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 Eagle strategy is a two-stage optimization strategy, which is inspired by the 

observation of the hunting behavior of eagles in nature. In this two-stage 

strategy, the first stage explores the search space globally by using a Levy 

flight; if it finds a promising solution, then an intensive local search is 

employed using a more efficient local optimizer, such as hillclimbing and the 

downhill simplex method. Then, the two-stage process starts again with new 

global exploration, followed by a local search in a new region. One of the 

remarkable advantages of such a combina-tion is to use a balanced trade off 

between global search (which is generally slow) and a rapid local search. The 

crow search algorithm (CSA) is a recently developed metaheuristic search 

algorithm inspired by the intelligent behavior of crows. This research article 

integrates the crow search algorithm as a local optimizer of Eagle strategy to 

solve unit commitment (UC) problem in smart grid system. The Unit 

commitment problem (UCP) is mainly finding the minimum cost schedule to 

a set of generators by turning each one either on or off over a given time 

horizon to meet the demand load and satisfy different operational constraints. 

There are many constraints in unit commitment problem such as spinning 

reserve, minimum up/down, crew, must run and fuel constraints. The 

proposed strategy ES-CSA is tested on 10 to 100 unit systems with a 24-h 

scheduling horizon. The effectiveness of the proposed strategy is compared 

with other well-known evolutionary, heuristics and meta-heuristics search 

algorithms, and by reported numerical results, it has been found that 

proposed strategy yields global results for the solution of the unit 

commitment problem. 
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1. INTRODUCTION 

Smart grids are a set of technologies, concepts and approaches, allowing the integration the 

generation, transmission, distribution and use into one internet by full use of advanced sensor measurement 

technology, communications technology, information technology, computer technology, control technology, 

new energy technologies [1]. However, Smart Grid uses digital technology to control grid and choosing the 

best mode of power distribution to reduce energy consumption, reduce costs, increase reliability and also 

increase transparency in the network. Therefore, the system intelligent will have will have a significant 

impact in the fields of finance and economics of the power industry [2]. Although, The traditional network is 

a one-way network in which the electrical energy produced in power plants is channeled to consumers 

without information to create an automated and distributed network of advanced power supplies. 
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The unit commitment problem plays a significant role in optimizing the cost of generating electrical 

power by planning production units based on the allocation of the production cost of each unit and the actual 

output power [3]. They involves scheduling the on/off states of generating units to minimize the operating 

cost for a given time horizon. The committed units must meet the systems fore-casted demand and spinning 

reserve requirement at minimum operating cost, subject to a large set of operating constraints. The UC 

problem, one of the most important tasks in short-term operation planning of modern power systems, has a 

significant influence on the secure and economic operation of power systems [4]. Optimal commitment 

scheduling cannot only save millions of dollars for power companies, it also ensures system reliability by 

maintaining the proper spinning reserve. The UC problem is mathematically formulated as a nonlinear, 

largescale and mixed integer combinatorial opti-mization problem [5], [6]. The number of combinations  

of 0-1 variables grows exponentially for a large-scale UC problem. 

Therefore, the UC is one of the most difficult problems in the area of power system optimization. 

The UCP is a NP- Hard problem [7] which cannot be solved exactly in reasonable computing time for large 

scale problems. Research efforts, therefore, have concentrated on efficient and near-optimal UC algorithms 

which can be applied to realistic power systems and have reasonable storage and computation time 

requirements. The optimization methods for UC problems can be divided into two classes through a survey of 

literature as follows: The first are numerical optimization techniques such as priority list methods [4], 

dynamic programming [8], [9], Lagrangian relaxation methods [10], branch-and-bound methods [11], and 

mixed integer programming [12]. The other are stochastic search methods such as genetic algorithms  

(GA) [13], evolutionary programming (EP) [14], simulated annealing (SA) [15], and particle swarm 

optimization (PSO) [16]. 

To solve unit commitment problem (UCP), it has become evident that the researchers concentrated 

on using single metaheuristics. However, there are some limitations to this. To overcome this problem, a 

wide variety of hybrid approaches are proposed in the literature. The core idea of a hybrid with two or more 

metaheuristics was inspired by the possibility that the new hybridized algorithm combines the strengths of 

each of these algorithms to provide the following advantages: (i) To produce better solutions, (ii) to provide 

solutions in less time. Among the existing meta-heuristic algorithms, eagle strategy (ES) is a two-stage 

method recently proposed by [17] to solve optimization problems. In this two-stage strategy, the first stage 

explores the search space globally by using the so-called levy flight; if it finds a promising solution, then an 

intensive local search is employed using a more efficient local optimizer, such as hill-climbing and the 

downhill simplex method. Then, the two-stage process starts again with new global exploration, followed by 

a local search in a new region. One of the remarkable advantages of such a combination is to use a balanced 

tradeoff between global search (which is generally slow) and a rapid local search. Another advantage is that 

this is a methodology or strategy, not an algorithm. In fact, we can use different algorithms at different stages 

and at different times during iterations. Up to now, most published works on ES combined with efficient 

local search, such as the follower pollination algorithm (PFA) [18], and differential, 1) evolution (DE) [19] 

mainly focused on solving the continuous optimization problem; there is no previous work that attempts to 

use ES in conjunction with a local optimizer, such as crow search algorithm [20] to solve the unit 

commitment problem. 2) The rest of this paper is organized as follows. Section 2 contains the mathematical 

formulation of the UCP. Section 3 introduces the repairing mechanisms applied to the UCP. Section 4 briefly 

presents the basics of ES and CSA. Section 5 proposes the binary eagle strategy based crow search algorithm 

to solve UCP. Section 6 provides the computational results.Finally, Section 7 outlines the conclusions. 

 

 

2.     FORMULATION OF UCP 

2.1.  Objective function 

The purpose of UCP is principally finding the minimum cost to a group of generators by turning 

everyone either on or off over a specific time to satisfy the loads and meet a different operational constraints. 

The total cost F over the whole scheduling periods is the sum of the operating cost and start-up cost for all of 

the unit. Therefore, the objective function of the UC problem is: 

      ∑ ∑    
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Where H is total scheduling period; N G is number of gener-ators; Pih is generation of unit i at time h; uhi is 
on/off status of unit i at time h (on = 1 and off = 0); STih is start-up cost of unit i at time h. Generally, fi(Pih) 
denotes the fuel cost per unit which is mathematically a quadratic function: 
 

  (  
 )         

       
                                                                                     (2) 

 

Where ai, bi and ci represent the unit cost coefficients. 

The startup cost of the ith unit is given as: 

 

   
  {

              
        

       

             
        

       

                                                                               

 
Where      and      are the hot start up cost and cold start up cost of the ith unit;      

  is the continuous off 
time duration of the ith unit;       

is the minimum down time of the ith unit;       
 is the cold start hours of 

the ith unit. 
 
2.2.   Constraints  
2.2.1.System power balance 
 

∑  
 

  

   

  
    

                                                                                                                           

 

Where   
  is system load demand at time t. 

 
2.2.2. System spinning reserve requirement 

 

∑       

  

   

  
    

      
                                                                                                        

 

Where   
  is spinning reserve at time t. 

 
 2.2.3. Generation power limits 
 

         
                                                                                                                         

 

Where        and        are minimum and maximum generation limit of unit i, respectively 

 
2.2.4.Unit minimum up time 

Once a unit is started up, it should not be shut-down before a minimum up-time period is met and it 

math-ematically expressed for ith generating unit as follows: A unit must be on for a certain number of hours 

before it can be shut down. 

 

     
                                                                                                                                       

 

Where      
  is continuously on time of unit i up to time h,       is unit i minimum up time. 

 
2.2.5.Unit minimum down time 

 Once a unit is started down, it should not be shut-up before a minimum down-time period is met 

and it mathematically expressed for ith generating unit as follows: A unit must be off for a certain number of 

hours before it can be brought online 

 

      
                                                                                                                                    

 

Where       
  is continuously off time of unit i up to time h,          is unit i minimum down time. 

 
2.2.6.Unit initial status  

The initial status at the start of the scheduling period must be taken into account. 
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3.     THE REPAIRING MECHANISMS FOR THE UCP 

Since the size of the discrete search space of the UCP increases exponentially with the increasing 

number of units to be scheduled, it becomes a mathematically complex com-binatorial optimization problem. 

It is a tough job for any algorithm to regain the feasibility of infeasible solutions of such problems, which 

suggests the use of some mechanisms for forcibly satisfying the constraints of a problem. In such an attempt, 

the following four repairing mechanisms, the first three of which are used by many researchers for the  

UCP [21–26], are incorporated in the proposed binary-ES-CSA addressed in Section 5: 

 

3.1.  Priority list for unit-scheduling 

Priority list is made according to every unit and its parameter, and as  we observe the difference in 

the output powers, we can see that cost per produced of a unit at its maximum output power is less than that 

other output power. In this research, priority list is based on fuel cost obtained gained from the average fuel 

cost of each unit operating at its maximum output power. The average full-load cost a of a unit is defined as 

the cost per unit of power ($/MW) when the unit is at its full capacity. When the fuel cost of unit is given by 

Equation (2), can be expressed as: 

 

   
          

      

 
  

      

                                                                                            

 

The units are ranked by their in ascending order. Thus, the priority list of units will be formulated 

based on the order of i, in which a unit with the lowest i will have the highest priority to be dispatched. 

 

3.2.  Spinning reserve constraints repairing 

The spinning reserve may not meet the standards of the obtained primary unit scheduling using 

Binary ES-CSA . Hence, the heuristic search strategy repairs the spinning reserve constraints (5). To explain 

that, in order to keep the randomness nature of ES-CSA which is known as a stochastic searching algorithm, 

a constant pr is defined as a utilization ratio of the priority list. The procedures for repairing the spinning 

reserve violations in primary unit scheduling are shown as follows [26] : 

Step 1: Set h = 1 

Step 2: For all uncommitted units at hour t, calculate the average full-load cost   using formula (9). Sort them 

in ascending order of    to obtain a list SS (  ) 

Step 3: The amount of excessive spinning reserve at each hour is calculated by: 

 

   ∑   
 

 

   

         
    

                                                                                                 

 

Step 4: If Rh0, go to Step 6; 

Step 5: Generate a random number     [0; 1]. If   < pr, commit an uncommitted unit in SS (  ) with the 

lowest    and return to step 3; Otherwise, randomly commit an uncommitted unit in SS(  ) and return to  

step 3. 

Step 6: If h < H, h = h + 1 and return to Step2. Otherwise, stop. 

 

3.4.  Minimum up and down time constraints repairing 

Since the obtained unit schedule may not meet the demands of the minimum up and down time 

constraints/limitations, because they are failed in the previous process. Thus, they ought to be examined and 

fixed if the violations exist. The minimum down time is usually violated at high load levels at which the peak 

load hours are shorter than the minimum up time, for this cause the hills exist. In almost the same way, the 

minimum down time of the units, thus valleys exist. Heuristic search algorithm will be used to bank hills and 

fill valleys. To check for violations, on and off times of units are determined in advance. The continuously 

on/off times of the unit i up to hour t is calculated as follows: 
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  {

      
              

   

               
   

                                                                                                

 

The details procedures to repair violations of the minimum up and down times constraints are as 

follows [26]: 

Step 1: Calculate the duration on and off times of all units for the whole schedule time horizon using 

formulas (10) and  (11) 

Step 2: Set h=1 

Step 3: Set i=1 

Step 4 :       
    and   

      and      
          then set   

    . 

Step 5 :       
    and   

      and                 and       
                     then set   

    . 

Step 6 :       
    and   

      and                 and  ∑   
     

   then set   
    . 

Step 7: Update the duration on/off times for the unit i using using formulas (10) and (11). 

Step8 :                 and                 . 

Step9 :                and                 .otherwise, stop. 

 

3.5.  Decommitment of excess units 

Repairing the minimum up/down time constraints of a unit may lead to extreme spinning reserves at 

some time instants that are not desirable from the point of operating cost. Hence a heuristic algorithm is used 

to decommit some units one by one, in descending order of their average full load costs as given by  

Equation (3.1), until the spinning reserve constraint given by Eq. (2.5) is just satisfied at any time instant. 

However, such decommitment is made subject to the satisfaction of the up/down time constraints of a unit, 

i.e., a unit will be decommitted only if no up/down time constraint of the unit is violated from such 

decommitment. 

 

 

4.     OVERVIEW OF EAGLE STRATEGY AND CROW SEARCH ALGORITHM 

4.1.  Egale Strategy 
Eagle strategy is a two-stage optimization strategy was presented by [17]. This algorithm mimics 

behavior of eagles in nature. In fact, eagles use two different components to search for their prey. The first 

one is a random search performed by flying freely and the second one is an intensive search to catch prey 

when they see them. In this two-stage strategy, the first stage explores the search space globally by using a 

Levy flight: if it finds a promising solution, then an intensive local search is employed using more efficient 

local optimizer, such as hill-climbing and the down-hill simplex method. Then, the two-stage process 

commences another time with new global exploration, followed by local search in a new area. One of the 

remarkable advantages of such a combination is to use a parallel balance between global search (which is 

generally slow) and a rapid local search. There is another advantage that is called a methodology or strategy, 

not an algorithm. In fact, there are different algorithms that can be used at different times and stages during 

iterations. The main steps of the ES are outlined in Algorithm 1. 
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4.2.  Crow search algorithm 

The crow search algorithm (CSA) is a new population-based stochastic search algorithm recently 

proposed by [20]. The CSA is a newly developed optimization technique to solve complex engineering 

optimization problems [27], [28]. It is inspired by the intelligent behavior of crows. The principles ofCSA are 

listed as follows [20]: 

a. Crows live in the form of the flock. 

b. Crows memorize the position of their hiding places. 

c. Crows follow each other to commit thievery. 

d. Crows protect their caches from being pilfered through probability. 

Following the above assumptions, the core mechanism of the CSA consists of three basic phases, 

namely initialization, generate a new position, and updating the memory of crows. At first, the initial 

population of crows represented by n dimension is randomly generated. At iteration t, the position of 

crow is specified by      [  
      

          
   ]and it is assumed that this crow has memorized its best 

experience thus far in its memory      [   
      

          
   ]To generate a new position, crow i select 

randomly a crow j, for example, from the population and attempts to follow it to find the position of its 

hiding place (mj ). In this case, according to a parameter named awareness probability (AP), two states may 

happen: 
a. State 1: Crow j does not know that crow i is following it. As a result, the crow i will determine the 

hiding place of crow j. 

b. State 2: Crow j knows that crow j is following it. As a result, to protect its cache from being pilfered, 

the crow j will fool crow i by going to another position whitin the search space. 

According to States 1 and 2, the position of the crows is updated as follows: 

 

          {
                                            

                                                   
                           

 

Where rj is a uniformly distributed fuzzy number from [0; 1] and          denotes the awareness probability of 

crow j at iteration iter. Finally, the crows update their memory as follows: 

 

          {
                                                  

                 
                                             

 

Where f(  - ) denotes the objective function value. It is seen that if the fitness function value of the new 

position of a crow is better than the fitness function value of the memorized position, the crow updates its 

memory by the new position. The above process is repeated until a given termination criterion (itermax ) is 

met. Finally, the best solution of the memories is returned as the optimal solution found by the CSA. The 

main steps of the CSA are outlined in Algorithm 2 
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5.     BINARY EAGLE STRATEGY BASED CROW SEARCH ALGORITHM FOR UCP 

The binary ES-CSA is used to optimise the unit-scheduling problem in the first step, and the 

Lambda-iteration method [4] is used to solve the economic load dispatch problem in the second step. These 

two steps run iteratively until the algorithm meets the stopping criterion. Optimising the first sub problem of 

unit-scheduling is more difficult than the other sub-problem of ELD. So this paper mainly discusses how to 

model BESCSA for the first sub-problem, and the second sub-problem is solved by the traditional Lambda-

iteration method. These two sub-problems are optimised iteratively until the algorithm meets the stopping 

criterion. The Equations (9) and (14) are transfer from continues to binary space using the following 

equations : 

 

        {                          
                                 

                                                                                      

 

Where             = 
 

 
 , y = 1 +         

 and rand() is a random number from uniform distribution [0; 1] and 

        is the updated binary position at iter iteration. 

 

5.1. Solution representation and Initialization 

Before using the proposed binary ES-CSA to solve UCP, the representation of a crow must be 

defined. A crow is also called an individual. Hence, we defined each unit on/off (or 1/0) status as a gene, all 

available unit status at each hour make up a sub-chromosome, and there are H sub-chromosomes over the 

time horizon H comprising an individual. An individual would display the unit commitment schedule over 

the time horizon H. The on/off schedule of the units is stored as an integer-matrix U with dimension N G H. 

A matrix representation of an individual in the population is shown as follows: 

 

 
 

Where uhi is unit on/off status of unit i at time h (uhi = 1=0 for on/off). 

In the initialization process, a set of individuals is created at random. For the complete N P 

population, the candidate solution of each individual Uj; (j = 1; 2; :::; N P ) is randomly initialized. The 

position uhi of each crow Uj is generated using a uniform distributed random function, which generates either 

0 or 1 and they are equally likely. 

 

5.2. Generate new solutions 

As mentioned above, the ES is a two-stage strategy, and we can use different algorithms at different 

stages. In the first stage, ES uses the so-called Levy flights, which represent a kind of non-Gaussian 

stochastic process whose step sizes are distributed based on a Levy stable distribution to generate new 

solutions. When a new solution is produced, the following Levy flight is applied: 

 

                                                                                                                 
 

Here, is the step size that is relevant to the scales of the problem. The product means entry-wise 

multiplications. Levy flights essentially provide a random walk while their random steps are drawn from a 

Levy distribution for large steps: 

 

                                                                                                      

 

In this paper, we will use the Mantegna algorithm [28], which is one of the most efficient algorithms 

used to implement Levy flights. We assume that Levy (  ) = s, so the formula can also be described as 

follows: 

By using Mantegna’s algorithm [26], the step length s can be calculated as follows: 
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By using Mantegna’s algorithm [26], the step length s can be calculated as follows: 

 

  
 

| |
 

 ⁄                                                                                                                            

 

Where          draw from the normal ditrutions respectively .that is :            
             

    and           

are calculated as follows   
           

  

 
 

 (
   

 
)     

   
 

 
 

 

    ,       Here 0     and (:) is the Gamma function. For the 

second stage, we can use the crow search algorithm (CSA) for the intensive local search. We know the CSA 

is a global search algorithm, but it can easily be tuned to do an efficient local search by limiting new 

solutions locally around the most promising region. As mentioned above, in the CSA, there are two specific 

parameters: awareness probability (AP ) and flight length (f l). Small values of AP intensify the local search, 

while large values result in a global search. Hence, the CSA can easily be used as a local optimizer by setting 

the awareness probability to very small values, and for good performance, we choose the flight length f l = 2. 

Such a combination may produce better results than those using pure CSA. 

In UCP, binary numbers 0 and 1 are used to indicate the unit status (i.e., OFF or ON). The proposed 

startegy is essentially a real-coded algorithm, and therefore some modifications are needed to enable it to deal 

with the binary variable (i.e., 0 and 1) optimization problem. 

 

5.3.  Lambda-iteration method for ELD problem 

With the feasible UC schedule, classical equal lambda-iteration method [4] is used to solve the ELD 

problem in this paper. The ELD procedure is stopped when the tolerance, which indicates that the sum of all 

online units output minus the load demand, is less than the value given before hand. Once the optimal values 

of Pit are found, the total generation production cost is computed by adding the operating cost of all units 

over the time horizon H. The total start-up cost is calculated by adding the startup costs of those units that 

change their states from 0 to 1. Lambda-iteration method for solving ELD pseudo-codes is listed in  

algorithm 3. 

 

5.4.  Solution methodology 

In this section, the novel binary eagle startegy based crow search algorithm is proposed to solve the 

UCP and then the lambda-iteration method is used to solve the sub-problem  EDP. The main steps are listed 

as follow: 

Step 1: Randomly initialize the parameters (R; AP; f l; Np), feasible vectors and initialize the memory of 

each crow at t = 0 as in Section 4.4.1 

Step 2: Calculate priority list of units according to each unit parameters as in Section 3.3.1 

Step 3: Modify unit’s status of individuals in the crows satisfying spinning reserve constraints as in Section 

3.3.2  

Step 4: Repair each crow in the swarm for minimum up/down time violations as in Section 3.3.3. 

Step 5: Decommit units of each crow in the swarm to reduce excessive spinning reserve due to minimum 

up/down times repairing as in Section 3.3.4 

Step 6: Solve ELD problem using equal lambda-iteration method as in Section 5.3 

Step 7: Fitness evaluation of all crows. Calculate the fitness function value of each agent using the objective 

function (1) and evaluate each crow in the population. 

Step 8: Generate a set of crows X for globale exploration using the Levy flight according to Section 5.5.1 and 

run steps 3-7 

Step 9: Update the memory of crows according to Equation (14) 

Step 10: Generate randomly a set of crows around this promising solution 

Step 11: Carry out an intensive local search via the crow search algorithm and run steps 3-7 

Step 12: Update the memory of crows according to Equation (14) 

Step 13: If (a better solution is found) Update the current best 
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Step 14: If the maximum iteration number is reached, then go to step 15. Otherwise, increase iteration 

number and go back to step 3. 

Step 15: Stop and report the optimal solution of UCP. 

 

 
 

6.    RESULTS AND DISCUSSION 
In order to verify the feasibility and effectiveness of the proposed method (Binary ES-CSA) for 

solving UCP, the proposed Binary ES-CSA is tested on different system sizes based on a basic system of 10 

units from literature [10]. The scheduling time horizon H is chosen as one day with 24 intervals of one hour 

each. The spinning reserve requirement is set to be 10% of total load demand. For the systems of 20, 40, 60, 

80 and 100 units, the basic 10-unit system is duplicated and total load demands are adjusted proportionally to 

the system size. The proposed Binary ES-CSA method is coded in MATLAB and implements on an Intel 

2.26 GHz CPU with RAM 2GB personal computer. The parameters of proposed algorithm is given in  

Table 1, for the demand and generating unit data of the test system are given in Tables 2 and 3 . 

To validate the results obtained with the proposed ES-CSA method, we compare the performance of 

the ES-CSA to those of other approaches with respect to the best total production cost and CPU execution 

time. The results were reported in literature when the same problem was solved using Lagrangian relaxation 

(LR) (S. A. Kazarlis, A. Bakirtzis, and V. Petridis 1996) [13], integer-coded GA (ICGA) (Damousis et al. 

2004) [32], evolutionary programming (EP) (Juste et al. 1999) [14], and Lagrangian relaxation and genetic 

algorithms (LRGA) (Cheng et al. 2000) [25]. Table 4 provides comparison of the best total production cost 

from the ES-CSA method to those of other methods. It is clearly shown that the total production costs by the 

ES-CSA in all test cases are smaller than those of the above methods. From Table 4, it is obvious that the 

proposed ES-CSA method is  superior to the mentioned methods.  

The CPU execution times of the ES-CSA and other methods in literature are shown in Table 3. 

Although they may not be directly comparable due to different computers used, but the trend of 

computational time is shown that ES-CSA is able to find good optimal solutions in much smaller times than 

other methods. As shown in Tables 3 and 4, the total production costs of ES-CSA are shown to be less 

expensive than those of other methods on all generating unit systems. Obviously, ES-CSA vastly improves 

performance than other methods in terms of both solution quality and CPU times especially on the large-scale 

UCP. 

In the meantime, we examine the variation in the total fuel cost of test system with evolutionary 

generation numbers. For differenttest systems, the convergence processes of the best solution in the 30 trials 

are listed in Figures 1 et 2. From Figure 1 and 2, it is easy to see the ES-CSA has satisfactory con-vergence 

and the algorithm escaped from the local optima at thelater iterations. It proved that the stochastic searching 

mechanism of ES-CSA, which is conducted by gravitational forces among agents, is efficient. And the 

proposed mutation strategies improved theperformance of ES-CSA. 

 

 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 :  17 – 29 

 

 

26 

Table 1. Parameters of different methods 
Algorithms/parameters AP fl                 

CSA 0 .2 2            - 

ESCSA 0.2 2           1 .5 

   

 

 

Table 2.  System input data for 10 units, 24 h 
Unit       

(MW) 
     
(MW) 

a b c                                                

1 455 150 1000 16.19 0 .00048 8 8 4500 9000 5 8 

2 455 150 970 17.26 0 .00031 8 8 5000 10,000 5 8 

3 130 20 700 16.6 0.00200 5 5 550 1100 4 -5 
4 130 20 680 16.5 0.00211 5 5 560 1120 4 -5 

5 162 25 450 19.7 0.00398 6 6 900 1800 4 -6 

6 80 20 370 22.26 0.00712 3 3 170 340 2 -3 
7 85 25 480 27.74 0.00079 3 3 260 520 2 -3 

8 55 10 660 25.92 0.00413 1 1 30 60 0 -1 

9 55 10 665 27.27 0.00222 1 1 30 60 0 -1 

1

0 

55 10 670 27.79 0.00173 1 1 30 60 0 -1 

 

 

Table 3. Load data for 10 units, 24 h 
Hour Load (MW) Hour Load (MW) Hour Load (MW) Hour Load (MW) 

1 700 7 1150 13 1400 19 1200 
2 750 8 1200 14 1300 20 1400 

3 850 9 1300 15 1200 21 1300 

4 950 10 1400 16 1050 22 1100 
5 1000 11 1450 17 1000 23 900 

6 1000 12 1500 18 1100 24 800 

 

 

Table 4. Comparison of the best total production costs ($) 
Methods-Number 

of units 

10 TU’s 20 TU’s 40 TU’s 60TU’s 80 TU’s 100TU’s 

LR [13] 565825 1130660 2258503 3394066 4526022 5657277 

ELR [30] 563977 1123297 2244237 3363491 4485633 5605678 

LRGA [29] 564800 1122622 2242178 3371079 4501844 5613127 

DPLR [30] 564049 1128098 2256195 3384293 4512391 5640488 

GA [13] 565825 1126243 2251911 3376625 4504933 5627437 

GACC [31] 563977 1125516 2249715 3375065 4505614 5626514 

EP [14] 564551 1125494 2249093 3371611 4498479 5623885 

ICGA [32] 566404 1127244 2254123 3378108 4498943 5630838 

PLEA [33] 563977 1124295 2243913 3363892 4487354 5607904 

EPL [33] 563977 1124369 2246508 3366210 4489322 5608440 

LMBSI [34] 563977 1123990 2243708 3362918 4483593 5602844 

IPPDTM [35] 563977 - 2247162 3366874 4490208 5609782 

QBPSO [36] 563977 1123297 2242957 3361980 4482085 5602486 

QEA-UC [37] 563938 1123607 2245557 3366676 4488470 5609550 

IQEA-UC [38] 563938 1123297 2242980 3362010 4482826 5602387 

SFLA [39] 564769 1123261 2246005 3368257 4503928 5624526 

ICA [40] 563938 1124274 2247078 3371722 4497919 5617913 

Binary ES-CSA 563938 1123216 2242741 3360316 4480389 5600320 
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Figure 1. Convergence characteristic of fuel cost using Binary ES-CSA for 10-units based UC problem 

 

 

 
 

Figure  2. Convergence characteristic of fuel cost using Binary ES-CSA for 40-units based UC problem 

 

 

7.    CONCLUSION  
In this paper, we proposed an eagle strategy based crow seach algorithm (ES-CSA) to solve unit 

commitment problem in smart grid system. The proposed method is a combination of binary eagle strategy 

based crow seach algorithm with Lambda-iteration method, which is enhanced by priority list to handle the 

spinning reserve constraints and a heuristic search strategy to handle minimum up/down time constraints. 

The simulation results for solving several UCP instances with thenumber of units in the range of 10–100 

shows that the proposed method is effective for solving UCP. The total production costs over the scheduled 

time horizon by ES-CSA are less expensive than any otheroptimization methods reported in the literature 

especially on the large-scale UCP. Moreover, the CPU times of the proposed method increase linear with the 

UCP system size, which is favorable for large-scale implementation. 

 

 

REFERENCES  
[1] 

 

[2] 

 

 

[3] 

 

[4] 

C.He-Rui, P. Xu, "Study on Smart Grid System Based on System Dynamics", TELKOMNIKA Indonesian 

Journal of Electrical Engineering Vol. 12, No. 12, pp. 7979-7986, December 2014. 

Shahinzadeh H, Hasanalizadeh-Khosroshahi A. "Implementation of Smart Metering Systems: Challenges and 

Solutions". TELKOMNIKA Indonesian Journal of Electrical Engineering. 2014; 12(7). 

Ajenikoko GA, Olabode OE. Optimal Power Flow with Reactive Power Compensation for Cost and Loss 

Minimization on Nigerian Power Grid System. Indonesian Journal of Electrical Engineering and Informatics. 

2017; 5(3): 236-247. 

A. J. Wood and B. F. Wollenberg, Power generation, operation, and control. John Wiley & Sons, 2012. 

[5] R. Burns and C. Gibson, “Optimization of priority lists for a unit commitment program,” in IEEE Transactions 

on Power Apparatus and Systems, vol. 94, no. 6. IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS 

INC 345 E 47TH ST, NEW YORK, NY 10017-2394, 1975, pp. 1917–1917. 

[6] G. B. Sheble, “Solution of the unit commitment problem by the method of unit periods,” IEEE Transactions on 

Power Systems, vol. 5, no. 1, pp. 257–260, 1990. 

[7] C. Tseng, “On power system generation unit commitment problems.” 1998. 

 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 :  17 – 29 

 

 

28 

[8] W. L. Snyder, H. D. Powell, and J. C. Rayburn, “Dynamic programming approach to unit commitment,” IEEE 

Transactions on Power Systems, vol. 2, no. 2, pp. 339–348, 1987. 

[9] Z. Ouyang and S. Shahidehpour, “An intelligent dynamic programming for unit commitment application,” 

IEEE Transactions on Power Systems, vol. 6, no. 3, pp. 1203–1209, 1991. 

[10] F. Zhuang and F. D. Galiana, “Towards a more rigorous and practical unit commitment by lagrangian 

relaxation,” IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 763–773, 1988. 

[11] A. I. Cohen and M. Yoshimura, “A branch-and-bound algorithm for unit commitment,” IEEE Transactions on 

Power Apparatus and Systems, no. 2, pp. 444–451, 1983. 

[12] J. A. Muckstadt and R. C. Wilson, “An application of mixed-integer programming duality to scheduling 

thermal generating systems,” IEEE Transactions on Power Apparatus and Systems, no. 12, 1968. 

[13] S. A. Kazarlis, A. Bakirtzis, and V. Petridis, “A genetic algorithm solution to the unit commitment problem,” 

IEEE transactions on power systems, vol. 11, no. 1, pp. 83–92, 1996 

[14] K. Juste, H. Kita, E. Tanaka, and J. Hasegawa, “An evolutionary pro-gramming solution to the unit 

commitment problem,” IEEE Transactions on Power Systems, vol. 14, no. 4, pp. 1452–1459, 1999. 

[15] F. Zhuang and F. Galiana, “Unit commitment by simulated annealing,” IEEE Transactions on Power Systems, 

vol. 5, no. 1, pp. 311–318, 1990. 

[16] B. Zhao, C. Guo, B. Bai, and Y. Cao, “An improved particle swarm optimization algorithm for unit 

commitment,” International Journal of Electrical Power & Energy Systems, vol. 28, no. 7, pp. 482–490, 2006. 

[17] X.-S. Yang and S. Deb, “Eagle strategy using levy´ walk and firefly algorithms for stochastic optimization,” in 

Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Springer, 2010, pp. 101– 111. 

[18] X.-S. Yang, S. Deb, and X. He, “Eagle strategy with flower algorithm,” in Advances in Computing, 

Communications and Informatics (ICACCI), 2013 International Conference on. IEEE, 2013, pp. 1213–1217. 

[19] X.-S. Yang and S. Deb, “Two-stage eagle strategy with differential evolution,” International Journal of Bio-

Inspired Computation, vol. 4, no. 1, pp. 1–5, 2012. 

[20] A. Askarzadeh, “A novel metaheuristic method for solving constrained engineering optimization problems: 

crow search algorithm,” Computers & Structures, vol. 169, pp. 1–12, 2016. 

[21] Y.-W. Jeong, W.-N. Lee, H.-H. Kim, J.-B. Park, and J.-R. Shin, “Thermal unit commitment using binary 

differential evolution,” Journal of Elec-trical Engineering and Technology, vol. 4, no. 3, pp. 323–329, 2009. 

[22] S. Patra, S. Goswami, and B. Goswami, “A binary differential evolution algorithm for transmission and voltage 

constrained unit commitment,” in Power System Technology and IEEE Power India Conference, 2008. 

POWERCON 2008. Joint International Conference on. IEEE, 2008, pp. 1–8. 

[23] S. Patra, S. Goswami, and B. Goswami, “Differential evolution algorithm for solving unit commitment with 

ramp constraints,” Electric power components and systems, vol. 36, no. 8, pp. 771–787, 2008. 

[24] A. S¸. Uyar, B. Turkay,¨ and A. Keles¸, “A novel differential evolution application to short-term electrical 

power generation scheduling,” Inter-national Journal of Electrical Power & Energy Systems, vol. 33, no. 6, pp. 

1236–1242, 2011 

[25] X. Yuan, A. Su, H. Nie, Y. Yuan, and L. Wang, “Application of enhanced discrete differential evolution 

approach to unit commitment problem,” Energy Conversion and Management, vol. 50, no. 9, pp. 2449–2456, 

2009. 

[26] X. Yuan, A. Su, H. Nie, Y. Yuan, and L. Wang, “Unit commitment problem using enhanced particle swarm 

optimization algorithm,” Soft Computing-A Fusion of Foundations, Methodologies and Applications, vol. 15, 

no. 1, pp. 139–148, 2011. 

[27] A. Askarzadeh, “Electrical power generation by an optimised au-tonomous pv/wind/tidal/battery system,” IET 

Renewable Power Gener-ation, 2016. 

[28] D. Oliva, S. Hinojosa, E. Cuevas, G. Pajares, O. Avalos, and J. Galvez,´ “Cross entropy based thresholding for 

magnetic resonance brain images using crow search algorithm,” Expert Systems with Applications, vol. 79, pp. 

164–180, 2017. 

[29] C.-P. Cheng, C.-W. Liu, and C.-C. Liu, “Unit commitment by lagrangian relaxation and genetic algorithms,” 

IEEE transactions on power systems, vol. 15, no. 2, pp. 707–714, 2000. 

[30] W. Ongsakul and N. Petcharaks, “Unit commitment by enhanced adaptive lagrangian relaxation,” IEEE 

Transactions on Power Systems, vol. 19, no. 1, pp. 620–628, 2004. 

[31] T. Senjyu, H. Yamashiro, K. Uezato, and T. Funabashi, “A unit commit-ment problem by using genetic 

algorithm based on unit characteristic classification,” in Power Engineering Society Winter Meeting, 2002. 

IEEE, vol. 1. IEEE, 2002, pp. 58–63. 

[32] I. G. Damousis, A. G. Bakirtzis, and P. S. Dokopoulos, “A solution to the unit-commitment problem using 

integer-coded genetic algorithm,” IEEE Transactions on Power systems, vol. 19, no. 2, pp. 1165–1172, 2004. 

[33] D. Srinivasan and J. Chazelas, “A priority list-based evolutionary algo-rithm to solve large scale unit 

commitment problem,” in Power System Technology, 2004. PowerCon 2004. 2004 International Conference 

on, vol. 2. IEEE, 2004, pp. 1746–1751. 

[34] I. C. Silva, S. Carneiro, E. J. de Oliveira, J. Pereira, P. A. Garcia, and A. L. Marcato, “A lagrangian multiplier 

based sensitive index to determine the unit commitment of thermal units,” International Journal of Electrical 

Power & Energy Systems, vol. 30, no. 9, pp. 504–510, 2008. 

[35] K. Chandram, N. Subrahmanyam, and M. Sydulu, “Unit commitment by improved pre-prepared power demand 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Eagle Strategy Based Crow Search Algorithm for Solving Unit Commitment… (Rachid Habachi) 

 

 

29 

table and muller method,” International Journal of Electrical Power & Energy Systems, vol. 33, no. 1, pp. 106–

114, 2011. 

[36] Y.-W. Jeong, J.-B. Park, S.-H. Jang, and K. Y. Lee, “A new quantum-inspired binary pso: application to unit 

commitment problems for power systems,” IEEE Transactions on Power Systems, vol. 25, no. 3, pp. 1486– 

1495, 2010. 

[37] T. Lau, C. Chung, K. Wong, T. Chung, and S. Ho, “Quantum-inspired evolutionary algorithm approach for unit 

commitment,” IEEE Transac-tions on Power Systems, vol. 24, no. 3, pp. 1503–1512, 2009. 

[38] C. Chung, H. Yu, and K. P. Wong, “An advanced quantum-inspired evolutionary algorithm for unit 

commitment,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 847–854, 2011. 

[39] J. Ebrahimi, S. H. Hosseinian, and G. B. Gharehpetian, “Unit com-mitment problem solution using shuffled 

frog leaping algorithm,” IEEE Transactions on Power Systems, vol. 26, no. 2, pp. 573–581, 2011. 

[40] M. M. Hadji and B. Vahidi, “A solution to the unit commitment problem using imperialistic competition 

algorithm,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 117–124, 2012. 

 

 

 

 

 


