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 In heterogeneous computing environments, finding optimized solutions 

continues to be one of the most important and yet, very challenging 

problems. Task scheduling in such environments is NP-hard, so efficient 

mapping of tasks to the processors remains one of the most critical issues to 

be tackled. For several types of applications, the task scheduling problem is 

crucial, and across the literature, a number of algorithms with several 

different approaches have been proposed. One such effective approach is 

known as Ant Colony Optimization (ACO). This popular optimization 

technique is inspired by the capabilities of ant colonies to find the shortest 

paths between their nests and food sources. Consequently, we propose an 

ACO-based algorithm, called rACS, as a solution to the task scheduling 

problem. Our algorithm utilizes pheromone and a priority-based heuristic, 

known as the upward rank value, as well as an insertion-based policy and a 

pheromone aging mechanism to guide the ants to high quality solutions. To 

evaluate the performance of our algorithm, we compared our algorithm with 

the ACS algorithm and the ACO-TMS algorithm using randomly generated 

directed acyclic graphs (DAGs). The simulation results indicated that our 

algorithm experienced comparable or even better performance, than the 

selected algorithms. 
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1. INTRODUCTION 

There are considerable improvements and advances in technology and computer architecture that 

have been achieved over the years and among these, are heterogeneous multiprocessor systems. Gaining 

increasing popularity for their diverse and incredible capabilities [1], these high performance environments 

continue to offer several benefits, including increased throughput and the potential for faster scheduling 

through increased parallelism. As such, task scheduling continues to be actively addressed in order to fully 

exploit and extract the benefits that these systems have to offer. Task scheduling, is defined as the assignment 

of tasks of a parallel application to different processors in a manner that minimizes the overall completion 

time or schedule length (SL) of the application while ensuring that all constraints are fully satisfied [2]. In a 

heterogeneous environment, scheduling of these interdependent tasks becomes even more challenging, 

because of the varying speeds associated with the different processors and hence the different computational 

cost associated with each task [3].  

A program or parallel application may be modeled by a task graph in the form of a weighted 

directed acyclic graph (DAG), G = (V, E), where V denotes the set of nodes (ni) which represent the tasks of 

the application and E denotes the set of edges that indicate the data dependencies between the various tasks. 
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The weight on each edge, denoted by w, represents the communication cost between two nodes and a 

computation cost matrix indicates the time it takes for the nodes (tasks) to execute on each of the  

processors [4].  

In an instance where (ni, nj)E then ni is called the immediate predecessor or parent of nj, and nj is 

called the immediate successor or child of ni. If a task na, has two or more immediate predecessors, then na is 

referred to as a joined task. The immediate successors of na is denoted by isucc(na) and is defined as { nj | (na, 

nj)  E}, while its set of immediate predecessors, denoted by ipred(na), is defined as  { nj | (nj, na)  E}. 

Before task na, can be scheduled, all of its parent nodes must first be scheduled. Additionally, the critical path 

of a DAG is the longest path from the entry node to the exit node, considering both the computation and 

communication costs between the tasks [5]. It is assumed that there is one entry task (nentry) which has no 

predecessor nodes, and one exit task (nexit), which is a node with no successors for the DAG. If a DAG 

contains multiple entry or exit tasks, a dummy entry or exit node with zero computation cost, along with a 

zero-communication cost, can be connected, therefore making our algorithm applicable for DAGs of any 

kind. 

The focus of our research is static task scheduling, where information about available resources is 

known before execution and scheduling may be done at compile time. Whether static or dynamic, task 

scheduling is classified as an NP-Hard problem [4, 6]. However, the task scheduling problem has been well 

studied and a number of suboptimal heuristic-based solutions have been proposed. These solutions may be 

categorized as list scheduling, clustering, task duplication and guided random search methods.  

List scheduling algorithms [7], [8], [9], [10] first prioritize tasks, based on various criteria, into an 

ordered list before mapping them onto the processors. Generally, list scheduling algorithms have good 

performance-to-cost tradeoffs. Clustering algorithms [4], [11], [12], [13] attempt to reduce the 

communication cost associated with dependent tasks by grouping communicating nodes together in clusters 

for scheduling onto the same processor. The foundation of this approach is the fact that when two 

communicating tasks are placed on the same processor, the communication cost between them becomes 

negligible. The basis of task duplication algorithms [14], [15], [16], [17] is to, where possible, remove the 

cost associated with inter-processor communication, and thus reduce the overall schedule length, by 

duplicating predecessor nodes [4]. Task duplication, like clustering, takes advantage of the zero or negligible 

communication cost when two dependent tasks are placed on the same processor. Guided random search 

algorithms [5], [18], [19], [20], [21], [22], on the other hand, examine multiple solutions in the search space 

and converge to an efficient solution. Such algorithms, like Genetic Algorithms and Ant Colony 

Optimization (ACO) have been applied to the task scheduling problem producing some very good results. In 

particular, the ACO technique, which forms the basis of our algorithm, is considered an adaptable solution, 

and has been successfully applied to multiple problems [23], [24], [25]. 

 

1.1. The ACO Metaheuristic 

Ant Colony Optimization (ACO) algorithms were first introduced by Dorigo and his colleagues in 

the early 1990s, and form part of a wider research area known as Swarm Intelligence, which models solutions 

to combinatorial, and optimization problems, based on the behavior and processes exhibited in nature [25]. 

ACO is inspired by the indirect communication of a foraging ant colony, where the survival of the entire 

colony governs the ants’ behavior and not simply individual survival. This indirect communication, known as 

stigmergy, enables ants to find very short paths between food sources and their nest [26].  

In the initial stages of foraging, the ants explore the area randomly, depositing chemical pheromone 

trails as they traverse. When food is encountered, the quality and quantity is assessed and pheromone, from 

the food source to the nest, is deposited. Subsequent foraging ants utilize these pheromone trails to guide 

them to the food, with the probability of utilizing paths marked by strong pheromone concentrations, which 

reinforces the pheromone density and thus increases their attractiveness for later ants. This reinforcement 

leads to convergence to the most attractive path. Evaporation of pheromones on the trails provides the 

limiting mechanism for this positive feedback, so less frequented paths have decreased pheromone 

concentration.  

The ACO metaheuristic (Fig.1) applies the foraging behavior of natural ants in a computational 

environment and iteratively constructs candidate solutions using artificial pheromone and local heuristics to 

guide the artificial agents (ants) through the investigated search space. The pheromone trails bias future 

agents toward high quality solutions, until a termination condition is satisfied. 

Contrary to foraging ants in nature which deposit a continuous trail of pheromone, ACO approaches 

have implemented various alternatives [27]. For example, in the original Ant System (AS) [28]  ants deposit 

pheromone to only completed solutions. Alternatively, the Ant Colony System (ACS) [29] makes step-by-

step online (local) pheromone deposits by every agent during the construction of solutions and introduces a 

further offline (global) update of pheromones to the best solution of the iteration. Additionally, some kind of 
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evaporation mechanism is implemented, allowing the ants to consider new areas of the search space [27]. 

Furthermore, some ACO techniques employ local and global optimization strategies to further increase the 

quality of the solutions produced. 

The ACO technique has been applied to various optimization, classification and scheduling 

problems [25]. It has been combined with other random search algorithms, for example, the Genetic 

Algorithm and Tabu Search.  ACO has also been combined with list scheduling, for instance, the ANT-LS 

algorithm [27] and the ACO-TMS [30]. This combination of pheromone trails and list scheduling heuristics 

facilitates further guidance for the ants toward good quality schedules. 

 

 

 
 

Figure 1. The ACO Metaheuristic 

 

 

Given the versatility of ACO algorithms, we present an ACO-based algorithm which uses the 

foundation of the ACO. Our proposed algorithm incorporates the upward ranking concept used in the HEFT 

algorithm [8] in our prioritization methodology, an insertion-based policy along with pheromone aging, to 

produce efficient schedules. Our research investigates the application of an efficient solution to the static task 

scheduling problem in a heterogeneous environment where dependencies between the tasks are taken into 

consideration. 

For our scheduling system model, the target computing environment consists of a set of processors 

P, where P = { p1, p2, p3, …p|P| }, and |P| denotes the number of processors. Our model assumes 

heterogeneous non-preemptive processors that are connected in a fully connected topology and inter-

processor communication is contention-free. The main objective of the task scheduling problem is to 

determine a mapping of tasks of a given application to processors that minimizes the schedule length.  

The remainder of the paper is organized as follows: We describe our proposed algorithm in Section 

2 and outline our methodology for performance evaluation in Section 3. Results obtained from a performance 

comparison of the ACS [29] and ACO-TMS [30]  with our proposed work are presented and discussed in 

Section 4 and we summarize our conclusions and future works in Section V. 

 

 

2. THE PROPOSED ALGORITHM 
2.1. Overview of Our Algorithm 

Our proposed algorithm (Fig. 2) is known as the ranking-Ant Colony System (rACS) and combines 

the foundation of the Ant Colony System (ACS) with the heuristic function which was inspired by the list 

scheduling algorithm HEFT. ACS exhibits flexibility with the utilization of the offline pheromone update and 

HEFT has yielded good performance as a list scheduling algorithm, with the use of the upward rank value for 

prioritization. 

Firstly, we initialize our two matrices for our pheromone representation. V × P, which we denote as 

τ, and P × V which we denote as τ1. The entry ),( pi  indicates the pheromone on the edge between task i and 

processor element p, whereas ),(1 jp  indicates the pheromone on the edge between processor element p and 

task j. Therefore, if nentry → p2 → n3 → p1 → n2 → p|P| →….→ nexit → p1  is a possible solution (a complete mapping 

of the task graph within the search space where an ant, starts at the entry node (nentry) moves from task to 

processor and from processor to task, until a processor has been selected for the exit node (nexit)), then τ (n3 , 

p1 ) ϵ V × P and τ1 (p1, n2 ) ϵ V × P.  Initially, a small pheromone deposit is made to all elements of each matrix 

and the ready list (RL) is initialized containing the entry node.  

Our iterative ant colony algorithm then, executes as follows: for each ant, in each iteration, an ant 

list of length V that stores both a task and its selected processor is created. The ant selects a task from the 

ready list using the state transition (ST) rule (1) and a processor using the state transition (ST) rule (2) to 

construct a schedule. The selected task is removed from the ready list, and appended, along with the 

processor, to the ant list. The ready list is then updated to contain all the unscheduled children nodes of those 

 The ACO Metaheuristic 

 

Set parameters, initialize pheromone trails 

while termination condition not satisfied do 

          Construct Ant Solutions 

          Apply Local Optimization (optional) 

          Pheromone Update 

end while 
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parents who have already been scheduled. This process is repeated until all the tasks have been mapped. 

During the first iteration, our algorithm rACS, does not employ the state transition rules to select either task 

or processor – they are both selected in a random manner – thus mimicking the ants’ natural environment. 

Throughout the execution of the algorithm, an insertion-based policy is employed whereby the task or node is 

checked to see if it can be scheduled earlier on the chosen processor, thus affording our approach, the 

opportunity to achieve shorter schedules. 

After each iteration, an online or local pheromone update is applied to the best q ants (q ,K where 

K is the number of ants per iteration), according to the local pheromone updating (LPU) rule using (6), (7) 

and (8). Following this update, there is also an offline or global update to the best ant solution of the iteration 

according to the global pheromone updating (GPU) rule using (9), (10) and (11). 

Our algorithm also attempts to alleviate stagnation by employing a pheromone aging mechanism 

(represented as Φ). This condition monitors how the best solution changes over the course of the execution of 

the algorithm. If the value for the best schedule length remains unchanged after a predetermined number of 

iterations, a deliberate evaporation of the pheromone trail of that schedule is invoked. When invoked, a 

random value is generated for Φ, which is always less than or equal to the initial pheromone, and applied. 

Repetition of this condition is dependent on the random generation of a value which is equal to, or less than 

the total number of iterations of the algorithm. This deliberate evaporation facilitates the increased 

probability of exploring new, possibly better-quality solutions. 

 

 

 
 

Figure 2. Our Proposed Algorithm 

 

 

2.2. Criteria for Task and Processor Selection 

With our proposed algorithm, the task and processor selections are governed by two state transition 

rules as follows: 

 

Task Selection Rule: Each ant selects a task (i) from the ready list (RL) according to the probability 

calculated by  
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Where ),( pi  indicates the pheromone on the edge between task i and processor element p while δ and θ 

indicate the influence of the heuristic function and pheromone such that }2,1,0{  and }2,1,0{  and )(i  

is the list scheduling heuristic function which is calculated by 
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The upward rank, )(iUrk  is the longest path from a particular node to the exit node, inclusive of the 

computation cost of node and is recursively defined as 
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Where )(isucc  denotes the immediate successors of node 
in , 

iw   is the average computation cost of  
in  and 

jic ,
 is the average communication on edge (i,j)  

 

Processor Selection Rule: Each ant selects a processor element (v) for a chosen task (j) based on a probability 

calculated by  
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avgCC(j) is the average computation cost of the node j on the processors, and the EST (j,v) is the estimated 

start time of the node j on processor v. Ψ, such that },2,1,0{  is the influence on the probability and  p is a 

component of the set of processors (P). 

 

2.3. Criteria for Pheromone Update 

The proposed algorithm (rACS), applies local pheromone update after construction of the ant 

solutions and a global pheromone update to the best ant solution of the iteration.  

 

Local Pheromone Update: Pheromone is applied to edges (i, p) and (v, j) based on the functions 
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and 
)(antFT  is the completion time of the ant while ρ is the pheromone decay parameter )10(   . 

 

Global Pheromone Update: Pheromone is applied to edges (i, p) and (v, j) of the solution of the best ant 

based on the functions: 
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and 
)(bestFT   is the finish time of the best ant of the iteration while a  denotes the pheromone evaporation 

parameter )10( a . 

 

 

3. RESEARCH METHOD 

We conducted a comprehensive performance evaluation of our algorithm by utilizing a two-pronged 

approach: (1) an evaluation of some of the attributes of our algorithm and (2) a comparison of our proposed 

work with two published ACO-based algorithms. 

During the analysis of our proposed algorithm, we investigated the efficiency of the following properties: 

 Utilization of Idle Processor Time 

 Randomness with First Iteration 

 Efficiency of Pheromone Aging Mechanism  

With the experimentation of randomness on the first iteration, we investigated the influence of the 

guidance vs randomness during the first iteration. To test this, we searched the literature for DAG instances 

published in the literature [8], [22], [3]. This was done so as to avoid biasing any specific DAG. Table 1 

shows the published makespans of the the selected DAGs. 

 

 

Table 1. Published Makespans of the Selected DAGs 
Graph Published Makespan 

DAG1 [8] 80 

DAG2 [22] 31 

DAG3 [3] 135 

 

 

In the second phase of our evaluation, we compared our proposed work with the ACS [29] and 

ACO-TMS [30]  algorithms by utilizing randomly generated task graphs. For this comparison, a total of 

13,500 random graphs with the various characteristics were generated and then executed. The algorithms 

were then compared based on selected comparative metrics. 

  

3.1. Attributes of Randomly Generated DAGs 

In our experiment, the following input parameters were used for the generation of the task graph, 

which were also utilized in [8]: 

 Number of tasks in the DAG (|V|). 

 OutDegree of a node (Odeg). This is the maximum number of children of a node. 

 Shape parameter of the graph (α). 

 Communication to computation ratio (CCR). It is the ratio between the average communication 

cost and the average computation cost. 

 Range percentage of computation costs on processors (β). It is the heterogeneity factor for 

processors. A higher percentage value indicates a significant difference in the computation cost 

across the processors, while lower values are indicative of more subtle differences in 

computation costs.  

For each experiment, the values discussed above, were assigned from the sets given below. 

 Set of Nodes (V)  =  {20, 40, 60, 80, 100} 

 Set of CCR (CCR) = {0.1, 0.5, 1.0, 5.0, 10.0} 

 Set of Alpha (α) = {0.5, 1.0, 2.0} 

 Set of OutDegree (Odeg)  = {1, 2, 3, 4, 5} 

 Set of Beta (β)  = { 0.25, 0.5, 0.75, 1.0} 

 Number of Ants (K)  = {min((avg(Odeg) × |V|, 100)} 

 Number of Iterations   = {100} 

 No of  Processors        = {3} 

 

3.2. Comparative Metrics 

a. Speedup: The ratio between the sequential time and the parallel execution time of a process is defined as 

the speedup. The sequential time is calculated by adding, sequentially, the computational cost of each 

task in the graph. This is done for each processor and then the smallest value is used. The parallel 

execution time is the completion time of the graph, which is also referred to as the Makespan or 

Scheduled Length (SL).  Therefore 
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where )( ,kin  denotes the computational cost of task ni on processor pk. 

 

b. Schedule Length Ratio:  The Schedule Length (SL) is the main performance measure of a scheduling 

algorithm. In our experiment, a large set of task graphs with varying properties is used and therefore it 

becomes necessary to normalize the schedule length to the lower bound. This is called the Schedule 

Length Ratio (SLR). The SLR is defined as follows:  

 

  



MINi kCriPn kiPp n
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The denominator is the summation of the minimum computation costs of the tasks on the CriPMIN 

(minimum Critical Path). The CriPMIN is derived by first setting each task (ni) to its minimum computational 

cost and calculating the length of the Critical Path ( |CP| ) using these values. 

 

 

4. RESULTS AND DISCUSSION 

4.1. Preliminary Analysis of Our Proposed Work 

ACO-based algorithms can obtain shorter schedules when they (i) incorporate functionality that 

ensures processor idle time is kept to a minimum and (ii) allow ants to randomly select schedules - thereby 

mimicking their natural environment. ACO-based algorithms found in the literature, generally, apply a local 

optimization strategy after generating a solution. The idea behind this strategy is normally to make 

adjustments, where feasible, to improve the solution obtained. One such strategy is to effectively utilize idle 

processor time [21], [22], [26], thus, reducing the overall schedule length. Given this basis, we designed our 

algorithm such that, as each ant constructs a solution, when a task is selected, the identified processor is 

searched for possible idle slots where the task is inserted, so that it can achieve the earliest possible finish 

time. While our utilization of idle slots is consistent with the literature; with our approach, the use of idle 

processor slots is determined as the schedules are built, not after. 

We also experimented in the first iteration, with the ants selecting tasks from the ready list, and 

processor in a random manner. From Table 2, it is noticeable that shorter schedules were and can be 

produced when this approach is implemented. 

 

 

Table 2. Makespans Attained by Our Algorithm When Randomness of 1
st
 Iteration is varied 

Graph Published Makespan Makespan Attained By Racs 

  1st Iteration, Not Random 1st Iteration, Random 

DAG1 [8] 80 79 73 

DAG2 [22] 31 29 27 

DAG3 [3] 135 135 135 

 

 

We also experimented with deliberate evaporation of pheromone so as to mitigate stagnation or 

escape local optima. The impact was not as significant as expected. We postulate that the value used to 

generate evaporation had minimal impact because of the timing of invocation and the amount. However, 

because of the randomness of this activity, when invocation occurred during the early iterations where the 

pheromone concentration was not high, newer opportunities were provided. We anticipate that a more 

impactful and useful approach would be to, at the beginning of each iteration, allow a random number of ants 

to randomly create solutions. These new schedules would be incorporated if they are worthy. 

The performance of the proposed algorithm (rACS) was further evaluated by comparison with its 

progenitor, the ACS algorithm [29], and the ACO-TMS algorithm [30]. For this comparison, random directed 

acyclic graphs (DAGs) of varying attributes were generated and then executed by the algorithms. 

 

4.2. Comparison of Proposed Work with Selected Algorithms 

The rACS, ACS and ACO-TMS algorithms were first compared based on the average makespan 

attained with the varying shape parameters. For our first experiment, DAGs of varying degrees of parallelism 

were generated.  From the results in Fig. 3, it was found that rACS outperformed the other two algorithms for 
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short graphs of high parallelism (larger α values). When α ≥ 1, it was 18 percent better than ACO-TMS and 

48 percent better than ACS.  With α < 1, where the graphs have greater depth and a low parallelism, the 

rACS experienced on par performance with ACO-TMS, and was 52 percent better than the ACS. 

The next experiment examined the variation of the average SLR of the algorithms as the number of 

nodes of the DAGs was increased. Fig. 4 shows that as the number of nodes increases, the difference of the 

average SLR values when compared to our proposed algorithm and that of the ACO-TMS shows a steady 

increase. This is indicative of better performance from our proposed algorithm for large applications with 

more tasks when compared to smaller applications. rACS is better than ACO-TMS by 6 percent and the ACS 

by 24 percent. 

Fig. 5 illustrates the behavior of the algorithms, from our next experiment, which investigated the 

average speedup as the DAG size was increased. Our proposed algorithm experienced a steady increase in 

the average speedup, outperforming both the ACS and the ACO-TMS algorithms. The ACS experienced 

minimal increase in the speedup throughout this experiment. The average speedup experienced by the ACO-

TMS was steady, however, not as pronounced as rACS. Further, as the number of nodes of the DAG was 

increased from 80 to 100, our proposed algorithm yielded the most prominent outperformance of the other 

two algorithms. Overall, our proposed was better than ACS and ACO-TMS by 25 and 7.5 percent 

respectively. A larger speedup value is indicative of a smaller execution time in a parallel environment. Our 

results suggest that, generally, our parallel execution times were consistently smaller than the sequential 

execution times, even as the number of nodes increased. 

 

 

      
Figure 3. Results for Average Makespan for Varied DAG Structure 

 

 

         
 

Figure 4. Results for Average SLR for Varying Number of Nodes 
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Figure 2. Results for Average Speedup for Varying Number of Nodes 

 

 

5. CONCLUSION  

In order to fully exploit the high performance of heterogeneous multiprocessor environments, 

versatile and robust scheduling strategies, which yield efficient results, are required. Our proposed algorithm 

is an ACO-based algorithm (rACS), which utilizes an upward rank value along with an insertion-based policy 

to further guide the ants toward quality solutions. In our experimental study we compared our proposed 

algorithm, rACS, with the ACS algorithm and the ACO-TMS algorithm using a set of various randomly 

generated task graphs. The rACS yielded better results, outperforming the algorithms in the various 

experiments such as average speedup and average SLR for increasing DAG size, as well as for varying DAG 

shape. Our planned future work is to investigate and add, to rACS, local optimization strategies to further 

increase its efficiency as an algorithm to tackle the static task scheduling problem. 
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