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 In this study, a hybrid approach combining an Adaptive Neuro-Fuzzy 

Inference System (ANFIS) and Wavelet Transform (WT) is examined for 

solar radiation prediction in Nigeria. Meteorological data obtained from 

NIMET Nigeria comprising of monthly mean minimum temperature, 

maximum temperature, relative humidity and sunshine hours were used as 

inputs to the model and monthly mean solar radiation was used as the model 

output. The data used was divided into two for training and testing, with 70% 

used during the training phase and 30% during the testing phase. The hybrid 

model performance is assessed using three statistical evaluators, Mean 

Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE) and 

Coefficient of determination (R2). According to the results obtained, a very 

accurate prediction was achieved by the WT- ANFIS model by improving 

the value of (R2) by at least 14% and RMSE by at least 78% when compared 

with other existing models. And a MAPE of 2% is recorded using the 

proposed approach. The obtained results prove the developed WT-ANFIS 

model as an efficient tool for solar radiation prediction. 
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1. INTRODUCTION 

Over the years, there have been a lot of interests in the use of renewable energy as an alternative 

energy source due its availability in abundant quantity. The inexhaustible nature of this energy sources 

couple with the fact that its clean, free and also environmentally friendly makes it an alternative source of 

energy across the globe [1]. Several renewable energy sources have been utilized for energy generation 

across the globe with solar energy being the most exploited energy source. Solar energy is readily and 

abundantly available in Nigeria. The availability of solar energy in Nigeria makes it possible to have a 

successful solar power project [2]. Solar power design is only achievable with accurate knowledge of solar 

radiation of the project area [3]. This is required so as to have an effective and efficient solar power design 

that will be able to supply the required load demand and also have proper knowledge of the energy that can 

be generated from the project area. 

  Specific equipment are designed for recording horizontal solar radiation but are not readily available 

in Nigeria due to some reasons. High cost of the equipment coupled with high maintenance cost led to non-

patronage of the equipment by some developing countries [4]. The unavailability of these equipment in many 

meteorological stations led to the development of different empirical and artificial intelligence models for 

solar radiation estimation using the available meteorological data that have strong correlation with solar 

radiation [5]. In Nigeria, all the 36 states have a government owned meteorological agencies for recording 
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meteorological data but none of these states has a single equipment for recording solar radiation. Due to this 

reason it is important to develop a model to predict the horizontal solar radiation for Kano, Nigeria. 

 Several researches have been conducted and several models have been developed in various parts of 

the world to predict horizontal solar radiation. Researchers have conducted these investigations using the 

available meteorological data, [6-9] which include minimum temperature, sunshine hours and maximum 

temperature using different approaches. In places where the records of the solar radiation data were not 

available, [10-12] utilized the available data to develop the temperature based models for horizontal solar 

radiation prediction using minimum temperature, average temperature and maximum temperature. The 

estimation was also found to be accurate and efficient. 

In this study, a hybrid WT-ANFIS approach is investigated for horizontal solar radiation prediction 

in Nigeria using the available meteorological data. Adaptive Neuro-Fuzzy Inference System (ANFIS) 

coupled with wavelet transform (WT) are utilized for solar radiation prediction in Nigeria. Monthly mean 

sunshine hours, minimum temperature, maximum temperature and relative humidity were used as the input 

while solar radiation is used as the output. ANFIS is used to train and test data for the prediction while the 

WT is used before the prediction to clean the data. ANFIS is a strong and regularly used hybrid logical 

system which combines the representation of fuzzy logic and the learning rule of neural network. ANFIS has 

been extensively exploited by several researchers [5], [13-16], for horizontal solar radiation and other 

engineering applications. WT is a signal processing tool used in decomposing and reconstructing signals or 

data into different frequency components [20]. The main objective of this study is to propose a new WT-

ANFIS approach and investigate its efficiency and accuracy for horizontal solar radiation prediction in 

Nigeria. The obtained results are compared with ANFIS model and other existing models [5], [11], [12], [15] 

and [17] for validation. 

 

 

2. RESEARCH METHOD 

2.1   Study Location    

In this study, the meteorological data used was recorded at Nigerian meteorological agency 

(NIMET) Kano, Nigeria, with longitude 12.0022N and latitude 8.952E [18]. 10 years data ranging from 

(2002-2012) were for the ANFIS-WT model training and testing. The meteorological data used for this  

study has strong correlation with horizontal solar radiation, which includes minimum temperature,  

maximum temperature, relative humidity and sunshine hours. The horizontal solar radiation for Kano at 

latitude 12.0022N and longitude 8.952E was obtained from National aeronautics and space administration  

NASA [9]. The data was divided to two for both the training phase and testing phase. 70% of the data were 

used for training and 30% were used for testing. 

 

2.2   Wavelet Transform      

Wavelet transform is a signal processing tool used in decomposing signals or data into different 

frequency components. It has a wide application in Engineering and scientific applications [20, 21] especially 

where data and signal analysis are required. Wavelet is used to decompose time series signal into 

approximate and detail components to reduce the variation between the data series [22, 23] In WT results of 

the analysis are reconstructed for further analysis using inverse-WT. Depending on the application, the 

decomposition and reconstruction is in to levels, and based on selection of an appropriate mother wavelet, 

illustrated in Figure 1.  

 

 

 
 

Figure 1. Example of four Mother wavelets functions  
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The decomposition and reconstruction process is shown in Figure 2. Equation (1) illustrates a 

decomposed signal, S(t) using Equation (2). 

 

1 2( ) ( ) ( ) ( ) ( ) .........n n n nS t A t D t D t D t           (1) 

 

where An(t) is the approximate component and Dn(t), Dn-1(t), Dn-2(t), etc, are detail components. 
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Where   is the mother wavelet,  is scale factor and  is the time-shift parameter. The reconstruction 

of the data is conducted using Equation (3) with the all parameters maintaining their original definitions. 
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Figure 2. Two levels wavelet decomposition and reconstruction diagrams 

 

 

2.3.   Adaptive Neuro-Fuzzy Inference System    

ANFIS was first developed by J.S Roger in the year 1993 by combining fuzzy logic system and 

neural network [24]. The ANFIS is a form of neural network that functions like the Sugueno-type 

“ÍF….THEN” fuzzy inference system rule being a network structure and is considered to be more efficient 

than the individual neural network or fuzzy logic system, it provides more optimal solution than any of the 

two system [25]. A typical ANFIS structure is presented in Figure 3 with two inputs x and y and one output f, 

it also consist of five layers with each layer having different function. The ANFIS used for this study 

comprises of four inputs and a single output. Each of the five layers consist of nodes, the nodes on each layer 

perform the same functions.  

 

1. If x is A1 and y is B1, then 1 1 1 1f p x q y r        (4)  

 

2. If x is A2 and y is B2, then 2 2 2 2f p x q y r        (5)  

 

where ip , iq  and ir  are subsequent parameters. 

( )t a b
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Figure 3. A typical ANFIS structure 

 

 

Layer 1: The first layer consist of the input membership functions and supplies them to layer two. Each node 

in this layer has a node function and is also an adaptive node. The nodes output are presented in Equations 6 

and 7. 

 

,
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Or 
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, denotes the membership functions of the node A, while node i comprises of  x or y 

as its input, and 
i
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1i

B


 is a connected verbal label.      is the membership score of sets A and B fuzzy. 

The global function of the non-linear constraints is presented in Equation (8) [26] and [27]. 
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where , ,
i i i

a b c  are the sets of variable. This function varies as the values of the variable changes, hence 

exhibiting diverse membership functions type for set A fuzzy. 

 

Layer 2: The signals coming from the first layer are multiplied and the results are sent out as the output of 

this layer. The output is deliberated as an AND or OR procedure of the membership function that comes from 

preceding layer [28]. It is presented in Equation (9). 

   

,2 ........
i i ii i A B Co w µ µ µ           (9) 

 

Where     denotes the membership function of node A and      is the membership function of node B 

 

Layer 3: Layer three is called the normalization layer and a non-adaptive layer, this layer usually make the 

rules. The ratio of the node’s firing strength to the sum of all the firing strengths going into the node. This 

layer is non-adaptive layer [29]. 
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   represents the firing strengths. 
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Layer 4:  all the nodes in layer four are adaptive nodes with node function. This means the product of the 

signal controlled from the preceding node gives node i [29, 30]. 

 

 ,4 ( )i ii i i i io w f w p x q y r          (11) 

 

where   ̅̅ ̅ is the normalized firing strength of node i from layer three and               are the subsequent 

parameters 

 

Layer 5: this is the last layer of the ANFIS structure that consist a single node, this node is non-adaptive and 

also called a fixed node. It is the summation of all signals coming from the preceding layer and compute 

them as the total output [24], [28]. 

 

 ,5 ii i
i

o w f          (12) 

 

where    is summation of the subsequent parameters of the fourth layer. 

 

2.4   Model statistical evaluators  

The ANFIS-WT model performance is evaluated using the statistical evaluators in Equations (13-15)  

1. Root mean square error (RMSE) 
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2. Mean absolute percentage error (MAPE) 
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3. Coefficient of determination (  ) 
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        (15) 

    

where           are the estimated and experimental values, and  ̅       ̅  are the mean values of 

           Also, n represents the entire amount of test data. Higher values of    indicates good model 

performance while lower values of RMSE and MAPE also show good performance. 

 

2.5   Model Development  

This section describes the procedure for the model development as presented in Figure 4. WT is 

applied on the time series data used for the ANFIS prediction. The data gotten is first decomposed into two 

levels of wavelet coefficients using Db2, and later reconstructed as shown in Figure 2. The estimated signals 

from the WT-ANFIS model form the estimated output of horizontal solar radiation. 

Four input parameters, relative humidity, sunshine hours, maximum temperature, minimum 

temperature and one output horizontal solar radiations were used to train and test the ANFIS-WT model. A 

total of 120 sets of data over twelve years were used. The data sets were divided into two sets for both 

training and testing phases. 70% of the data ranging from 2002-2008 were utilised during the training phase 

and 30% ranging from 2009-2012 utilised during the testing phase.  

The data used is first presented on an excel sheet in a matrix form with first four columns 

representing the input data and the last column representing the output data. These columns representing  

the input data are represented as the real inputs. Before the estimation, wavelet transform is used to 

decompose the data at two levels using db2 mother wavelet. The db2 is chosen because it is widely agreed 

that it can give good approximation on the signals [22]. From the decomposed signals, two details and 

approximate coefficients are selected because they give more information on the used data. Since we have 

three sets of coefficient signals, three different ANFIS networks are needed to train each coefficient. The next 

step is to forward the wanted signals from WT to the ANFIS structure. The WT data is then used to train the 

ANFIS, the parameters of the ANFIS are adjusted during the training phase to satisfy the submitted outputs. 

The same procedure occurs during the testing phase using the data that was not used at the training phase. 
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The outputs of the ANFIS are further extracted and reconstructed using the WT. The reconstructed outputs 

give the final output of the horizontal solar radiation prediction by WT-ANFIS approach. This is followed by 

computing the error margin between the predicted output and the targeted output. The performance of the 

WT-ANFIS model is evaluated using R², MAPE and RMSE. 

 

 

 
 

Figure 4. Flow chart of the developed WT-ANFIS model 

 

 

3. RESULTS AND ANALYSIS 

3.1    Model Analysis 

In this study, Horizontal solar radiation is predicted using WT-ANFIS approach. Four inputs and 

one output parameters were used to develop and analyse the WT-ANFIS model. The predicted output and 

target of the WT-ANFIS solar radiation at the training phase are presented in Figure 5(a) while that of the 

testing phase are presented in Figure 5(b). The two figures shows a clear correlation between the target and 

the predicted output of the developed model both at the training and testing phase, the presented graphs 

clearly show perfect agreement between the predicted output and the target.  

 

 

 
 

Figure 5(a). Training phase (actual and predicted) 

 
 

Figure 5(b). Testing phase (actual and 

predicted) 
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Figure 6(a) presents the scatter plot at the training phase, R² is very high at the training phase which is  

near +1, and this proves a good model performance. Also, Figure 6(b) presents the scatter plot at the testing 

phase, R² is still high at the testing phase but lower than that of the training phase, it still proves good 

correlation because it approaches +1. 

 

 

 
 

Figure 6(a). Scatter plot of the output against target 

(training phase) 

 
 

Figure 6(b). Scatter plot of the output against target 

(testing phase) 

 

 

The statistical evaluators used to access the precision of the developed ANFIS-WT model are MAPE, RMSE 

and R², Table 1 presents the results of the statistical evaluators at the training and testing phases. Lower 

values of RMSE and MAPE signifies good relationship, the ultimate value is 0. The ideal value of R² ranges 

between 0 and 1, for the value of R² near 1, it signifies a good linear relation and if it nears 0 it signifies non-

linear relation. 

 

 

Table 1. WT-ANFIS model statistical evaluation  
Data  RMSE MAPE    
Training 0.23712 0.82161 0.9887 

Testing 0.86759 1.5026 0.8584 

 

 

Table 2. Comparison with other models 
Reference Model  Case Study    RMSE 

Olatomiwa et al [5] ANFIS Nigeria 0.8544 1.0854 
Remedani et al [17] 

Olatomiwa et al [11] 

Olatomiwa et al [12] 

SVR-Poly 

SVR-Poly 

SVM-FFA 

Iran 

Nigeria 

Nigeria 

0.8100 

0.7703 

0.8024 

3.2000 

1.3639 

0.6988 
Remedani et al [17] ANFIS Iran 0.808 3.8000 

Sajid and Ali    [15] ANFIS Abu Dhabi 0.860 - 

Remedani et al [17] ANN Iran 0.7992 3.700 
Present study WT-ANFIS Nigeria 0.9887 0.8216 

 

 

3.2   Model validation 

The WT-ANFIS model validation was done by comparing the model results with existing literatures 

[5], [11], [12], [15] and [17]. The statistical evaluators used to compare the accuracy is R² and RMSE, 

Table 2 presents the comparison between the results from different models and the WT- ANFIS result. From 

the table it clearly indicates that the developed WT-ANFIS model provides more precise prediction than the 

existing models based on R² and RMSE values obtained. 

 

 

4. CONCLUSION 

In this study, WT-ANFIS was utilized for horizontal solar radiation prediction in Nigeria. WT is 

used to clean the data before the prediction exercise. Long term meteorological data comprising of monthly 

mean relative humidity, sunshine hours, maximum temperature, solar radiation and minimum temperature of 

the period (2002-2012) were used to train and test the model. The meteorological data selected for this 
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research have strong linear relation with horizontal solar radiation and are readily available at the 

meteorological station in Nigeria. The developed WT-ANFIS model proves to be good model for horizontal 

solar radiation prediction. The statistical values of the MAPE, RMSE and R² obtained are 0.23712, 0.82161 

and 0.9887 respectively. Based on the values of R² used for comparison between the developed model and 

the validated models, the WT-ANFIS show better accuracy and performance. Also, by adding more 

meteorological data more prediction accuracy is attained. With the obtained results, it indicates that the 

addition of WT for data decomposition and reconstruction improves the ANFIS model accuracy for 

horizontal solar radiation prediction. More meteorological data will be considered in future study and new 

models will be developed using new soft computing techniques.  
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