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 Sport performance analysis which is crucial in sport practice is used to 

improve the performance of athletes during the games. Many studies and 
investigation have been done in detecting different movements of player for 

notational analysis using either sensor based or video based modality. 

Recently, vision based modality has become the research interest due to the 

vast development of video transmission online. There are tremendous 

experimental studies have been done using vision based modality in sport but 
only a few review study has been done previously. Hence, we provide a 

review study on the video based technique to recognize sport action toward 

establishing the automated notational analysis system. The paper will be 

organized into four parts. Firstly, we provide an overview of the current 

existing technologies of the video based sports intelligence systems. 
Secondly, we review the framework of action recognition in all fields before 

we further discuss the implementation of deep learning in vision based 

modality for sport actions. Finally, the paper summarizes the further trend 

and research direction in action recognition for sports using video approach. 

We believed that this review study would be very beneficial in providing a 
complete overview on video based action recognition in sports. 
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1. INTRODUCTION 

Sports are synonym with the active movements of athletes on space either court or field. These 

movements are usually used by coach or trainer in evaluating the performance of their athletes. In sport 

practice, performance analysis can be divided into two: technique analysis and tactical analysis. According to 

Lees [1], technique analysis studies how the actions or movements were performed by the players. Tactical 

analysis or so called notational analysis studies what actions were carried out and the evaluat ion of the these 

actions take place [2]. Therefore, activity recognition is an important layer in tactical analysis before further 

analysis can be done by other researches. However, this paper will be focusing on the method in recognizing 

the action from sport video for establishing the automated notational analysis system.  

Evaluating the players’ performance has becomes a challenging task due to limitation on activity 

recognition phase. Hence, a technology intervention for games such as wearable sensor an d video camera act 

as a tool to overcomes the challenges. Wearable sensor refers to the wearable device used by the athletes to 

collect the data of the activities in form of one-dimensional signals and the common wearable sensor used is 

inertial sensor [3]. Although this approach is effective to recognize the physical activities, unfortunately, the 

wearable sensor is less practical as athletes are not allowed to wear the sensors during the match. Not only  
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that, the placement of sensors on to any part of human body also provide limitation to the movements of 

players during training or match. 

Video camera is a visual sensing facility that provides visual data or video of the monitored 

activities and environmental changes. It has been used widely in high profile sports such as football and 

tennis for tactical analysis, tracking players, detecting the court lines, events recognition and video 

summarization [4-9]. The practicality of video based modality is more higher compared to the sensor based 

as no additional hardware will be attached to the athletes’ body. Video camera captured the events and 

produced the broadcast video that receive high viewership. Therefore, these widely available video will be 

used by the researches to segment the useful part of video for the performance analysis  [10]. 

Many research have implemented the video in recognizing the action, object or even  

vehicle [11-13]. But, the review study on this modality is still lacking. Therefore, this paper will be reviewed 

about the current and previous works on recognizing the action in sport using the video based modality. 

 

 

2. VIDEO BASED SPORTS INTELLIGENCE TOOL 

Since video based modality has attracted many researchers’ attention in sport performance analysis, 

there are several tools developed by international company either for mobile or desktop usage. A summary of 

the existing intelligence system based on video for various sports is shown in Table 1. 
 

 

Table 1. Present developed tool 
Work Description 
[14] A software developed by Dartfish company to highlight interested information from a match or training video for any 

sports. It  is a useful for desktop and mobile tool for coach to analyses the performance of the athletes.  
[15] Vizrt introduced a few intelligence systems for modelling and animation, sport analysis, automated recording, graphic, 

video management and etc. for various high profile sports such as football, basketball, tennis and hockey.  
[16] Nacsport  has been a marketer for video sport analysis software since 2008. It  offers sport professionals to evaluate 

behaviors of all kinds of athletes. The data provided by software are both qualitative and quantitative and arranged 
according to need. Hence, the analysis can be done faster. 

[17] Sportradar provide services in collecting and analyzing sports data for over 1000 companies including sport federation, 

media companies and bookmakers. 
[18] Coach’s eye is a video analysis app from TechSmith Corporation that analyses the video recorded from any device. It  

provides the real t ime analysis for individual athlete or team which enable coach to share the analyzed results immediately 
with the athletes for fast performance improvement.  

 

 

However, in the aforementioned systems, there is no tool that can automatically recognize and 

classify the activities in sport for notational analysis. The highlighted actions for analysis are based on human 

perception. For example, in Dartfish, the analyst must manually watch, select and interpret the action of the 

athlete before further analysis by the software can be taken. 

 

 

3. ACTION RECOGNITION FRAMEWORK 

The video consists of temporal sequences of 2D images or can be defined as a set pixels in 3D  

space [19]. Figure 1 shows the overview of video based action recognition framework. According to [19-21], 

the action recognition can be divided into two approaches: simple approach and complex approach. Simple 

approach involves low level mechanism in which the recognized action is obtained from the detection and 

tracking of the human in each frame [22]. For example, to recognize “smash” activity in badminton match, 

firstly the players are detected from the surrounding background and then tracked to create a motion 

description of their movement. However, complex approach uses a lot of high level mechanism. This 

includes complex feature extraction and classification to recognize the human action.   
 

 

 
 

Figure 1. Action Recognition Approach 
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3.1. Detection and Tracking 

In action recognition, tracking was used to generate the movement trajectory from the detected 

region of interest to infer the performed action. In [23], dense trajectories approach were proposed to describe 

videos. From each frame, dense points were sampled and tracked based on displacement information from a 

dense optical flow field. To evaluate video description in the context of action classification, a bag of features 

approach has been used. Proposed method shows an improvement on state-of-the-art on datasets with 

different level of difficulty such as KTH and Hollywood2. Since optical flow method is not suitable to be 

used in low resolution video, Zhao et.al [24] proposed a Region-based Mixture Model (RMM) for action 

classification of low resolution video. In this method, a set of long term motion trajectories and long term 

common shape is extracted from each video sequence using Layered Elastic Motion Tracking (LEMT) 

method. In addition, Particle Filter (PF) approach is a technique of Bayesian sequential importance sampling. 

Both work in [25, 26] utilized this approach in their studies. While work in [26] defined the human gestures 

and real time human tracking from depth data using PF method, work in [25] utilized a human -robot interface 

system which incorporates PF and Adaptive Multi-space Transformation (AMT) to track the pose of the 

human hand for controlling the robot manipulator. PF is used to estimate the translation of the human hand 

while AMT is used to improve the accuracy and reliability in determining the pose of the robot. 

 

3.2. Feature Extraction and Classification 

In machine learning, feature extraction is described as a pre-processing part to remove redundant 

part and reduce the dimensionality [27]. In [28], feature extraction was defined into  low-level and high-level 

features. The key point for low level feature are corners, edges, blobs or contours while high level feature is 

more holistic like the structured information related to the action being taken. For sport video, important 

features including field, court, athlete and score board are extracted. However, classification is described as 

method to recognize the types of actions after feature extraction phase is completed.  

In [29], different kind of features were extracted using fast feature descriptor which is 3D 

Histograms of Texture (3DHoTs) method. This method is derived from projecting depth frames onto frontal, 

side and top planes. And then, to classify the features a new classifier which is Multi-class Boosting 

Classifier (MCB) has been proposed. By providing a better margin distribution, the method was claimed to 

be efficient by maximizing the mean of margin whereas the variance of margin is still in minimum level. Not 

only that, work by Li et.al [30] presented an automatic players detection and analysing system in sports video 

sequences. There are three levels in recognizing the action of player in the moving background video.  

At granularity level, global motion estimation for filtering was proposed. Then, at the middle level, there is a 

segmentation of the highlighted object and finally at fine level, action recognition using Continuous Hidden 

Markov Model (CHMM) was proposed. As for work in [31], Hidden Markov Model (HMM) was trained to 

highlight the summary of RGB-D sport video that has been extracted by HAR method. Zhou et.al used linear 

Support Vector Machine (SVM) classifier to predict the class of action based on action representation after 

the extraction of local motion and appearance features has been done [32]. 

 

 

4. DEEP LEARNING IN VIDEO BASED APPROACH 

Deep learning is a subtype of machine learning but more promising approach as compare to other 

conventional machine learning approaches. Deep learning is similar with one of the machine learning model 

called artificial neural network layer. Both consist of input layer, hidden layer and output layer. But, the 

number of hidden layer in deep learning could reach to hundreds layer and this is where the term “deep” is 

came from. Since deep learning shows an impressive result on several applications such as image 

classification, it has been implemented in the action recognition application. Table 2 shows the differences 

between deep learning and machine learning in term of preprocessing phase, size of data set, training time 

and hardware requirement.  In deep learning, preprocessing phase is not required. As illustrated in Figure 2, 

deep learning eliminates the manual feature extraction phase because the network extract features directly 

from images during training. To train the deep learning model, large data sets are required to compensate 

large size of hidden layers. However, due to the vast development of broadcast sport video online which is 

accessible, sport video analysis using deep learning has become the emerging research interest [33]. Due to 

complexity of the deep learning, more time is needed to train the model. Hence, high performance GPU is 

important to reduce the training time. GPU is chosen compared to CPU because it has parallel architecture 

that accelerates the computing process. One of the most popular deep learning model is Convolutional Neural 

Network (CNN). Table 3 shows a few various types of CNN which were formulated to classify difference 

type of action. 
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Table 2. Machine Learning vs. Deep Learning 
Characteristic Machine learning Deep learning 

Preprocessing phase Need Does not need 

Size of data set Small Large 

Training time Short Long 

Hardware requirement Simple High end 

 

 

 
Figure 2. Illustration of deep learning architecture [34] 

 

 

Table 3. Summary of Types of CNN 
Work Method 

[35] Deep ConvNet  
[36] 3D ConvNet  

[37, 38] Two-stream ConvNet  

 

 

The work in [35] modelled the Convolutional Neural Network (CNN) to classify 1 million Youtube 

videos contain 487 classes (called Sports -1M dataset). The model which can be seen in Figure 3 was divided 

to process the input into low resolution context stream and high resolution fovea stream before the networks 

was trained using UCF-101 dataset alone in order to increase the performance of runtime.  Both streams 

consist of convolutional, normalization and pooling layers that alternate each other and the two s treams 

finally converged into two fully connected layers. The performance of top layers on UCF-101 dataset show 

significant improvement compared to the UCF-101 baseline model.  

 

 

 
 

Figure 3. CNN architecture [35] 
 

 

One of the major issues in action recognition is high inter and intra class variations and large class 

imbalance. Hence, to overcome the aforementioned problem, work in [36] implemented a 3D Convolutional 

Neural Network (CNN) for multi-label class-imbalanced in hockey videos on two deep approaches: 1) 

ensemble of k-binary network; and 2) single multi-label k-output network. The 3D convolutional and pooling 

process were embedded in the proposed approaches to tackle the multi label recognition.  

Wang et.al [37] proposed Trajectory-Pooled Deep-Convolutional Descriptors (TDD) conducted on 

two challenging datasets: HMDB51 and UCF101. In this method, firstly, the two-stream ConvNets were 

trained on both datasets as a deep ConvNet to extract multiclass feature maps  from video sequences [38]. 

Then, the TDD descriptor was obtained using pooling process of these ConvNets before classifying the 

action using SVM classifier to perform action recognition. 

Besides CNN, another model of supervised deep learning which is good  in handling sequential data 

is recurrent neural network (RNN) and one of the common RNN is called Long Short -Term Memory 
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(LSTM) [39, 40]. The work in [36] which explained earlier also attempt to embedded the proposed 3D CNN 

with LSTM. The LSTM was added in between flattened CNN feature layers and dense layers (see Figure 4). 

However, the result shows that the combination of LSTM reduces the performance because the short 

sequences of frame were used. 
 

 

 
Figure 4. General structure of the network [36] 

 

 

Not only that, there are several attempts to implement LSTM in football video analysis. For example 

in [41], LSTM was proposed to classify football video sequence on MICC-Soccer-Actions-4 dataset which 

contains four action classes using visual and motion content. In this study, the features that represent the 

visual content were established using the Bag of Words (BoW) technique while SIFT-based model was 

proposed to extract the motion features. These features were used in LSTM to classify the action. The resu lts 

show that the performance in action classification for the combination proposed models is 92%. Tsunoda 

et.al [42] also worked on action recognition for  football video by implementing hierarchical LSTM. In the 

proposed model, several CNN models were integrated with two layers of LSTMs (see Figure 5). CNN was 

used to extract multiple person-centered features. Then, the first layer of LSTM was computed to integrate all 

k-numbers of person-centered features before the last LSTM layer integrated the temporal sequence of 

integrated multiple person features. The work in [43] focused in implementation of LSTM in ice hockey 

video which has been extracted into sequence of images to classify five puck possession events: dump in, 

dump out, pass, shot and loose puck delivery. In this work, firstly, the whole frame and each player were 

extracted using pre-trained CNN to obtain the content information, individual action and interaction between 

players. The pre-trained AlexNet model was chosen for the extraction phase as the number of available data 

is small and the model showed the great achievement in various computer vision tasks. Later in events 

prediction phase, one layer of LSTM model is used to classify the five puck possession events. 

However, in [44] , deep fusion framework was introduced by combining spatial features from CNN 

with temporal features from LSTM on three datasets: UCF11, UCFSports and jHMDB. Four CNNs and 

LSTM fusion methods for the recognition of human actions were proposed (two direct mapping mode ls and 

two merged models). First two models are single stream models called as conv-L and fc-L (direct mapping 

models). These models extract CNN activation outputs from the last convolutional layer and the first fully 

connected layer for each frame of each video. The final output of these models is determined by considering 

the output from the soft-max layer of LSTM network which fed with features obtained from the CNN. The 

second remaining models called fu-1 and fu-2 (two merged models) are two stream approaches where two 

networks are merged. From the experiment, it shows that the direct mapping methods are less accurate 

compared to the two merged models. But, among two merged models, fu -2 shows the good accuracy value. It 

proved that this fusion method produces best results with the aid of deep layer wise structure. 
 

 

 
 

Figure 5. Hierarchical LSTM [42] 
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5. CONCLUSION AND FURTHER RESEARCH DIRECTION 

Due to the rapid development of broadcast video online on sport match, it has become a tool for 

action recognition for sport analysis. Two main approaches used by researches are machine learning and deep 

learning. There are various works have been done on both approaches. Recently, deep learning approach such 

as CNN and RNN have been tremendously used in many works as  it provides a better accuracy and capable 

of eliminating the complex preprocessing phase. However, it has becoming the issues since each proposed 

method can only classify the actions for certain sport because different sport has different context and 

features. Hence, in future, a flexible method for action recognition can be proposed in which one method can 

classify different type of sports. 
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