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 Nowadays, Aspect-Oriented Programming (AOP) paradigm is getting more 

popularity in the field of software development. But testing an Aspect-

Oriented Software System (AOSS) is not well matured. Therefore, many 

researchers have been focusing on testing an AOSS. Moreover, the literature 

indicates that very few papers have devoted to literature survey but still there 

is need to study in depth of various testing techniques used for AOSS. 

Therefore, in this paper, a comprehensive study of existing various testing 

techniques for AOSS have been conducted and present a comparative 

analysis result of various testing techniques based on various parameters. 
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1. INTRODUCTION  

Aspect-Oriented Programming (AOP) is relatively the latest programming paradigm as compared to 

traditional programming paradigm which focuses on separation of crosscutting concern. A program consists 

of two major things such as 1) Business Logic and 2) Supporting functions. AOP isolates the supporting 

functions from the main business logic in which supporting functions are known as crosscutting concerns and 

business logic is known as a primary concern. Therefore, AOP increases the concept of modularity by 

minimizing or no code scattering. Therefore, AOP has been used to develop complex software systems.  

According to Dalal et. al. [1], software testing plays a critical role to ensure the quality of the 

software. Soft computing techniques have proven successful in the area of software testing. Mohapatra and 

Prasad proposed ant-colony optimization technique for reducing the size of test suite and proved its 

effectiveness with other contemporary techniques [2]. Aspect-oriented software system testing is not so much 

matured as other programming paradigms such as object-oriented and procedural programming paradigm. 

Therefore, many of the researchers have worked in the field of AOP testing but still one needs to focus more 

in this field. Quality of the system is directly dependent on the testing. Proper testing of software leads to 

design and develop a quality software. Software testing can be performed manually as well as  

automatically [3], [4].  

According to Ghani [5], automation of software testing process is performed to minimize cost and to 

decrease the human errors. Automation of AOP testing approaches depends on three elements: (i) automated 

test input generation and selection (ii) automated test oracle and (iii) automated test execution. Apart from 

above elements, other important characteristics are testing techniques for AOP, different testing level and 

coverage criteria for testing AOP. 
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Various researchers [3]-[7] describe aspect-oriented program testing surveys. But still, no formal 

survey has been found for AOP testing approaches as per our knowledge. This paper will provide the detailed 

analysis of AOP testing approaches by using a formal procedure [8] systematic review. 

This paper does not cater to compare the existing AOP testing techniques based on their merits and 

demerits. The focus of this paper is to give a comparative analysis study of existing aspect-oriented software 

testing techniques based on some characteristics such as testing technique, testing level, automation support, 

automation level and test case generation criteria.Organization of this paper is as: Section 2 describes the 

survey planning and execution of the literature survey. Section 3 discusses detail analysis study on the 

available testing techniques for AOP and section 4 describes the various issues which occur usually during 

AOP testing. Section 5 presents the conclusions and future work. 

 

 

2. SYSTEMATIC REVIEW: SURVEY PLANNING AND EXECUTION 

According to B. Kitchenham [8], a systematic review is a planning which includes the methods to 

identify, analyze and clarify the most appropriate research about a specific research question. The following 

steps have to carry out the review in this literature are as follow: aim, research questions, selection of 

available sources, selection of search strings, classification and extract the information from each AOP 

testing approach. 

The following steps have been taken using the approach of B. Kitchenham [8]: 

Aim: To characterize the various AOP testing approaches from the available literature. 

Research Question:-What are the available AOP testing techniques and their characteristics. 

Sources: ACM Digital Library, IEEE X-plore, open access journals, springer, Science direct, Elsevier , 

various journals and conference proceedings. 

Search String:- (“AOP testing techniques”)or(“Testing Aspect-oriented programs or software”)or(“unit 

testing for AOP”)or(“Data flow testing for AOP”)or(“automated testing for AOP”)or(“Model based AOP 

testing”) or(“control flow testing for AOP”)or(“Structural testing for AOP”) or(“Search based AOP 

testing”)or(“Regression testing for AOP”)or(“Random testing for AOP”)or(“integration testing for AOP”). 

AOP testing techniques have been classified into different fields based on a review of [3]-[7] shows 

that in Table 1. 

 

 

Table 1. Characterization of Various AOP Testing Techniques 
Field Description 

Testing Technique Define various testing techniques for AOP which are classified differently 
by different researchers. 

Level of Testing Define which level of testing is used to test the software behavior. 

Different level of testing used are: unit, integration, system, acceptance 
and regression testing. 

Test Coverage Criteria Define criteria to select which input sets are to be incorporated.  

Tools to Support  Define the existence or not of supporting tools. 
Automation Level Automation means the reduction in cost, time and effort. Defines how 

automated is a proposed testing approach. 

Behaviour Model Describe which behaviour model is being used by testing technique. 

 

 

3. ANALYSIS OF ASPECT-ORIENTED SOFTWARE TESTING TECHNIQUES 

To have the better understand the present scenario of various testing approaches for an aspect-

oriented software system. The following section discusses the various papers which have extensively covered 

the basic aspects of aspect-oriented software programming paradigm and their testing approaches. 

 

3.1.  Testing Techniques for AOP 

There are various testing techniques for AOP which are classified differently by different 

researchers [3], [4] and [6]. However, a broad classification of testing techniques for AOP given shown in 

Figure 1 and detail description of each testing technique. 
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Figure 1. Testing techniques in AOP 

 

 

3.1.1.  Functional/Model-Based Testing 

Functional testing is used to test the external behaviour of software whether software meets the 

customer„s requirement or not without bothering the implementation details of the software. Model-based 

testing (MBT) is also considered as functional testing because like functional testing, it has also intended to 

test the external behaviour of the system. Moreover, UML (Unified Modeling Language) has proven 

successful to predict test effort in earlier stages of the software development process [9]. MBT was originally 

developed for system testing. However, MBT can be used in unit testing, integration testing and in other 

testing techniques [10]-[30]. 

 

3.1.2.  Structural/Code Based Testing 

Structural testing is used to test the software‟s implementation in which test data is derived from the 

knowledge of the internal detail. (e.g. control path, data items). This knowledge can be gathered only when 

one has knowledge about the source code. This is the reason that structural testing is considered as  

code-based testing. Control flow and data flow testing have also come under structural testing. As control 

flow testing requires knowledge about the control flow structure of the program and data flow testing 

requires knowledge about the test paths of a program which can be derived from the sequence of events 

related to the data state [31]-[45]. 

 

3.1.3.  Mutation Testing 

Mutation testing is also known as fault-based testing. In order to perform mutation testing, mutants 

are generated from the original program by modifying the original program with the help of different 

mutation operators. Thereafter, mutation testing is performed to identify whether test data is able to discover 

the modifications which were performed in original program or not [46]-[60]. 

 

3.1.4.  Regression Testing 

Regression testing is performed during the maintenance phase of the software to ensure that all 

faults had been detected which occurred due to various changes in software while modifying the  

software [61]-[64]. 

 

3.1.5.  Random Testing 

Random testing is produced test data randomly rather than one‟s choice. It is one of the simple 

testing technique and less costly as compared to other testing techniques. R. M. Parizi et.al. [66] proposed a 

framework for testing an aspect-oriented program using random testing. According to the author,  

this approach is the first approach for random testing for an aspect-oriented program. The author also extends 

his own work in [67]. 

 

3.1.6.  Search-Based Testing 

Search based testing is also considered as evolutionary testing based on the theory of evolution.  

It formulates the fitness function to select test data based on some objectives such as coverage criteria.  

Better fitness function helps to solve the search problem in better way [68]-[73]. 

Currently, 62 papers have been classified into different categories. Table 2 shows the complete list 

of the selected papers with their classification of different categories. 

 

3.2.  Level of Testing 

 Table 3 shows the different level of testing of AOP and number of approaches from Table 4 which 

extends the scope of application of AOP testing approaches. 

 

 

\ 
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Table 2. Various Classifications of Selected Papers 
Paper Categories #Papers 

Functional Testing or Model Based Testing  21 

Structural Testing or Code-based Testing 15 
Mutation Testing 15 

Regression Testing 4 

Random Testing 2 
Search Based Testing 5 

Total of papers 62 

 

 

Table 3. Quantitative Analysis of Testing Level 
Testing Level # Approaches 

Unit testing 9 

Integration testing 10 

System testing 30 
Regression testing 3 

 

 

3.3.  Test Case Coverage Criteria 

Coverage criteria is a measure to determine which inputs are to be incorporated into test suit. 

Effective coverage criteria help to test the software effectively. As literature indicates that not all coverage 

criteria which have been used in traditional programming paradigm are directly useful for testing AOPs. 

Therefore, a broad classification of coverage criteria has been shown in Figure 2 and brief description of each 

coverage criteria has been discussed: 

 

 

Testing Coverage Criteria For AOP

Code Based 
Criteria

Model Based 
Criteria

Fault Based 
Criteria

 
 

Figure 2. Different test case coverage criteria for AOP 

 

 

3.3.1.  Code-Based Criteria 

The source code of AOP or some form of graph model are used to define code-based coverage 

criteria. Code–based criteria can be defined by two methods such as (1) aspect coverage criteria and (2) 

aspectual branch coverage criteria [5]. Aspect coverage criteria include statement coverage,  

joinpoint coverage, context coverage and def-use coverage [39], [41] whereas aspectual branch coverage 

criteria include interaction coverage, data flow coverage and data coverage [33], [36], [40], [43], [45]. 

Moreover, new flow graph models have proposed to handle the aspects integration with source code such as 

def-use graph model (AODU), PairWise Def-Use (PWDU) [39], [41] and so on. 

 

3.3.2.  Model-based coverage criteria 

Control flow graph which is generated from UML model is used to define model-based criteria. 

Various coverage criteria have been used to define model-based criteria such as transition coverage, sequence 

coverage, multi aspect integration, polymorphic, branch coverage and aspectual branch coverage criteria 

[14]-[18], [22]-[24] has been used to generate the test data. 

 

3.3.3.  Fault based criteria 

It is used to generate test data to detect faults in the mutated version of the program [46]-[60]. 

 

3.4.  Tools to support 

There are some approaches [12], [14], [15], [19], [23], [25], [26], [29], [36], [38], [43], [44], [46], 

[49], [51]-[54] and so on which provide automated tools to apply their algorithms and some approaches still 

support manual. For test case generation, manual approach is trivial, it takes more time that leads to a cost of 

the software high. Therefore, one should have to try to design tool which supports the proposed approach. 
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However, automated supporting tools provide rich features but it limits its usage in an organization due to a 

heavy license fee. Analyzing all supporting tools which have or not been applied in various AOP testing 

approaches is a difficult task. Therefore, Table 4 only shows the present or absent of supporting tool on the 

basis of the information which has been provided by authors [4]-[6]. Counting all supporting tools and 

analyzing them is not the intention of this paper. 

 

 

Table 4. Comparative Analysis of Various Testing Techniques for Aspect-Oriented Software System 
Author /Year of 

publication 
Testing 

Technique/Behavior 

Model 

Testing Level Test Coverage 
Criteria 

Tools to 
Support 

Approach 

Automation 
Support to 

Test 

J. Zhao[2003] Structural Testing Data flow based unit 
Testing 

No coverage criteria  
defined 

  

R. T. Alexander et 

al.[2004] 

Mutation Testing System Testing Fault based  Criteria   

Y. Zhou[2004] Structural Testing System Testing No coverage criteria  

defined 

  

M. Mortensen et 
al[2004] 

Mutation Testing System Testing Context coverage   

W.Xu et al[2004] Model Based Testing( 

Aspectual flow graph 
based Testing) 

Unit Testing Use case, 

polymorphic, 
transition coverage 

criteria 

  

G.Xu et al[2004] Structural/Code based 
Testing 

Unit Testing No coverage criteria  
defined 

  

D. Xu et al[2005] Model based testing( 

State based testing) 

Unit Testing Conditional branch 

Coverage 
 

  

W. Xu et al[2005] Model based testing( 

UML diagrams(class 
diagram, aspect 

diagram and sequence 

diagram) 

System Testing Polymorphic and 

branch coverage 
criteria 

  

C. V. Lopes et 

al[2005] 

Structural /Code Based 

Testing 

Unit Testing No Coverage criteria 

defined 

  

M.Mortensen et 
al[2005] not incl 

Mutation Testing System Testing Def-use coverage   

H.Rajan et 

al[2005] 

Structural/Code based 

Testing 

System Testing No Coverage  criteria 

defined 

  

T.Xie et al[2005] Structural /Code based 

Testing 

Unit Testing, 

Integration testing 

Aspectual Integration 

coverage 

  

M. Badri et 
al[2005] 

Model Based 
Testing(State 

Diagram) 

Unit Testing Multi aspect 
integration coverage  

criteria 

  

P. Massicotte et 
al[2005] 

Model based Testing( 
Collaboration  

Diagram) 

Integration Testing Transition coverage, 
sequence coverage, 

modified sequence 

coverage and multi 
aspect integration 

coverage criteria 

  

P.Massicotte et 

al.[2005] 

Model Based Testing( 

Collaboration  

Diagram) 

Integration Testing Transition coverage, 

sequence coverage, 

modified sequence 
coverage and multi 

aspect integration 

coverage criteria 

  

D. Xu et al[2006] Model Based Testing  System Testing   branch coverage 

criteria 

  

T.Xie et al[2006] Structural/Code based 
Testing 

System Testing Aspectual Branch, 
interaction Coverage 

Coverage 

  

P. Anbalagan et 
al[2006] 

Structural/Code Based 
Testing 

Unit Testing No coverage   

P.Anbalagan et 

al[2006] 

Mutation Testing System Testing Fault based criteria   

O.A.L.Lemos et 

al[2006] 

Mutation Testing System Testing Fault based criteria   

J. Zhao et al[2006] Regression testing System Testing No coverage criteria 
defined 

  

G. Xu et al[2006] Regression testing System Testing No criteria defined   

J.S.Baekken et 

al[2006] 

Mutation Testing System Testing Crosscutting node 

criteria 

  
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O.A.L.Lemos et 

al[2007] 

Code based Testing System Testing Def-use   
 

T. Xie et al[2007] Structural /Code Based 

Testing 

Unit and Integration 

Testing 

Aspectual integration 

coverage 

  

C. Zhao et al[2007] Mutation Testing System Testing Fault based criteria   

P.  Massicotte et 
al.[2007] 

Model Based Testing( 
Collaboration 

Diagram) 

Integration Testing Aspect integration 
coverage criteria 

  

G. Xu et al[2007] Regression testing System Testing No coverage criteria 
defined 

  

W. Xu et al[2007] Model Based Testing State Based Testing  No criteria defined   

D. Xu et al[2007] Model Based Testing Aspectual use case 

diagram 

Use case, transition 

and state coverage 
criteria 

  

I.G.Franchin et 

al[2007] 

Code based Testing System Testing Pair-wise Def-use   

P.Anbalagan et 

al[2008] 

Mutation Testing System Testing Fault based criteria   

F.C.Ferrari et 

al[2008] 

Mutation Testing System Testing Fault based criteria   

D.Xu et al[2008] Model Based Testing UML Class, 

Sequence and 
Aspect Diagram 

Use case, transition 

and state coverage 
criteria 

  

C.H.Liu et 

al[2008] 

Model Based testing State Based Testing No coverage criteria   

O.A.L.Lemos et 

al[2008] 

Code Based Testing System Testing Advice point cut 

coverage 

  

C.Babu et al[2009] Model Based Testing( 
UML Sequence 

Diagram) 

Integration Testing Transition coverage 
criteria 

  

M.Harman et al 

[2009] 

Search based Testing System Testing Aspectual branch 

coverage 

  

R.M.Parizi et 
al[2009] 

Random Testing System Testing No coverage criteria 
defined 

  

R.Delmare et 

al[2009] 

Mutation Testing System Testing Fault based criteria   

M.Badri et 

al[2009] 

Model based Testing UML State Diagram State coverage   

A.Jackson et 

al[2009] 

Mutation Testing System Testing Fault based criteria   

O.A.L.Lemos et 

al[2009] 

Code Based Testing Integration Testing PairWise Def-use   

F.Wedyan et 

al[2010] 

Code Based Testing Integration Testing Interaction coverage 

criteria 

  

F.C.Ferrari et 
al[2010] 

Mutation Testing System Testing Fault based criteria   

D.Xu et al[2010] Model Based Testing Extended state 

based Testing 

State coverage   

D.Xu et al[2010] Model Based Testing State Based Testing State coverage   

F. Wedyan 

et.al.[2010] 

Structural Testing System Testing  Data flow coverage 

criteria 

  

A.Delmare et 
al[2011] 

Mutation Testing System Testing Fault based criteria   

R.M.Pairzi et al 

[2011] 

Random Testing System Testing No Coverage   

S. Madadpour et 

al[2011] 

Model based testing Integration Testing Aspect-integration 

coverage criteria 

  

R.Delmare et 

al[2012] 

Integration Testing Search Based 

Approach 

No  coverage criteria 

defined 

  

R.Delmare et 

al[2012] 

Integration Testing Search Based 

Approach 

No  coverage criteria 

defined 

  

P.Wang et al[2012] Structural Testing System Testing No coverage criteria 

defined 

  

M. Mahajan et 
al[2012] 

Structural Testing 
 

System Testing No coverage criteria 
defined 

  

C. Kaur et al[2012] Model Based testing Integration Testing Aspect Integration   

A.A. Ghani [2013] Mutation Testing System Testing Semantic fault based 

criteria 

  

F. G. Leme 

et.al.[2015] 

Mutation Testing System Testing Fault based criteria   
 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

Comparative Analysis of Various Testing Techniques Used for Aspect-Oriented… (Susheela Hooda) 

57 

F. Wedyan 
et.al.[2015] 

Structural Testing System Testing Data Flow Based 
coverage criteria 

  

S. Dalal 

et.al.[2017] 

Model Based Testing System Testing Aspectual branch 

coverage criteria 

  

S. Dalal 

et.al.[2017] 

Model Based Testing Search Based 

Approach 

Aspectual branch 

Coverage Criteria 

  

S. Dalal 
et.al.[2017] 

Model Based Testing Search Based 
Approach 

Aspectual branch 
Coverage Criteria 

  

 

 

3.5.  Automation level 

Automated support is very important for testing as it reduces cost, effort, time and also minimize the 

human errors. Various automation level has been described by researchers [3]-[5]. On the basis of those,  

a broad classification of automation level has been shown in Figure 3. 

 

 

Automation Support

Automated 
Test Input 

Generation 
And Selection

Automated 
Test Oracle

Automated 
Test Execution

 
 

Figure 3. Classification of automation in AOP 

 

 

3.5.1.  Automated Test Input Generation and Selection Tools 

These type of tools are used to produce test data which satisfies the particularized coverage criteria. 

 

3.5.2.  Automated Test Oracle 

These are used to automatically examine the fidelity of the tests. 

 

3.5.3.  Automated Test Execution 

This tool is used to execute the test and collects the test results with the help of automated  

test oracles. 

 

 

4. ISSUES REGARDING AOP TESTING APPROACHES 

There are following issues that could help and motivate the prospective researchers to do their 

contribution in this field. 

 

4.1.  Support of UML behavior model for Aspect-Oriented Testing Approaches 

In aspect-oriented programming paradigm, software development and testing are different from 

other programming paradigms as it supports the concept of Separation of Concerns (SoC)[7], [8]. As 

observed in Table 4, only a few approaches have used the UML behavior models for testing Aspect-Oriented 

Programs. Efficient and effective test model can be designed by directly using the UML behavioral models. 

Designing specific test model for testing is a tedious and time- consuming task [8]. Usage of UML behavioral 

model to test AOP reduces the effort and increases reusability. 

 

4.2.  Test Case Coverage Criteria 

Coverage criteria is a measure to decide which input sets are to be involved in testing. In traditional 

programming paradigms, coverage criteria have been proved so helpful. But in case of testing aspect-oriented 

programs, all coverage criteria related to traditional programming paradigms cannot be used directly as there 

is a concept of SoC [3]. Therefore, need to extend the coverage criteria for testing AOP [8]. Study of 

literature indicates that only three testing coverage criteria are defined [3]. 

 

4.3.  Automation Support 

Aspect-Oriented Programming is becoming mature day by day. Therefore, automation support for 

testing AOP is needed now. Automation does not only cut down the test effort but it also upturns the 
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efficiency and effectiveness of AOP testing process. Therefore, the future perspective of the researchers 

should be automated the AOP testing process. 

 

4.4.  Search-Based Testing 

Table 4 shows that only three search-based testing approach has been proposed for AOP. So, one 

needs to focus on optimization approach to make the testing process effective and efficient. 

 

4.5.  Lack of Experimental Evaluation 

There is a lack of experimental evaluation of empirical results on AOP testing approaches. In the 62 

analyzed papers, most of the approaches have been applied only to small projects rather than the industrial 

environment. Those approaches have been developed for the specific purpose and do not get brought into the 

industry environment. 

The systematic comparative analyzed partial results on AOP testing approaches has been presented 

in this paper due to space restriction. The detailed analysis results are available in [3], [5] and [6].If one has 

focused on only MBT approaches for AOP then the detailed analyzed results are available in [6], [7]. 

 

 

5. CONCLUSIONS AND FUTURE WORK 
This paper caters a depth survey of literature on aspect-oriented software system testing approaches 

and also a comparative study of different AOP testing approaches. In this paper, different testing approaches 

for AOP have been characterized on the basis of some characteristics such as  AOP testing techniques,  

level of testing, supporting tools, test case coverage criteria and automation level. A comparative analysis of 

available AOP testing techniques has been shown in Table 4. Important issues also have been discussed in 

this paper such as automation support, lack of optimization approach used for AOP testing, lack of AOP 

testing approach used in the industrial environment, support of UML behavioral model to test AOP etc.  

This paper helps the researchers to understand the depth of the work which has been done by other 

researchers and can also explore their knowledge on the subject. 
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