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 Electric buses (EBs) as public transit that have been introduced in modern 

countries recently are an alternative effort to reduce climate change and 

environmental impacts of fossil fuels. One example of the successfully 

developed motor for EBs is interior permanent magnet synchronous motor 

(IPMSM) with merits of heat dissipating, high torque per frame size and 

reliability influence by absence of brushes. However, the three-phase 

armature windings are wounded in the form of distributed windings, results 

in much copper loss, high coil end length and reduced the efficiency. The 

embedded rectangular magnets inside the rotor make rotor less robust, 

increased rotor weight and reduced the torque and power density. The 

present IPMSM has a complex structure which is relatively difficult to 

manufacture and tough in optimization process. The 7.0 kg volume of PM 

used in IPMSM is very high, which increases the cost of the machine. 

Therefore, a new topology of permanent magnet flux switching motor using 

wedge-shaped PM and single stator structure with the advantages of simple 

stator design, robust rotor structure, high of torque and power, and high 

efficiency is proposed. The design, flux linkage, back-emf, cogging torque, 

average torque, speed, and power of this new topology are investigated by 

JMAG-Designer version 14.1 via a 2D-FEA. The initial design of proposed 

motor produces torque and power of 905.9 Nm and 57.75 kW, respectively 
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1. INTRODUCTION  

It has been extensively recognised that climate change and carbon emission are by far the biggest 

ordeals of the new millennium. The amplification in the number of automobiles is one of the key reasons and 

it was reported that there are currently almost 1 billion vehicles globally, consuming about 60 million barrels 

of oil per day (about 70% of the total oil production). On average, private vehicles consumed petroleum at 

about 36 million barrels/day and so emitted roughly 14 million tonnes of carbon dioxide daily. In addition, 

these same vehicles emitted 114 trillion British Thermal Units (BTU) of heat every day [1]. For Malaysian 

scenario, analysis on the consumption by fuel type showed that the share of petroleum products increased 

marginally from 57.0% in 2013 to 57.1% in 2014. As such, petrol and diesel were the major contributors at 

43.0% and 34.4%, respectively. Moreover, data collected from 2005 to 2013 shows the number of registered 

vehicles has increased every year with an average increment rate of 6.8%. In terms of CO2 emissions, the 

transportation sector continued to be one of the largest emitters in the country [2].  

Governments worldwide are imposing strategies and plans to reduce carbon emission. By the year 

2020, the United Kingdom is targeting to reduce carbon emissions by 45% [3], [4]. European Union (EU) 
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countries are planning to reduce their emissions of 20% by the year 2020 [5]. As for Malaysia, the 

government is committed to trim down carbon emission by 40% by the year 2020 and in line Malaysia 

Government Transformation Programme (GTP) 2.0, the government is dedicated to implementing Bus Rapid 

Transit (BRT) [6]. Green technology application in automotive has been identified as a viable solution to 

impede these vulnerabilities and promote a sustainable economy. Presently, one of the most prominent 

sustainable answers to strongly reduce oil consumption and carbon emissions lie in electric vehicles (EVs) 

and hybrid electric vehicles (HEVs). Based on the state of art, the technology of HEV considered better than 

EV and internal combustion engine vehicle (ICEV) due to the fact that the engine of the HEV can always 

operate in its most efficient mode, yielding super-ultra-low-emissions, and low fuel consumption than the 

ICEV while having the same range. Consequently, it has encouraged almost all car industrialists to improve 

and develop their own HEV models and commercialization of super-ultra-low-emission vehicles [7]. 

Recently, there are several types of electric machines used in HEVs such as dc motors, induction 

motors (IMs), switched reluctance motors (SRMs), permanent magnet synchronous motors (PMSMs) and 

flux switching motors (FSMs) [8], [9]. However, based on literatures regarding electric motors used in 

HEVs, only numerous type of electric motor have been studied for electric buses (EBs) which is outer rotor 

SRM (OR-SRM) and interior permanent magnet synchronous motor (IPMSM) as illustrated in Figure 1 [10], 

[11]. In [10], the 16S-18P OR-SRM design that offers a short flux path, low iron loss and capable to produce 

torque and power of 200 Nm and 40 kW, respectively. Besides, SRM absent of permanent magnet, inherent 

fault tolerance capabilities, simple and robust construction make SRM become more attractive for electric 

vehicle applications [12]. However, the SRM has the disadvantages of high torque ripple, high noise, 

vibrations and week magnetic communications between the coils due to unevenness of air gap [13]. Other 

drawbacks of OR-SRM include the use of position sensor which complicates the structure and makes the 

system less reliable for EBs [14], [15]. 

 

 

 
 

Figure 1. Example of Electric Motor used in EB, (a) 16S-18P OR-SRM and (b) 48S-8P IPMSM 

 

 

On the other hand, author in [11] has introduced three-phase configuration of 48S-8P IPMSM with 

advantages of high torque and power densities, high torque capability at low speeds, wide operating speed 

range, high efficiencies over the speed range, high reliability, and acceptable cost. Moreover, 48S-8P IPMSM 

with embedded rectangular magnets are preferred since they generate less losses than rotor surface magnets, 

their risk of demagnetization during a stator short-circuit failure is lower, reliably fixed and bonded in the 

rotor. The motor have stator outer diameter, rotor outer diameter, air gap, and stack length of the motor are 

396 mm, 260 mm, 1.5 mm, and 225 mm, respectively. Meanwhile, in electrical part, the supply voltage, 

current and armature current density are 440 V, 337.6 A and 35 Arms/mm2, respectively. Recent studies on 

the 48S-8P IPMSM shows at base speed of 2240 rpm, maximum capability of torque and power achieved are 

639 Nm and 150 kW, respectively. 

In spite of their good performances in term of torque and power, 48S-8P IPMSM stator and rotor 

structures as well as winding configurations can further be changed and improved. The three-phase armature 

windings are wounded in the form of distributed windings which results in much copper loss, high coil end 

length and thus, reducing the efficiency. IPMSM with embedded rectangular magnets inside the rotor make 

the motor less robust, increases the rotor weight and reduces the torque and power density. The present 

IPMSM has a complex structure which is relatively difficult to manufacture and tough in optimization 

process. The 7.0 kg volume of PM used in IPMSM is very high, which increases the cost of the machine. 

In order to overcome the drawbacks of IPMSM, permanent magnet flux switching motor (PMFSM) 

is introduced with advantages of all active part placed on the stator which inherently reduces the copper loss, 

motor weight as well as increases the motor efficiency. Research on the PMFSM to date has been mainly not 

only focused on the general electromagnetic analysis, optimization of the inner rotor type [16], but also the 
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outer rotor PMFSM [17]. There are two types of stator, segmented and a single as well matched in designs 

using the rectangular-shaped, V-shaped and wedge-shaped PM. First outer rotor PMFSM introduced is on 

2009 [18] with a novel 12 slots, 22 poles (12S-22P) with conventional rectangular-shaped of PM (I-PMFSM) 

for electric propulsion in a lightweight electric vehicle is presented. The design specifications, optimization, 

and performances can be obtained in [19] with advantages of high efficiency and high flux-weakening 

capability over the operational speed range. However, this design have some problems such as low rated 

speed and usage high current in order to produces a high torque and power. In addition, the segmented stator 

design make the motor structure become complex and difficult to manufacture. 

Another example of outer rotor PMFSM is outer rotor PMFSM with wedge-shaped magnet (W-

PMFSM). The specifications, optimisation performances and comparison between outer rotor W-PMFSM, 

outer rotor I-PMFSM and a surface-mounted PMSM were explained in [20]. The outer rotor W-PMFSM has 

12S-22P configuration, while parameter of rotor outer diameter, rotor inner diameter and air-gap length are 

comparable with the outer rotor I-PMFSM in [19]. Figure 2 (a) show the structure of W-PMFSM. The W-

PMFSM has advantages of torque capability, high efficiency due to the less torque ripple and high PM flux 

linkage. Furthermore, W-PMFSM has a good flux weakening capability which is important to determine 

speed range and loading capability in high-speed mode. However, the peak-to peak value of cogging torque 

of outer rotor W-PMFSM is high compared to the surface-mounted SPMSM because of most of wedge-

shaped PM part is placed in the stator led more flux linkage.  

Figure 2 (b) shows the urban structure of inner rotor PMFSM with overlapped windings (OW-

PMFSM). The inner rotor OW-PMFSM has 24 slots and 16 poles, while the outer stator diameter, outer rotor 

diameter and stack length are set to 128 mm, 82.5 mm and 75 mm, respectively [21]. In [21], the author 

claimed that the inner rotor OW-PMFSM produced flux linkage and back-emf of 115.28% higher than inner 

rotor non-overlapped windings (NOW-PMFSM) due to armature slot area was doubled. The torque density 

of OW-PMFSM is 65.2% higher than NOW-PMFSM, and 17.6% higher than the conventional 12S-10P 

NOW-PMFSM. In addition, the design of inner rotor give the advantage during operation at high speed. 

However, the OW-PMFSM suffers from high torque ripple due to high cogging torque and back-emf 

harmonics. In addition, the conventional rectangular-shaped PMs used on segmental stator make the structure 

more complex, hard to manufacture, not robust and tough to optimise. 
 

 

 
 

Figure 2. (a) 12S-22P PMFSM Outer Rotor with Wedge-Shaped PM and (b) 24S-16P PMFSM Inner Rotor 

with Rectangular-Shaped PM 
 
 

Therefore, a new topology of three-phase inner rotor PMFSM using wedge-shaped PM and non-

overlapped armature windings placed on the stator is proposed. Both stator and rotor are designs with salient 

teeth and single structure that give advantages of easy to optimise and manufacture process. For the initial 

design, parameters for outer diameter, air gap length and stack length are based on existing IPMSM in [11] as 

per minimum requirement of EBs. 

 

 

2. RESEARCH METHODOLOGY 

Generally, the project implementation is divided into two phases, which are topology selection of 

inner rotor PMFSM and design various rotor pole of inner rotor PMFSM with wedge-shaped PM. Analytical 

study is completed by a 2D finite element analysis (2D-FEA) to obtain information that is not available 

through an actual device test and gave substantially greater insight into the device's performance. The 2D-

FEA software used is JMAG-designer version 14.1.  

At the first phase, there are four topologies of inner rotor PMFSM to be analysed namely Model 1, 

Model 2, Model 3 and Model 4. Each model uses a combination of 24S-16P with non-overlapped windings 

and different structures of PM, stator and rotor. For Model 1 and Model 2, both design use segmental stator 

and salient teeth structure, but the PM shape of Model 1 and Model 2 is different in which rectangular-shaped 
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and wedge-shaped, respectively. Meanwhile, Model 3 uses single stator and rotor structure as well as wedge-

shaped of PM. For the Model 4, it use single stator structure, segmental rotor structure and wedge-shaped of 

PM. The structure characteristics of all models are summarized in Table 1. 
 

 

Table 1. Structure Characteristics of Various Inner Rotor PMFSMs 
Structur /Model Model 1 Model 2 Model 3 Model 4 

Stator Segmental Segmental Single Single 

Rotor Single Single Single Segmental 

PM shape Rectangular Wedge Wedge Rectangular 

 

 

To fairly compare with the existing 48S-8P IPMSM, stator outer diameter, air gap, stack length and 

PM weight are kept same for the proposed one. For electrical part, maximum voltage, maximum rated 

current, Ia, maximum current density, JA, and PM weight are set to 415 V, 240 Arms, 35 Arms/mm2 and 7 

kg, respectively for all designs. The number of turns, Na and rated current, Irms is calculated based on 

Equation 1 and 2, respectively. Rotor tooth width, Rw and stator tooth width, Sw, stator back length, Sbl and 

PM width, PMw are determined by using Equation 3. 
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where JA is the current density, α is filling factor, SA is the total area of the slot, and IA is current. 
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At the second phase, the design various rotor pole is studied purposely to determine the best rotor 

number to match with stator structure that selected in the previous phase. All designs will use the same stator 

structure and only rotor number will change. The possible combination stator slot and rotor pole are 

calculated based on Equation 4. Where Ns, Nr, Q and k represents as armature slot number, rotor pole 

number, phase and integer.  
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3. TOPOLOGY SELECTION OF INNER ROTOR PMFSM 

Four topologies of inner rotor PMFSM as illustrated in Figure 3 were comprising a various stator 

and rotor design has been analysed at no-load and maximum load conditions. The performances were 

compared by considering various characteristics such as flux linkage, back-emf, cogging torque, average 

torque and power. The main objective of this comparison is to examine the appropriate topology that gives 

less back-emf distortion, less cogging torque, high flux linkage, high average torque and power and easy to 

manufacture. 
 

 

 
 

Figure 3. Cross Section of Various Topologies of Inner Rotor PMFSM, (a) Model 1, (b) Model 2, (c) Model 

3, and (d) Model 4 
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3.1. Result of Coil Test and PM Flux Linkage 

At no-load condition, the fluxes from PM excitation as a flux source are linked from the stator to the 

rotor making a complete flux cycle. By comparing the flux linkages at different coils, the armature coil 

phases were defined according a balance three phase system. Figure 4 defines three-phase flux linkage as U, 

V, and W for inner rotor PMFSM (Model 1). The same procedure applies to another model for obtaining 

three-phase flux linkage connections and validating the operating principle of inner rotor PMFSM. Figure 5 

shows the flux linkage at various model of inner PMFSMs at no-load conditions. From the figure, Model 1 

with rectangular-shaped PM and segmental stator had highest flux linkage as compared to other inner rotor 

PMFSM topologies. Obviously, Model 1 configuration had possibility to provide higher torque and power. 

However the sinusoidal flux has a bit distortion due to flux slightly decreased at 100 degree. In Model 4, the 

flux linkage waveform was distorted due to a high magnitude of odd harmonics. While, Model 2 and Model 3 

which are both topologies used wedge-shaped PM produced low flux linkage but relatively smooth compared 

to others.  

 

 

 
 

  

Figure 4. Coil Test for Model Figure 5. PM flux Linkage at Various 

Model of Inner Rotor PMFSMs 

 

 

3.2. Result of Back-emf  

At open circuit condition, the induced voltage generated from PM excitation with the speed of 750 

rpm for topologies of inner rotor PMFSM are illustrated in Figure 6. Model 1 had the highest amplitude of 

approximately 1217.45 V while Model 3 motor had the lowest amplitude of 449.49 V and 12.8% lower than 

Model 2. Due to complete flux linkage from stator to rotor and back to stator without any leakage, high back-

emf was observed. Back-emf waveform of Model 4 was distorted due to odd harmonics 3. Back-emf at no 

load condition of all topologies was higher than applied voltage of 415 V, but the back-emf can be reduced 

with several method such as reduce number of turns, optimisation process and decrease of rated current. 

 

 

 
 

Figure 6. Back-emf Profile at 750 rpm 

 

 

3.3.  Result of Cogging Torque 

From cogging torque analyses, it is obvious that Model 4 configuration has highest peak-to-peak 

cogging torque, Tcog followed by Model 1 with 130.8 Nm and 105.6 Nm, respectively while Model 2 has the 

lowest Tcog approximately 51.1 Nm. While Model 3 has 52.8% lower than Model 1 that used rectangular and 

segmental stator. As high cogging torque caused vibration in machine and made it noisy. The cogging torque 

also can be reduced by following various cogging torque reduction techniques such as rotor pole chamfering, 

rotor teeth axial pairing, rotor pole notching, and rotor pole pairing. 
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3.4.  Result of Torque and Power 

Following analysis was conducted to determine the maximum ability of the average torque, Tave and 

power, Pmax at maximum JA with PM excitation. Figure 7 shows the Model 2 has the highest Tave and Pmax of 

669.3 Nm of 67.01 kW, respectively due to low Tcog and low distortion in the back-emf. Besides, Model 1 

and Model 4 in the lowest position due to suffering from Tcog and high harmonics. Meanwhile, Model 3 has 

Tave and Pmax of 639.14 Nm and 64.8 kW, respectively. Based on the analysis that has been conducted, Model 

3 is selected as the best topology. Although the value of Tave and Pmax slightly lower than the Model 2, the 

wedge-shaped structure PM and single stator structure causing Model 3 easy to fabricate and simple to 

optimize. In addition with low harmonics and low back-emf it offers advantages such as ease of protection 

during the off state occurred due to some faults. 

 

 

 
 

Figure 7. Torque and Power of Various Inner Rotor PMFSMs 

 

 

4. VARIOUS ROTOR POLE OF INNER ROTOR PMFSM WITH WEDGE-SHAPED PM 

This study the design of machine focused on the combination of four designs, 24S-8P, 24S-16P, 

24S-20P, and 24S-28P due to successfully in coil test analysis. By using the same restriction and 

specification for all combination of slot-poles of inner rotor PMFSM, the performances are analysed based on 

2D-FEA for open circuit conditions, which means there are no current supply in armature coil, while in load 

condition armature coil supplied at 30 Arms/mm2 and flux excitation from PM. All designs have similar 

dimensions such as rotor inner and outer diameter, stator inner and outer diameter, stator tooth width, and 

area of armature coil, and air gap are illustrated in Figure 8. 

 

 

 
 

Figure 8. Various Rotor Pole of Inner Rotor PMFSMs with Wedge-Shaped PM, (a) 24S-8P, (b) 24S-16P, (c) 

24S-20P, and (d) 24S-28P 

 

 

4.1. Result of Flux Linkage 

The flux linkage of all armature coils are observed and plotted as shown in Figure 9. The results 

showed that 24S-16P design has the highest flux linkage, which is 0.149 Wb. However, the flux linkage 

waveform obtained is not purely sinusoidal due to flux flow from stator to rotor less smooth. For 24S-8P 

design, it shows that the magnitude of flux is 0.139 Wb, but the graph shows the magnetic field decreased at 

120 degrees till 135 degrees because of the magnetic flux density gradually falling and causing the sinusoidal 

disruption. The lowest flux linkage has obtained by 24S-28P design with approximately 6.2% less compared 

with 24S-20P design. In addition, both 24S-20P and 24S-28P have purely sinusoidal flux linkage compared 

to others. 
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Figure 9. PM Flux Linkage at Various Model of Inner Rotor PMFSMs 

 

 

4.2. Result of Back-emf 

The back-emf of various rotor pole of inner rotor PMFSM with wedge-shaped PM at PM excitation 

are illustrated in Figure 10. From the graph, clearly that the high back-emf of 449.5 V is generated from 24S-

16P design due to less smooth flux linkage as mention in flux linkage analysis. Meanwhile, the lowest back-

emf of 309.7 V is generated from 24S-20P design. Besides, back-emf of 24S-8P design was distorted due to 

high odd harmonic 5, 7 etc. The back-emf of 392.9 V is generated from 24S-28P design. The back-emf 

profile is more sinusoidal and smooth than the others due to less harmonic occurred. 

 

 

 
 

Figure 10. Back-emf Profile of Four Model Inner Rotor PMFSMs 

 

 

4.3. Result of Cogging Torque 

Figure 11 shows the result of cogging torque graph for various rotor pole inner rotor PMFSM with 

wedge-shaped PM. Combination 24S-16 configuration has the highest peak-to-peak cogging torque followed 

by 24S-8P with 61.69 Nm and 39.32 Nm, respectively. Meanwhile, 24S-28P has the lowest peak-to-peak 

cogging torque of 4.89 Nm. In addition, the peak-to-peak cogging torque of 24S-20P shown 54.7% higher 

than 24S-28P. Therefore, by further design refinement and optimisation, it is expected that the peak-to-peak 

cogging torque of the proposed motor can be reduced to an acceptable condition by using several techniques 

such as rotor pole skewing, rotor pole notching and rotor pole pairing. 
 

 

 
 

Figure 11. Result of Cogging Torque for Various Model Inner Rotor PMFSMs 

 

 

4.4. Result of Torque and Power 

In conjunction, analysis to determine the highest average torque, Tave and maximum power, Pmax at 

maximum JA is also conducted. The highest Tave and maximum power are illustrated in Figure 12. It shows, 

24S-28P has the highest Tave of 905.9 Nm, followed by 24S-20P with Tave of 903.5 Nm. Besides, the lowest 
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Tave of 148.6 Nm is produced from 24S-8P slot pole combination. Meanwhile, 24S-16P design has Tave 

approximately 4 time higher than 24S-8P. Although the Tave of 24S-16P is not the highest, it has the highest 

Pmax of 64.8 kW due to influenced by the weight of the rotor is lighter than the 24S-28P and 24S-20P designs. 

In addition, the Pmax obtained from 24S-28P and 24S-20P are 57.75 kW and 56.89 kW, respectively. 

Meanwhile, the lowest Pmax of 15.12 kW is produced from 24S-8P design.  

 

 

 
 

Figure 12. Torque and Power of Various Rotor Pole 

 

 

Based on the analysis that has been conducted, combination rotor pole of 24S-28P is selected as the 

best topology. Although the Pmax is slightly lower than 24S-16P, it has the highest Tave and high flux linkage. 

In addition, 24S-28P has lowest cogging torque, less harmonic distortion, and lowest torque ripple, which is 

it made the design less vibration and less noise.  

 

 

5. CONCLUSION 

As a conclusion, various designs of inner rotor PMFSMs with wedge-shaped PM for EBs have been 

investigated. The procedure to design of various inner rotor PMFSMs have been clearly explained. The 

performances of the PMFSMs at no-load condition such as flux linkage, induced voltage, cogging torque, and 

at maximum load such as average torque and power shown that 24S-28P with wedge-shaped PM is the best 

design. The proposed motor using wedge-shaped PM and single stator structure which is relatively easy to 

manufacture and easy in optimization process. The initial design has achieved less cogging torque, maximum 

flux linkage, average torque capability and maximum power of 4.89 Nm, 3.46 Wb, 905.9 Nm and 57.75 kW, 

respectively. Therefore, the optimisation process needs to be performed in order to increase power of 24S-

28P with wedge-shaped PM into a suitable power required for the EBs. In addition, iron loss and coper loss 

analysis should be conducted to find the efficiency of the proposed machine. 
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