
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 12, No. 1, October 2018, pp. 51~60

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i1.pp51-60  51

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

Comparative Analysis of Various Testing Techniques Used for

Aspect-Oriented Software System

Sandeep Dalal1, Susheela Hooda, Kamna Solanki

M.D. University, Rohtak, Haryana, India

Article Info ABSTRACT

Article history:

Received Jan 19, 2018

Revised Apr 28, 2018

Accepted Jun 14, 2018

 Nowadays, Aspect-Oriented Programming (AOP) paradigm is getting more

popularity in the field of software development. But testing an Aspect-

Oriented Software System (AOSS) is not well matured. Therefore, many

researchers have been focusing on testing an AOSS. Moreover, the literature

indicates that very few papers have devoted to literature survey but still there

is need to study in depth of various testing techniques used for AOSS.

Therefore, in this paper, a comprehensive study of existing various testing

techniques for AOSS have been conducted and present a comparative

analysis result of various testing techniques based on various parameters.

Keywords:

AOSS testing

AOSS testing survey

Aspect-oriented programming

(AOP)

Aspect-oriented software

system (AOSS)

Software testing

Copyright © 2018 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Susheela Hooda,

M.D. University,

Rohtak, Haryana, India.

Email: susheelahooda@gmail.com

1. INTRODUCTION

Aspect-Oriented Programming (AOP) is relatively the latest programming paradigm as compared to

traditional programming paradigm which focuses on separation of crosscutting concern. A program consists

of two major things such as 1) Business Logic and 2) Supporting functions. AOP isolates the supporting

functions from the main business logic in which supporting functions are known as crosscutting concerns and

business logic is known as a primary concern. Therefore, AOP increases the concept of modularity by

minimizing or no code scattering. Therefore, AOP has been used to develop complex software systems.

According to Dalal et. al. [1], software testing plays a critical role to ensure the quality of the

software. Soft computing techniques have proven successful in the area of software testing. Mohapatra and

Prasad proposed ant-colony optimization technique for reducing the size of test suite and proved its

effectiveness with other contemporary techniques [2]. Aspect-oriented software system testing is not so much

matured as other programming paradigms such as object-oriented and procedural programming paradigm.

Therefore, many of the researchers have worked in the field of AOP testing but still one needs to focus more

in this field. Quality of the system is directly dependent on the testing. Proper testing of software leads to

design and develop a quality software. Software testing can be performed manually as well as

automatically [3], [4].

According to Ghani [5], automation of software testing process is performed to minimize cost and to

decrease the human errors. Automation of AOP testing approaches depends on three elements: (i) automated

test input generation and selection (ii) automated test oracle and (iii) automated test execution. Apart from

above elements, other important characteristics are testing techniques for AOP, different testing level and

coverage criteria for testing AOP.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 : 51 – 60

52

Various researchers [3]-[7] describe aspect-oriented program testing surveys. But still, no formal

survey has been found for AOP testing approaches as per our knowledge. This paper will provide the detailed

analysis of AOP testing approaches by using a formal procedure [8] systematic review.

This paper does not cater to compare the existing AOP testing techniques based on their merits and

demerits. The focus of this paper is to give a comparative analysis study of existing aspect-oriented software

testing techniques based on some characteristics such as testing technique, testing level, automation support,

automation level and test case generation criteria.Organization of this paper is as: Section 2 describes the

survey planning and execution of the literature survey. Section 3 discusses detail analysis study on the

available testing techniques for AOP and section 4 describes the various issues which occur usually during

AOP testing. Section 5 presents the conclusions and future work.

2. SYSTEMATIC REVIEW: SURVEY PLANNING AND EXECUTION

According to B. Kitchenham [8], a systematic review is a planning which includes the methods to

identify, analyze and clarify the most appropriate research about a specific research question. The following

steps have to carry out the review in this literature are as follow: aim, research questions, selection of

available sources, selection of search strings, classification and extract the information from each AOP

testing approach.

The following steps have been taken using the approach of B. Kitchenham [8]:

Aim: To characterize the various AOP testing approaches from the available literature.

Research Question:-What are the available AOP testing techniques and their characteristics.

Sources: ACM Digital Library, IEEE X-plore, open access journals, springer, Science direct, Elsevier ,

various journals and conference proceedings.

Search String:- (“AOP testing techniques”)or(“Testing Aspect-oriented programs or software”)or(“unit

testing for AOP”)or(“Data flow testing for AOP”)or(“automated testing for AOP”)or(“Model based AOP

testing”) or(“control flow testing for AOP”)or(“Structural testing for AOP”) or(“Search based AOP

testing”)or(“Regression testing for AOP”)or(“Random testing for AOP”)or(“integration testing for AOP”).

AOP testing techniques have been classified into different fields based on a review of [3]-[7] shows

that in Table 1.

Table 1. Characterization of Various AOP Testing Techniques
Field Description

Testing Technique Define various testing techniques for AOP which are classified differently
by different researchers.

Level of Testing Define which level of testing is used to test the software behavior.

Different level of testing used are: unit, integration, system, acceptance
and regression testing.

Test Coverage Criteria Define criteria to select which input sets are to be incorporated.

Tools to Support Define the existence or not of supporting tools.
Automation Level Automation means the reduction in cost, time and effort. Defines how

automated is a proposed testing approach.

Behaviour Model Describe which behaviour model is being used by testing technique.

3. ANALYSIS OF ASPECT-ORIENTED SOFTWARE TESTING TECHNIQUES

To have the better understand the present scenario of various testing approaches for an aspect-

oriented software system. The following section discusses the various papers which have extensively covered

the basic aspects of aspect-oriented software programming paradigm and their testing approaches.

3.1. Testing Techniques for AOP

There are various testing techniques for AOP which are classified differently by different

researchers [3], [4] and [6]. However, a broad classification of testing techniques for AOP given shown in

Figure 1 and detail description of each testing technique.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Comparative Analysis of Various Testing Techniques Used for Aspect-Oriented… (Susheela Hooda)

53

Testing Techniques in AOP

Functional
Testing

Or
Model Based

Testing

Structural
Testing

Or
Code Based

Testing

Mutation
Testing

Regression
Testing

Random
Testing

Search Based
Testing

Figure 1. Testing techniques in AOP

3.1.1. Functional/Model-Based Testing

Functional testing is used to test the external behaviour of software whether software meets the

customer„s requirement or not without bothering the implementation details of the software. Model-based

testing (MBT) is also considered as functional testing because like functional testing, it has also intended to

test the external behaviour of the system. Moreover, UML (Unified Modeling Language) has proven

successful to predict test effort in earlier stages of the software development process [9]. MBT was originally

developed for system testing. However, MBT can be used in unit testing, integration testing and in other

testing techniques [10]-[30].

3.1.2. Structural/Code Based Testing

Structural testing is used to test the software‟s implementation in which test data is derived from the

knowledge of the internal detail. (e.g. control path, data items). This knowledge can be gathered only when

one has knowledge about the source code. This is the reason that structural testing is considered as

code-based testing. Control flow and data flow testing have also come under structural testing. As control

flow testing requires knowledge about the control flow structure of the program and data flow testing

requires knowledge about the test paths of a program which can be derived from the sequence of events

related to the data state [31]-[45].

3.1.3. Mutation Testing

Mutation testing is also known as fault-based testing. In order to perform mutation testing, mutants

are generated from the original program by modifying the original program with the help of different

mutation operators. Thereafter, mutation testing is performed to identify whether test data is able to discover

the modifications which were performed in original program or not [46]-[60].

3.1.4. Regression Testing

Regression testing is performed during the maintenance phase of the software to ensure that all

faults had been detected which occurred due to various changes in software while modifying the

software [61]-[64].

3.1.5. Random Testing

Random testing is produced test data randomly rather than one‟s choice. It is one of the simple

testing technique and less costly as compared to other testing techniques. R. M. Parizi et.al. [66] proposed a

framework for testing an aspect-oriented program using random testing. According to the author,

this approach is the first approach for random testing for an aspect-oriented program. The author also extends

his own work in [67].

3.1.6. Search-Based Testing

Search based testing is also considered as evolutionary testing based on the theory of evolution.

It formulates the fitness function to select test data based on some objectives such as coverage criteria.

Better fitness function helps to solve the search problem in better way [68]-[73].

Currently, 62 papers have been classified into different categories. Table 2 shows the complete list

of the selected papers with their classification of different categories.

3.2. Level of Testing

 Table 3 shows the different level of testing of AOP and number of approaches from Table 4 which

extends the scope of application of AOP testing approaches.

\

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 : 51 – 60

54

Table 2. Various Classifications of Selected Papers
Paper Categories #Papers

Functional Testing or Model Based Testing 21

Structural Testing or Code-based Testing 15
Mutation Testing 15

Regression Testing 4

Random Testing 2
Search Based Testing 5

Total of papers 62

Table 3. Quantitative Analysis of Testing Level
Testing Level # Approaches

Unit testing 9

Integration testing 10

System testing 30
Regression testing 3

3.3. Test Case Coverage Criteria

Coverage criteria is a measure to determine which inputs are to be incorporated into test suit.

Effective coverage criteria help to test the software effectively. As literature indicates that not all coverage

criteria which have been used in traditional programming paradigm are directly useful for testing AOPs.

Therefore, a broad classification of coverage criteria has been shown in Figure 2 and brief description of each

coverage criteria has been discussed:

Testing Coverage Criteria For AOP

Code Based
Criteria

Model Based
Criteria

Fault Based
Criteria

Figure 2. Different test case coverage criteria for AOP

3.3.1. Code-Based Criteria

The source code of AOP or some form of graph model are used to define code-based coverage

criteria. Code–based criteria can be defined by two methods such as (1) aspect coverage criteria and (2)

aspectual branch coverage criteria [5]. Aspect coverage criteria include statement coverage,

joinpoint coverage, context coverage and def-use coverage [39], [41] whereas aspectual branch coverage

criteria include interaction coverage, data flow coverage and data coverage [33], [36], [40], [43], [45].

Moreover, new flow graph models have proposed to handle the aspects integration with source code such as

def-use graph model (AODU), PairWise Def-Use (PWDU) [39], [41] and so on.

3.3.2. Model-based coverage criteria

Control flow graph which is generated from UML model is used to define model-based criteria.

Various coverage criteria have been used to define model-based criteria such as transition coverage, sequence

coverage, multi aspect integration, polymorphic, branch coverage and aspectual branch coverage criteria

[14]-[18], [22]-[24] has been used to generate the test data.

3.3.3. Fault based criteria

It is used to generate test data to detect faults in the mutated version of the program [46]-[60].

3.4. Tools to support

There are some approaches [12], [14], [15], [19], [23], [25], [26], [29], [36], [38], [43], [44], [46],

[49], [51]-[54] and so on which provide automated tools to apply their algorithms and some approaches still

support manual. For test case generation, manual approach is trivial, it takes more time that leads to a cost of

the software high. Therefore, one should have to try to design tool which supports the proposed approach.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Comparative Analysis of Various Testing Techniques Used for Aspect-Oriented… (Susheela Hooda)

55

However, automated supporting tools provide rich features but it limits its usage in an organization due to a

heavy license fee. Analyzing all supporting tools which have or not been applied in various AOP testing

approaches is a difficult task. Therefore, Table 4 only shows the present or absent of supporting tool on the

basis of the information which has been provided by authors [4]-[6]. Counting all supporting tools and

analyzing them is not the intention of this paper.

Table 4. Comparative Analysis of Various Testing Techniques for Aspect-Oriented Software System
Author /Year of

publication
Testing

Technique/Behavior

Model

Testing Level Test Coverage
Criteria

Tools to
Support

Approach

Automation
Support to

Test

J. Zhao[2003] Structural Testing Data flow based unit
Testing

No coverage criteria
defined

 

R. T. Alexander et

al.[2004]

Mutation Testing System Testing Fault based Criteria  

Y. Zhou[2004] Structural Testing System Testing No coverage criteria

defined

 

M. Mortensen et
al[2004]

Mutation Testing System Testing Context coverage  

W.Xu et al[2004] Model Based Testing(

Aspectual flow graph
based Testing)

Unit Testing Use case,

polymorphic,
transition coverage

criteria

 

G.Xu et al[2004] Structural/Code based
Testing

Unit Testing No coverage criteria
defined

 

D. Xu et al[2005] Model based testing(

State based testing)

Unit Testing Conditional branch

Coverage

 

W. Xu et al[2005] Model based testing(

UML diagrams(class
diagram, aspect

diagram and sequence

diagram)

System Testing Polymorphic and

branch coverage
criteria

 

C. V. Lopes et

al[2005]

Structural /Code Based

Testing

Unit Testing No Coverage criteria

defined

 

M.Mortensen et
al[2005] not incl

Mutation Testing System Testing Def-use coverage  

H.Rajan et

al[2005]

Structural/Code based

Testing

System Testing No Coverage criteria

defined

 

T.Xie et al[2005] Structural /Code based

Testing

Unit Testing,

Integration testing

Aspectual Integration

coverage

 

M. Badri et
al[2005]

Model Based
Testing(State

Diagram)

Unit Testing Multi aspect
integration coverage

criteria

 

P. Massicotte et
al[2005]

Model based Testing(
Collaboration

Diagram)

Integration Testing Transition coverage,
sequence coverage,

modified sequence

coverage and multi
aspect integration

coverage criteria

 

P.Massicotte et

al.[2005]

Model Based Testing(

Collaboration

Diagram)

Integration Testing Transition coverage,

sequence coverage,

modified sequence
coverage and multi

aspect integration

coverage criteria

 

D. Xu et al[2006] Model Based Testing System Testing branch coverage

criteria

 

T.Xie et al[2006] Structural/Code based
Testing

System Testing Aspectual Branch,
interaction Coverage

Coverage

 

P. Anbalagan et
al[2006]

Structural/Code Based
Testing

Unit Testing No coverage  

P.Anbalagan et

al[2006]

Mutation Testing System Testing Fault based criteria  

O.A.L.Lemos et

al[2006]

Mutation Testing System Testing Fault based criteria  

J. Zhao et al[2006] Regression testing System Testing No coverage criteria
defined

 

G. Xu et al[2006] Regression testing System Testing No criteria defined  

J.S.Baekken et

al[2006]

Mutation Testing System Testing Crosscutting node

criteria

 

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 : 51 – 60

56

O.A.L.Lemos et

al[2007]

Code based Testing System Testing Def-use  

T. Xie et al[2007] Structural /Code Based

Testing

Unit and Integration

Testing

Aspectual integration

coverage

 

C. Zhao et al[2007] Mutation Testing System Testing Fault based criteria  

P. Massicotte et
al.[2007]

Model Based Testing(
Collaboration

Diagram)

Integration Testing Aspect integration
coverage criteria

 

G. Xu et al[2007] Regression testing System Testing No coverage criteria
defined

 

W. Xu et al[2007] Model Based Testing State Based Testing No criteria defined  

D. Xu et al[2007] Model Based Testing Aspectual use case

diagram

Use case, transition

and state coverage
criteria

 

I.G.Franchin et

al[2007]

Code based Testing System Testing Pair-wise Def-use  

P.Anbalagan et

al[2008]

Mutation Testing System Testing Fault based criteria  

F.C.Ferrari et

al[2008]

Mutation Testing System Testing Fault based criteria  

D.Xu et al[2008] Model Based Testing UML Class,

Sequence and
Aspect Diagram

Use case, transition

and state coverage
criteria

 

C.H.Liu et

al[2008]

Model Based testing State Based Testing No coverage criteria  

O.A.L.Lemos et

al[2008]

Code Based Testing System Testing Advice point cut

coverage

 

C.Babu et al[2009] Model Based Testing(
UML Sequence

Diagram)

Integration Testing Transition coverage
criteria

 

M.Harman et al

[2009]

Search based Testing System Testing Aspectual branch

coverage

 

R.M.Parizi et
al[2009]

Random Testing System Testing No coverage criteria
defined

 

R.Delmare et

al[2009]

Mutation Testing System Testing Fault based criteria  

M.Badri et

al[2009]

Model based Testing UML State Diagram State coverage  

A.Jackson et

al[2009]

Mutation Testing System Testing Fault based criteria  

O.A.L.Lemos et

al[2009]

Code Based Testing Integration Testing PairWise Def-use  

F.Wedyan et

al[2010]

Code Based Testing Integration Testing Interaction coverage

criteria

 

F.C.Ferrari et
al[2010]

Mutation Testing System Testing Fault based criteria  

D.Xu et al[2010] Model Based Testing Extended state

based Testing

State coverage  

D.Xu et al[2010] Model Based Testing State Based Testing State coverage  

F. Wedyan

et.al.[2010]

Structural Testing System Testing Data flow coverage

criteria

 

A.Delmare et
al[2011]

Mutation Testing System Testing Fault based criteria  

R.M.Pairzi et al

[2011]

Random Testing System Testing No Coverage  

S. Madadpour et

al[2011]

Model based testing Integration Testing Aspect-integration

coverage criteria

 

R.Delmare et

al[2012]

Integration Testing Search Based

Approach

No coverage criteria

defined

 

R.Delmare et

al[2012]

Integration Testing Search Based

Approach

No coverage criteria

defined

 

P.Wang et al[2012] Structural Testing System Testing No coverage criteria

defined

 

M. Mahajan et
al[2012]

Structural Testing

System Testing No coverage criteria
defined

 

C. Kaur et al[2012] Model Based testing Integration Testing Aspect Integration  

A.A. Ghani [2013] Mutation Testing System Testing Semantic fault based

criteria

 

F. G. Leme

et.al.[2015]

Mutation Testing System Testing Fault based criteria  

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Comparative Analysis of Various Testing Techniques Used for Aspect-Oriented… (Susheela Hooda)

57

F. Wedyan
et.al.[2015]

Structural Testing System Testing Data Flow Based
coverage criteria

 

S. Dalal

et.al.[2017]

Model Based Testing System Testing Aspectual branch

coverage criteria

 

S. Dalal

et.al.[2017]

Model Based Testing Search Based

Approach

Aspectual branch

Coverage Criteria

 

S. Dalal
et.al.[2017]

Model Based Testing Search Based
Approach

Aspectual branch
Coverage Criteria

 

3.5. Automation level

Automated support is very important for testing as it reduces cost, effort, time and also minimize the

human errors. Various automation level has been described by researchers [3]-[5]. On the basis of those,

a broad classification of automation level has been shown in Figure 3.

Automation Support

Automated
Test Input

Generation
And Selection

Automated
Test Oracle

Automated
Test Execution

Figure 3. Classification of automation in AOP

3.5.1. Automated Test Input Generation and Selection Tools

These type of tools are used to produce test data which satisfies the particularized coverage criteria.

3.5.2. Automated Test Oracle

These are used to automatically examine the fidelity of the tests.

3.5.3. Automated Test Execution

This tool is used to execute the test and collects the test results with the help of automated

test oracles.

4. ISSUES REGARDING AOP TESTING APPROACHES

There are following issues that could help and motivate the prospective researchers to do their

contribution in this field.

4.1. Support of UML behavior model for Aspect-Oriented Testing Approaches

In aspect-oriented programming paradigm, software development and testing are different from

other programming paradigms as it supports the concept of Separation of Concerns (SoC)[7], [8]. As

observed in Table 4, only a few approaches have used the UML behavior models for testing Aspect-Oriented

Programs. Efficient and effective test model can be designed by directly using the UML behavioral models.

Designing specific test model for testing is a tedious and time- consuming task [8]. Usage of UML behavioral

model to test AOP reduces the effort and increases reusability.

4.2. Test Case Coverage Criteria

Coverage criteria is a measure to decide which input sets are to be involved in testing. In traditional

programming paradigms, coverage criteria have been proved so helpful. But in case of testing aspect-oriented

programs, all coverage criteria related to traditional programming paradigms cannot be used directly as there

is a concept of SoC [3]. Therefore, need to extend the coverage criteria for testing AOP [8]. Study of

literature indicates that only three testing coverage criteria are defined [3].

4.3. Automation Support

Aspect-Oriented Programming is becoming mature day by day. Therefore, automation support for

testing AOP is needed now. Automation does not only cut down the test effort but it also upturns the

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 : 51 – 60

58

efficiency and effectiveness of AOP testing process. Therefore, the future perspective of the researchers

should be automated the AOP testing process.

4.4. Search-Based Testing

Table 4 shows that only three search-based testing approach has been proposed for AOP. So, one

needs to focus on optimization approach to make the testing process effective and efficient.

4.5. Lack of Experimental Evaluation

There is a lack of experimental evaluation of empirical results on AOP testing approaches. In the 62

analyzed papers, most of the approaches have been applied only to small projects rather than the industrial

environment. Those approaches have been developed for the specific purpose and do not get brought into the

industry environment.

The systematic comparative analyzed partial results on AOP testing approaches has been presented

in this paper due to space restriction. The detailed analysis results are available in [3], [5] and [6].If one has

focused on only MBT approaches for AOP then the detailed analyzed results are available in [6], [7].

5. CONCLUSIONS AND FUTURE WORK
This paper caters a depth survey of literature on aspect-oriented software system testing approaches

and also a comparative study of different AOP testing approaches. In this paper, different testing approaches

for AOP have been characterized on the basis of some characteristics such as AOP testing techniques,

level of testing, supporting tools, test case coverage criteria and automation level. A comparative analysis of

available AOP testing techniques has been shown in Table 4. Important issues also have been discussed in

this paper such as automation support, lack of optimization approach used for AOP testing, lack of AOP

testing approach used in the industrial environment, support of UML behavioral model to test AOP etc.

This paper helps the researchers to understand the depth of the work which has been done by other

researchers and can also explore their knowledge on the subject.

REFERENCES
[1] Dalal S. and Chhiller R.S. A Novel Approach for Generating of Test Cases Based on Bee Colony Optimization and

Modified Genetic Algorithm (BCO-mGA). International Journal of Computer Applications, Vol.68, No.19,

Apr, 2013.

[2] Mohapatra S.K. and Prasad S. Test Case Reduction Using Ant Colony Optimization for Object-Oriented Program.

International Journal of Electrical and Computer Engineering (IJECE), Vol.5, No.6, pp.1424-1432, Dec.2015.

[3] Naqvi S.A. and Ali S. and Khan M.U. An Evaluation of Aspect-Oriented Testing Techniques. International

Conference on Emerging technologies, Islamabad, Sept, 2005.

[4] Banik K. Investigation of Methods for Testing Aspect-Oriented Software. Master Degree Project, University of

Skovde, 2013.

[5] Ghani A and Parizi R. Aspect-Oriented Program Testing: An Annotated Bibliography. Journal of Software, Vol.8,

June 2013. Singhal, A. Bansal, Kumar A. A Critical Review of Various Testing Techniques in Aspect-Oriented

Software Systems. ACM SIGSOFT Software Engineering Notes, Jul 2013.

[6] Hooda S, Dalal S, Solanki. A Systematic Review for Model Based Testing an Aspect-Oriented Program. Proceeding

of 3rd IEEE International Conference on Computing for Sustainable Global Development, INDIACOM 2016;

Available at IEEE-Xplore Digital Library.

[7] Kitchenham B. Procedures for performing systematic review. Joint Technical Report Software Engineering Group,

Department of Computer Science, Keele University, UK and Empirical Software Engineering, National ICT

Australia Ltd.

[8] Sahoo P. and Mohanty J.R. Early Test Effort Prediction Using UML Diagrams. Indonesian Journal of Electrical

Engineering and Computer Science (IJEECS), Vol.5, No.1, pp.220-228, Jan 2017.

[9] Kande M. M, Kienzle J, Strohmeier A. From AOP to UML: Towards an Aspect-Oriented Architectural Modeling

Approach. 8th Workshop on Aspect-Oriented modeling, Germany, 2006.

[10] Khan S.A. Nadeem A. UML Extensions for Modeling of Aspect Oriented Software: A Survey. National Software

Engineering Conference (NSEC‟10), Oct, 2010.

[11] Qaisar Z. H, Anwar K, Rehman S.U. Using UML Behavioral Model to Support Aspect Oriented Model.

International Journal of Software Engineering and Applications, Mar, 2013.

[12] Xu W, Xu D, Goel V, Nygard K. Aspect flow graph for testing aspect-oriented programs.

http://www.cs.ndsu.nodak.edu/wxu/research, 2004.

[13] Xu D, Xu W, Nygard K, “A State-based approach to testing aspect-oriented programs. Proceeding of the

International Conference on Software Engineering and Knowledge Engineering, Jul.2005.

[14] Xu D, Xu W, Nygard K. A State-based approach to testing aspect-oriented programs. Proceeding of the 17th

International Conference on Software Engineering and Knowledge Engineering, Jul.2005.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Comparative Analysis of Various Testing Techniques Used for Aspect-Oriented… (Susheela Hooda)

59

[15] Badri M, Badri L, Bourque-Fortin M. Generating unit test sequence for aspect-oriented programs: Towards a

formal approach using UML state diagrams. Proceeding of the 3rd International Conference on Information and

Communication Technology, Dec.2005.

[16] Massicotte P, Badri L, Badri M. Generalizing aspects-classes integration testing sequences: a collaboration

diagram based strategy. Proceeding of the 3rd International Conference on Software Engineering Research,

Management and Applications, Aug.2005.

[17] Massicotte P, Badri L, Badri M. Aspects-classes integration testing strategy: an incremental approach.

International Workshop on Rapid Integration of Software Engineering Techniques, Mar.2005.

[18] Xu D, Xu W. State based incremental testing of aspect-oriented programs. Proceeding of the 5th International

Conference on Aspect-Oriented Software Development, Mar.2006.

[19] assicotte P, Badri L, Badri M. Towards a tool supporting integration testing of aspect-oriented programs. Journal of

Object Technology, Jan-Feb.2007.

[20] Xu W. Testing aspect-oriented programs with state models. PhD Dissertation, North Dakola State University of

Agriculture and Applied Science, May 2007.

[21] Xu D, He X. Generation of test requirements from aspectual use case. Proceeding of the 3rd Workshop on Testing

Aspect-Oriented Programs, Mar.2007.

[22] Xu D, Xu W, Wong W. E. Testing aspect-oriented programs with UML design models. International Journal of

Software Engineering and Knowledge Engineering , 2008.

[23] Liu C. H, Chang C.W. A state-based testing approach for aspect-oriented programming. Journal of Information

Science and Engineering, 2008.

[24] Babu C, Krishnan H. R. Fault model and test-case generation for the composition of aspects. ACM SIGSOFT

Software Engineering Notes, 2009.

[25] Badri M, Badri L,Bourque-Fortin M. Automated state-based unit testing for aspect-oriented programs: A

supporting framework. Journal of Object Technology, May-June 2009.

[26] Xu D, El-Ariss O, Xu W, Wang L. Testing aspect-oriented programs with finite machine. Journal of Software

Testing Verification and Reliability,doi:10.1002/stvr.440,2010.

[27] Madadpour S and. Hosseinabadi S. H. M. Testing Aspect-Oriented Programs with UML Activity Diagrams.

International Journal of Computer Applications, Nov.2011.

[28] Kaur C, Garg S. Testing Aspect-Oriented Software Using UML Activity Diagram. International Journal of

Engineering Research and Technology, May 2012.

[29] Dalal S, Hooda S. Automated Test Sequence Generation of Aspect-Oriented Programs based upon UML Activity

Diagram. International Journal of Engineering and Technology, Vol.9, No.2, May 2017.

[30] Zhao J. Data-flow-based unit testing of aspect-oriented programs. Proceeding of International Computer Software

and Applications Conference, pp.188-197, Dec. 2003.

[31] Zhou Y, Ziv H ,Richardson D. Toward a practical approach to test aspect-oriented software. Proceeding of

Workshop on Testing Component-based System, Sept.2004.

[32] Xu D, Xu W, Nygard K.A State-based approach to testing aspect-oriented programs. Proceeding of the 17th

International Conference on Software Engineering and Knowledge Engineering, Jul.2005.

[33] Lopes C. V, Ngi T.C. Unit _testing aspectual behavior. Proceeding of the workshop on Testing Aspect-Oriented

Programs, Mar. 2005.

[34] Rajan H,Sullivan K. Generalizing AOP for aspect-oriented testing. Proceeding of the 4th International Conference

on Aspect-Oriented Software Development, Mar.2005.

[35] Xie T, Marinov J. Z. D ,Notkin D. Automated test generation for AspectJ programs. Workshop on Testing Aspect-

Oriented Programs, Mar. 2005.

[36] Xie T, Zhao J. A framework and tool supports for generating test inputs of AspectJ programs. Proceeding of the 5th

International Conference on Aspect-Oriented Software Development, Mar.2006.

[37] Anbalagan P, Xie T .Automated pointcut testing for AspectJ programs: APTE. Proceeding of the Workshop on

Testing Aspect-Oriented Programs, Jul.2006.

[38] Lemos O. A. L, Vincenzi A. M. R J,Maldonado C ,Masiero P.C. Control and data flow structural testing criteria for

aspect-oriented programs. Journal of System and Software, Vol. 80, 2007.

[39] Xie T, Zhao J. Perspective on automated testing of aspect-oriented programs. Proceeding of the 3rd Workshop on

Testing Aspect-Oriented Programs, Mar.2007.

[40] Franchin I.G, Lemos O.A.L, Masiero P.C .Pair-Wise Structural testing of object and aspect-oriented Java

programs. Proceeding of the 21st Brazilian Symposium on Software Engineering, 2007.

[41] Lemos O. A. L, Masiero P.C. Integration testing of aspect-oriented programs: A structural pointcut-based

approach. Proceeding of the 22nd Brazilian Symposium on Software Engineering, 2008.

[42] Wedyan F,Ghosh S. A Data Flow Testing Approach for Aspect-Oriented Programs. IEEE International Symposium

on High Assurance System Engineering, 2010.

[43] Wang P, Zhao X.The Research of Automated Select Test Cases for Aspect-Oriented Programs. Proceeding of the

International Conference on Mechanical, Industrial and Manufacturing Engineering, 2012.

[44] Wedyan F, Ghosh S, Vijayasarthy L. R. An approach and tool for measurement of state variable based data flow

test coverage for aspect-oriented programs. Journal of Information and Software Technology, Vol.59, March 2015.

[45] Alexander R. T., Bieman J. M., Andrews A.A. Towards the systematic testing of aspect-oriented programs.

Technical Report, 2004.

[46] Mortensen M, Alexander R.T. Adequate testing of aspect-oriented programs. Technical Report, Department of

Computer Science, Colorado State University, USA, Dec.2004.

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 : 51 – 60

60

[47] Anbalagan P,Xie T. Automated pointcut testing for AspectJ programs: APTE. Proceeding of the Workshop on

Testing Aspect-Oriented Programs, Jul.2006.

[48] Lemos O.A.L, Ferrari F.C, Maisiero P.C, Lopes C.V.Testing aspect-oriented programming pointcut descriptors.

Proceeding of the 2nd Workshop on Testing Aspect-Oriented Programs, Jul.2006.

[49] Baekken J.S, Alexander R.T. Towards a fault model for AspectJ programs: Step 1-pointcut faults. Proceeding of

the 2nd Workshop on Testing Aspect-Oriented Programs, Jul.2006.

[50] Zhao C, Alexander R.T. Testing AspectJ programs using fault-based testing. Proceeding of the 3rd Workshop on

Testing Aspect-Oriented Programs, Mar.2007.

[51] Anbalagan P, Xie T.Automated generation of pointcut mutants for testing pointcuts in AspectJ programs.

Proceeding of the 19th International Symposium on Software Reliability Engineering, Nov.2008.

[52] Ferrari F.C, Maldonado J.C, Rashid A. Mutation testing for aspect-oriented programs. Proceeding of the 1st

International Conference on Software Testing, Verification and Validation, 2008.

[53] Delmare R, Baudry B, Le Traon L.AjMutator: A tool for the mutation analysis of AspectJ pointcut descriptor.

Proceeding of the IEEE International Conference on Software Testing Verification and Validation Workshop

(ICSTW 2009), Apr.2009.

[54] Jackson A,Clarke S. MuAspectJ: Mutant generation to support measuring the testability of AspectJ programs.

Technical Report (TCD-CS -2009-38), ACM, Sept.2009.

[55] Ferrari F.C, Rashid A, Nakagawa E.Y, Maldonado J.C. Automating the mutation testing of aspect-oriented Java

programs. In proceeding of the 5th Workshop on Automation of Software Test (AST‟10), May 2010.

[56] Delmare A, Baurdy B, Ghosh S, Gupta S, Le Traon Y. An approach for testing pointcut descriptor in AspectJ.

Journal of Software Testing, Verifcation and Reliabilty, 2011.

[57] Xu D, Ding J. Prioritizing State-Based Aspect Tests. Proceeding of International Conference on Software Testing

Verification and Validation, 2010.

[58] Ghani A. A. A, Towards Semantic Mutation Testing of Aspect-Oriented Programs, Journal of Software

Engineering and Applications, Vol.6, No.10A, Oct.2013.

[59] Leme F. G., Ferrari F. C., Maldonado J.C and Rashid A., Multi-Level Mutation Testing of Java and AspectJ

Programs Testing of Java and AspectJ Programs Supported by the Proteum/AJv2

Tool,http://www2.dc.ufscar.br/~fabiano/pub_arquivos/Leme2015_cbsoftTools2015.pdf.

[60] Zhao J., Xie T. and Li N., Towards a regression test selection for AspectJ Programs, Proceeding of the 2nd

Workshop on Testing Aspect-Oriented Programs, Jul.2006.

[61] Xu G.A regression tests selection technique for aspect-oriented programs. Proceeding of the 2nd Workshop on

Testing Aspect-Oriented Programs, Jul.2006.

[62] Xu G, Rountev A. Regression Test Selection for AspectJ Software. Proceeding of the 29th International Conference

on Software Engineering, 2007.

[63] Qamar M, Nadeem A, Aziz R. An Approach to Test Aspect-Oriented Programs. Proceeding of the World Congress

of Engineering, London, U.K., 2007.

[64] Delmare R, Ghosh B, Ghosh S, Traon Y. Regression Test Selection when Evolving Software with Aspects.

Proceeding of International conference of Aspect-Oriented Software Development, 2008.

[65] Parizi R. M, Ghani A.A.A, Abdullah R, Atan R. Towards a framework for automated random testing of aspect-

oriented programs. In proceeding of the ISCA 18th International Conference on Software Engineering and Data

Engineering (SEDE 2009), June 2009.

[66] Parizi R. M, Ghani A.A.A. On the preliminary adaptive random testing of aspect-oriented programs. Proceeding of

the 6th International Conference on Software Engineering Advances (ICSEA 2011), Barcelona, Spain, and 2011.

[67] Harman M, Islam F, Xie T, Wappler. Automated test data generation for aspect-oriented programs. Proceeding of

the 8th International Conference on Aspect-Oriented Software Development, 2009.

[68] Delmare R, Kraft N.A.A Genetic Algorithm for Computing Class Integration Test Orders for Aspect-Oriented

System. Proceeding of the IEEE 5th International Conference on Software Testing, Verification and Validation,

2012.

[69] Mahajan M, Kumar S, Porwal R. Applying Genetic Algorithm to increase the Efficiency of a Data-Flow Based Test

Data Generation. ACM SIGSOFT Software Engineering Notes, Vol.37, Sept 2012.

[70] Dalal S, Hooda S.A Novel Approach for Testing an Aspect-Oriented Software System Using Prioritized-Genetic

Algorithm. International Journal of Applied Engineering Research, Vol.12, No. 21, 2017.

[71] Dalal S, Hooda S. A Novel Approach for Testing an Aspect-Oriented Software System Using Genetic and Fuzzy

Clustering Algorithm. Proceeding on International Conference on Computer and Applications, ICCA 2017;

Available at IEEE-Xplore Digital Library.

[72] Verma A. and Kaur S. Design and Development of an Algorithm for Prioritizing the Test Cases using Neural

Network as Classifier ,International Journal of Artificial Intelligence,Vol.4,No.1,pp.14-19,March 2015.

