 26.57 dB. This also demonstrates that rain-induced attenuation varies with the rain rate. 

For the Nigcomsat-1R composite links, the following satellite parameters were considered relative 

to the local climatology [8]: 

1. Nigcomsat-1R parameters: satellite position = 42.5°E, operating frequency = 14/12 GHz, polarisation = 

90;  

2. Rain models used: ITU-R = 100 mm/h, crane = 90 mm/h, rain gauge measured = 140.0 mm/h, 

percentage availability = 99.98%; and 

3. Total system noise: 290 K; look angle = 47.83°; true satellite azimuth = 102.72°; path distance to 

satellite = 37,217.41 km. 

The ITU-R P.837-7 rain model presented a rain rate of 100 mm/h, while according to the Crane global rain 

map, it is 90 mm/h (Figure lb). However, the measured rain rate using the RG3-M rain gauge presents 140 

mm/h, which shows that both the ITU-R and Crane models underestimate the rain rate for Abuja, Nigeria. 

Similar disparity was observed with (Figure 2a) showing variation from 90 mm/h to 140 mm/h (Figure 2b). 

This disparity motivated the present study, as their prediction did not show satisfactory consistency.     

 

 

 
 

  

Figure 2a. Global Rain Map Showing Nigeria at 

90 mm/h. 

Figure 2b. CCDF of Measured Rain rate Showing 140 

mm/h, against the ITU-R Model of 100 mm/h. 
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From the complementary cumulative distribution function (CCDF) in Figure 2b, ITU-R P.837-7 

provided an estimate of 100 mm/h for Abuja, Nigeria, while the measurements presented 140 mm/h. These 

parameters were then applied to the SatMaster-Pro satellite industry simulation software, and the results are 

presented in Tables 1, 2 and 3, with higher attenuation values corresponding to higher rain rates. For the 

satellite-to-earth evaluation, only the downlink signal was measured for both the beacon and broadband link.  

 

 

Table 1. ITU-R Rain Model with a Rain Rate of 100 mm/h 

Parameter Value Unit 

Rain attenuation 21.84 dB 
Total attenuation 23.14 dB 

Availability (average year) 99.99 % 

 

 

Table 2. Crane Global Rain Model with a Rain Rate of 90 mm/h 
Parameter Values Unit 

Rain attenuation 18.75 dB 

Total attenuation 20.05 dB 

Availability (average year) 99.99 % 

 

 

Table 3. Rain Gauge–measured Point Rain Rate of 140 mm/h  
Parameter Value Unit 

Rain attenuation 26.57 dB 

Total attenuation 27.87 dB 
Availability (average year) 99.99 % 

 

 

In the comparison, the rain attenuation varies with the rain rate. The ITU-R model with a rain rate of 

100 mm/h produces attenuation of 21.84 dB, Crane with a rain rate of 90 mm/h presents 18.75 dB and the 

rain gauge–measured point rain rate of 140 mm/h produces an attenuation of 26.57 dB. 

 

 

2. RESEARCH METHOD 

Two separate experimental setups were considered, as shown in Figure 3, to ascertain the 

performance of beacon CW signals in terms of the C/N and receive signal level (Rx). All the atmospheric 

conditions for composite links were considered to allow for the link margin and uplink power control to 

compensate for the losses experienced by the broadband VSAT. 

The NigComSat ground facility and Nigcomsat-1R satellite were utilised for this study, with the 

following parameters: a Nigcomsat-1R orbital position of 42.5°E, uplink frequency of 14 GHz, downlink 

frequency of 12 GHz and Horizontal/Vertical polarisation. The measurement setup comprised two units of 

independent VSATs co-located in the same rain cell. These independent units were as follows: a beacon-

receiving terminal on receive-only mode and broadband terminal for transmit and receive channels in the 

DVB-S2 network operating in a time division multiple access (TDMA) scheme with other VSATs [11].  

Table 4 presents the receiving antenna parameters used for both the beacon and broadband. The 

beacon VSAT was configured to receive only for satellite downlink, while the broadband VSAT was 

configured for both transmit and receive modes used for real-time IP services. This was to allow for the 

measurement of rain attenuation in normal operations compared with the beacon narrowband signal. Figure 3 

shows the outdoor unit of a VSAT antenna connected to the indoor unit via an interfacility link using coaxial 

cable (cat6) to minimise the cable loss. Figure 4 shows the beacon receiving terminal schematic. 

 

 

Table 4. Earth Station Parameters for the Beacon Continuous Wave (CW) and Broadband Carrier 
Antenna  Parameter Values 

VSAT 

Antenna 

Type Offset 

Diameter 1.8 m 

Frequency 12.518 GHz 
Polarisation Vertical 

Azimuth  102 

Latitude 7.14°N 
Longitude 9.02°E 

Altitude 334 m 
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Figure 3. Broadband VSAT Outdoor Unit 

Receiving on the Ku-Band Frequency from 

Nigcomsat-1R. 

Figure 4. Ku-Band Beacon Receiver Setup Connected 

to the Nigcomsat-1R Spectrum Analyser. 

 

 

The beacon signal–receiving terminal was installed with a clear line of sight (LOS) to the satellite 

field of view. The maximum received CW carrier was monitored on a spectrum analyser connected to an RF 

signal splitter, as shown in Figure 4. The outdoor unit was fitted with a low noise block (LNB) to receive the 

satellite signal and convert it to an intermediate frequency (IF) of 1500 MHz. The signal was then amplified 

as depicted in Figure 5a under a clear sky with the broadband and beacon carriers; Figure 5b shows only the 

beacon during a rain event, when the broadband was completely absorbed due to rain attenuation. 

The broadband VSAT signal was observed on the spectrum analyser (Figure 5a); it is typically used 

for internet connectivity with several carriers sharing a transponder [12]. The rain-induced attenuation 

measured from this terminal was used as an input for the link design. Figure 5b confirms the performance of 

the beacon during rain events. The performance of the satellite links in Figures 5a and 5b under a clear sky 

and wet/rain conditions, respectively, can be related to the rain effect and the level of attenuation experienced 

by the systems under testing. 

 

 

  
  

Figure 5a. Clear Sky Showing Multiple Broadband 

Carriers on Nigcomsat-1R Transponders and 

Beacon Signals in Delta Marker 1. 

Figure 5b. Rain Event Showing No Broadband 

Carrier, with Only Beacon Signals on the Spectrum 

Analyser, with the Beacon in Delta Marker 1. 

 

 

3. RESULTS AND ANALYSIS  

From the simulation results, the ITU-R P.618-12 and Crane models both showed a clear divergence 

from one another, as well as the rain gauge–measured rain rate. While the Crane model showed relatively 

close agreement with the ITU-R model, both underestimated the rain rate for the ground station of the 

Nigcomsat-1R satellite; hence, the attenuation was also underestimated, leading to a lower link margin. 

 

3.1.  Link Performance 

The overall performance of satellite communication networks is generally presented in terms of the 

C/N ratio, illustrating the information quality, or the BER, video impairments and audio fidelity. Since rain 

attenuation increases with the frequency and rain rate, an additional fade margin is required based on the 

statistics of the local rainfall rate [13]. The observations from the spectrum analyser in Figure 5a show the 

carrier power above the noise level of 12.56 dB for the beacon signal (delta marker 1) and 12.02 dB for the 
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broadband signal on a 10 dB per division scale. Figure 5a depicts both the beacon and broadband signals at 

approximately the same level under clear sky weather conditions from the same transponder of Nigcomsat-

1R. However, during the rain event shown in Figure 5b, with the rain event lasting for about 1,200 seconds at 

a higher rate exceeding 100 mm/h, the broadband carrier is completely absorbed by the rain effect, while the 

beacon is still available. This shows the much higher capacity of the beacon to withstand the rain effect 

compared with the broadband carrier.  

The extreme effect of rain attenuation on the broadband signal in tropical zones usually makes it 

impossible to receive the same signal when the C/N drops by 6 dB, as predicted by several rain attenuation 

prediction models, including the ITU-R P.837-7. Similarly, Figures 6 and 7 show the observations conducted 

on 14 June 2016 in terms of the status of the beacon and broadband signals under a clear sky, while Figures 8 

and 9 present the rain’s effects on both broadband and narrow band beacon signals measured on 15 June 

2016. 

 

 

  
  

Figure 6. Clear Sky Broadband Signal with a 

Carrier-to-Noise Ratio (C/N) above 12 dB. 

Figure 7. Clear Sky Narrowband Beacon Signal with 

Stability of 2 dB. 

 

 

Figure 6 shows the broadband signal’s response to the atmospheric variation, while that of the 

beacon is shown in Figure 7. The link degradation for the broadband lasted up to 780 seconds, shown in both 

transmit and receive power level, while the narrow band beacon signal exhibited relative stability. 

 

 

  
  

Figure 8. Broadband Signal with A Carrier-to-

Noise Ratio (C/N) of 5.68 dB Below the Threshold, 

with About 700 Seconds of Fade Condition. 

Figure 9. Narrowband Beacon Signal Sensitivity of 5 

dB under A Rain Event. 

 

 

The significance of the BW’s capacity can be expressed in Equations 3 and 4 when a 1-Hz BW is 

applied to calculate the required C/N for the threshold limit. The effect of the BW for the determination of 

the required C/N shows the robustness of the BW power shown, as illustrated in the broadband signal’s 

performance. This is shown in Figures 5a and 5b for power as a ratio of the satellite transponder for a high 

data rate transmission, as expressed by Equation 5: 
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For a unity BW in the case of a beacon signal, the carrier-to-noise spectral density becomes 

10log( )b
R

o o

EC
T

N N
                      (4) 

 

The overall C/N can be calculated from 

 

 10log w Occ
o

C C
B

N N
 

.                    (5) 

 

Equation 5 also shows the significance of the BW requirements (Bw) in broadband services, which is 

not critical in the beacon signals of a CW carrier. The TR determines the overall throughput and quality of 

service, which is also a critical variable for the trade-offs between the transponder BW, power and 

modulation scheme. Table 5 presents the atmospheric effects on both signals. 

 

 

Table 5. Beacon and Broadband Signals’ Response under Clear Sky and Rain Event Losses 

Variable 
Clear-sky 

C/N (dB) 
Rain 

C/N (dB) 
Clear-sky 

Rx (dB 
Rain 

Rx (dB) 
Rx loss 

dB (clear sky/rain) 
Beacon signal 18.35 15.82 -28.46 -35.49 7.03 

Broadband signal 13.10 5.68 -28.19 -45.61 17.42 
Variance 5.25 10.14 0.27 10.12 10.39 

 

 

3.2.  Analysis 

Table 5 shows the performance of both signals under clear sky and rainy conditions, with a 

broadband signal attenuation of about 17.42 dB; the beacon only experienced a loss of 7.03 dB. Similarly, the 

observed broadband received signal variance compared with the beacon was 10.12 dB due to the rain effect. 

This confirmed the relation in Equation 5 as a factor necessary for the quality of service and performance of 

satellite links. The threshold limit is the required C/N (C/NReq), expressed in terms of energy per bit to TR, 

and the BW. The C/N variance of 10.14 dB and received signal power (Rx) of 10.12 dB between the clear 

sky and rain events calls for a serious propagation impairment mitigation technique to be considered. The 

difference between the beacon and broadband downlink signal was used to estimate the attenuation on the 

uplink signal due to the local atmospheric attenuation. 

 

 

4. CONCLUSION  

This study revealed that the sizing of link budget parameters requires a wide range of factors to be 

considered, especially when different applications are to be utilised. The measurement conducted for this 

evaluation is in accordance with Equation 5. This points to the fact that a beacon signal (narrowband) can 

perform much better in bad weather, due to its higher gain compared with broadband. The narrow, focussed 

radio-wave beams of the high gain are optimal for long-distance communication due to the beacon’s higher 

effective isotropic radiated power (EIRP) and lower losses [14] compared with the broadband signal. The use 

of narrow band signals for rain attenuation analysis for estimation of link margin application in VSATs will 

require further study in terms of comparisons and different applications. The rain rate determines the level of 

attenuation and power margin for link calculations; underestimation of rain attenuation will result in less 

margin allocation, which may not adequately compensate for this loss. Hence, there is a need for more robust 

propagation impairment mitigation techniques (PIMTs). 
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