
Indonesian Journal of Electrical Engineering and Computer Science
Vol. 10, No. 1, April 2018, pp. 348~353
ISSN: 2502-4752, DOI: 10.11591/ijeecs.v10.i1.pp348-353  348

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

Data in Transit Validation for Cloud Computing Using Cloud-
Based Algorithm Detection of Injected Objects

Rashidah Funke Olanrewaju, Thouhedul Islam, Othman O. Khalifa, Fawwaz Eniola Fajingbesi

Department of Electrical and Computer Engineering, International Islamic University Malaysia

Article Info ABSTRACT
Article history:

Received Jan 15, 2018
Revised Mar 15, 2018
Accepted Mar 29, 2018

 The recent paradigm shift in the IT sector leading to cloud computing
however innovative had brought along numerous data security concerns. One
major such security laps is that referred to as the Man in the Middle (MITM)
attack where external data are injected to either hijack a data in transit or to
manipulate the files and object by posing as a floating cloud base. Fresh
algorithms’ for cloud data protection do exist however, they are still prone to
attack especially in real-time data transmissions due to employed
mechanism. Hence, a validation protocol algorithm based on hash function
labelling provides a one-time security header for transferable files that
protects data in transit against any unauthorized injection. The labelling
header technique allows for a two-way data binding; DOM based
communication between local and cloud computing that triggers automated
acknowledgment immediately after file modification. A two layer encryption
functions in PHP was designed for detecting injected object; bcrypt methods
in Laravel and MD5 that generate 32 random keys. A sum total of 1600
different file types were used during training then evaluation of the proposed
algorithm, where 87% of the injected objects were correctly detected.

Keywords:

Cloud Computing
Data Security
Data in Transit
Data Injection

Copyright © 2018 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Rashidah Funke Olanrewaju,
Department of Electrical and Computer Engineering,
International Islamic University Malaysia,
Kuala Lumpur, Malaysia.
Email: frashidah@iium.edu.my

1. INTRODUCTION

The 21st-century paradigm shift to information technology is centred on cloud computing (CC). Its
enormous benefits such as ease of contents, services and instant resource sharing show no limitation to the
interest of both private and public establishments. In due time a total shift, it would be achievable due to the
crowd development accessibility, elasticity and virtualisation of cloud computing [1]-[4]. The bright future
for CC might not come to fruition in good time if major data security vulnerability in areas such as data at
rest and data in motion is not adequately curbed [5]-[6]. A data siting on a computer, a machine, a server or
somewhere in a cloud is referred to as data at rest while the process of exchanging information, moving an
object from point a to b between a local and a remote computer or transferring information between severs
are considered as data in transit or data in motion [7]-[8]. Data in transit are more susceptible to attacks than
their counterparts at rest as Packets may be cached on intermediate systems, or temporary files may be
created at either endpoint. External object injection at different stages is difficult for administrators to
identify the primary source of the application due to the boundary limit access of data in motion [8]. As
illustrated in Figure 1, the most dangerous threat to data in motion occurs when attacker gain unauthorised
access during data transmission via object injection [9]-[10].

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Data in Transit Validation for Cloud Computing Using Cloud-Based (Rashidah Funke Olanrewaju)

349

Figure 1. Man in the Middle (MITM) attack on Data in Motion

Algorithms are created to combat CC data security concerns such as MITM. Majority of such
algorithms tend to enhance data authorization scheme across access points; however, these attack
vulnerabilities persist as access from a different location and device with multi-tendency accessing
opportunities exist [6]. Hence, this research proposes an algorithm for securing and validating data in motion
by auto detection of injected objects using advanced encryption standard and hash functionality algorithm.

2. RESEARCH METHOD

The algorithm design in this project was based on PHP and VueJS hence factory design pattern
shown in Figure 2 was used. Since Vuex design pattern is used for real-time communication via TCP
protocol between sender and receiver and Vuex design offers the best matching for state management of
transferring data hence used for the front end design.

Figure 2. Factory Design Pattern

2.1. Algorithm Design
The algorithm functionality for data security and validation for preventing external object injection

or unauthorized access is achieved using key sharing method when sending packets from one end to another.
During any file upload two keys are generated; private and public keys based on Secure Hash Algorithm
(SHA1) where the current time stamp, user mac identification number, IP address and other extra slats are
added to strengthen the data. The Pseudocode for public key generation in PHP is depicted below and
illustrated by a flowchart in Figure 3.

Define file_type_variable
if detect file type:
 Get current time stamp
 Get original filename
 Get file extension
 Temporary file name = current time stamp + original filename + file extension
 Temporary file name = strlen(temporary file name) * 8

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 10, No. 1, April 2018 : 348 – 353

350

 Temporary file name .= chr(128)
 while ((strlen(Temporary file name) + 8) % 64 !== 0)
 Temporary file name .= chr(0)
 endwhile
 for each (string split(printf('%064b', Temporary file name), 8) as new variable)
 Temporary file name .= chr(bindec(new variable))
 endforeach
 Public key = Temporary file name
else
 Goto file_type_variable
endif

START UPLOAD DETECT FILE
TYPE TRUE GET CURRENT

TIME STAMP
GET FILE

ORIGINAL NAME
GET FILE

EXTENSION
GENERATE
PUBLIC KEY TRUE STORE IN DB END

FALSE FALSE

START UPLOAD DETECT FILE
TYPE TRUE GET CURRENT

TIME STAMP
GET FILE

ORIGINAL NAME
GET FILE

EXTENSION
GENERATE
PUBLIC KEY TRUE STORE IN DB END

FALSE FALSE

Figure 3. Public Key Generation Process

As depicted in Figure 4, the customized development mechanism for the private key differs from the
public key in their encryption type. For the private key, it takes the time stamp of uploading a file and make a
strtoupper() function to generate its uniqueness then uses file type, file original name, and file extension to
generate a temporary file name. This temporary file name is then encrypted by MD5() algorithm first before
the next initiatives which are to use SHA1() for encryption.

Define file_type_variable
if detect file type:
 Get current time stamp
 current time stamp = strtoupper(current time stamp)
 Get original filename
 Get file extension
 Temporary file name = current time stamp + original filename + file extension
 for each 512-chunk of temporary message
 break chunk into sixteen 32-bit words
 for i from 0 to 63
 var int F, g
 if 0 ≤ i ≤ 15 then
 F := (B and C) or ((not B) and D)
 g := i
 else if 16 ≤ i ≤ 31
 F := (D and B) or ((not D) and C)
 g := (5×i + 1) mod 16
 else if 32 ≤ i ≤ 47
 F := B xor C xor D
 g := (3×i + 5) mod 16
 else if 48 ≤ i ≤ 63
 F := C xor (B or (not D))
 g := (7×i) mod 16
 F := F + A + K[i] + M[g]
 A := D; D := C; C := B
 B := B + leftrotate(F, s[i])
 end for
 Temporary file name . = Temporary file name * A * B * C
 end foreach

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Data in Transit Validation for Cloud Computing Using Cloud-Based (Rashidah Funke Olanrewaju)

351

 Temporary file name = strlen(temporary file name) * 8
 Temporary file name .= chr(128)
 while ((strlen(Temporary file name) + 8) % 64 !== 0)
 Temporary file name .= chr(0)
 end while
 for each (string split(printf('%064b', Temporary file
 name), 8) as new variable)
 Temporary file name .= chr(bindec(new variable))
 end for each
 Public key = Temporary file name

 Endif

START UPLOAD DETECT FILE
TYPE TRUE GET CURRENT

TIME STAMP

USE
STRTOUPPER()

GET FILE
EXTENSION

GENERATE
PRIVATE KEY TRUE STORE IN DB END

FALSE FALSE

GET FILE
ORIGINAL NAME

USE MDS() NEW
FILE NAME

USE SHA1() NEW
FILE NAMESTART UPLOAD DETECT FILE

TYPE TRUE GET CURRENT
TIME STAMP

USE
STRTOUPPER()

GET FILE
EXTENSION

GENERATE
PRIVATE KEY TRUE STORE IN DB END

FALSE FALSE

GET FILE
ORIGINAL NAME

USE MDS() NEW
FILE NAME

USE SHA1() NEW
FILE NAME

Figure 4. Private Key Generation Process

 The proposed algorithm mitigates unauthorized access thereby preventing MITM attacks efficiently
by handling header part of any uploading file. The header part is primarily design for restricting unauthorized
access. During authorized access, the hidden header variable update sender out of the box that someone else
authorized to access this file. On the other hand, this unauthorized access file will disappear from recipient
side, so that there are no possibilities from recipient side to access any corrupted file. Figure 5 shows the
flowchart of the full mechanism for preventing un-authorization of the data from MITM attack.

START COLLECT PUBLIC KEY
TRY

UNAUTHORIZED
ACCESS

TRUE ACCESS FILE TRUE UPDATE HEADER

ACCESS ACK FOR SENDER REMOVE FROM RECIPIENT

END

FALSE

FALSE

START COLLECT PUBLIC KEY
TRY

UNAUTHORIZED
ACCESS

TRUE ACCESS FILE TRUE UPDATE HEADER

ACCESS ACK FOR SENDER REMOVE FROM RECIPIENT

END

FALSE

FALSE

Figure 5. Factory Design Pattern

2.2. Algorithm Implementation
Taking into account cloud computing environment, the algorithm design was such that it conforms

to the functional, structural and behavioral modelling of CC. Initially, 1600 raw files shown in Table 1 and
Table 2 are randomly selected from document, text, pdf, jpg, png, gif, ppx, and pptx for training and
evaluating the algorithm. All raw data are selected for different platforms and operating system. Mainly this
test focused on Mac, Windows, and Linux (ubuntu) OS.

Table 1. Selected Raw Data Classification
File Type MS word MS Excel MS PowerPoint JPG GIF PNG TXT TOTAL

No of Files 350 200 200 200 400 150 100 1600
Mac OS 175 100 100 100 200 75 50 800
Windows OS 100 75 75 50 100 50 25 475
Linux OS 75 25 25 50 100 25 25 325

  ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 10, No. 1, April 2018 : 348 – 353

352

Table 2. Selected Raw Data Classification based on Data Size
File Size < 1 MB < 5 MB < 10MB

Total 1045 545 10

3. RESULTS AND ANALYSIS

The evaluation benchmark is based on PHP unit test by directly inserting object in the uploading
files. After randomized insertion, PHP unit test benchmark the uploaded file. In the first batch file, the
randomized inserted object added for testing in PHP unit test whether the designed algorithm can detect the
injected object or not. Figure 6 show the testing environments and the result of this benchmarking for the
evaluation of inserted objects during file transfer form one state to another (Data in Transit).

Figure 6. Testing Algorithm Code in (A) Mac (B) Linux and (C) Windows Environments

This benchmarking shown in Figure 6(a) found two inserted object in uploading a file that has
changed from the original file. Figure 6 (b) shows the screenshot of another batch of uploaded files, and the
result confirmed that the uploaded data had not been tampered with. This evaluation was done on CentOS in
Linux distribution. In each batch of this test, four objects were inserted during sending a file from one state to
another. It is pertinent to note that, if a file is affected by the inserted object, the signature header change
automatically by alerting the recipient that file has been modified during transferring from one state to
another. In this case, the header detection in recipient section, send an acknowledgement to the sender that
the last sending file has been modified/ corrupted by a third party, which requires being resent. This response
is also generated by the proposed algorithm. Subsequently, 500-unit data test was conducted on different
version of Windows OS and 200 from mac and Linux distribution in batches of randomized injected objects.
The accuracy for detection rate is found at 87% from the overall data test.

4. CONCLUSION

This paper proposes an algorithm for data in transit security in cloud computing environments. The
algorithm is designed to assign unique two-layer secure key detection system for preventing unauthorized
access and detection of an injected object in Data in Motion. The proposed algorithm helps in mitigating Man
In The Middle attack, which is one of the severe threat in transferring data from local machine to the cloud
and vice versa. For the algorithm design, training and implementation, several randomized combinations
from a set of 1600 distinct Data files were used. The accuracy of the algorithm was found to be 87%. It was
discovered that the 13% undetected files were due to mass exceptions. The algorithm can also benefit from
more training with more substantial data set to improve the detection rate and ease of deployment. Also, all
files were tested on different types of operating systems such as MAC, Linux and Windows.

ACKNOWLEDGEMENT
This work was partially supported by Ministry of Higher Education Malaysia (Kementerian

Pendidikan Tinggi) under Research Initiative Grant Scheme (RIGS) number RIGS 16357-0521.

REFERENCES
[1] D. Koizumi, et al., “On the automatic detection algorithm of Cross Site Scripting (XSS) with the non-stationary

Bernoulli distribution,” in 2012 Mosharaka International Conference on Communications, Computers, and
Applications (MIC-CCA), pp. 131–135, 2012.

A B C

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752 

Data in Transit Validation for Cloud Computing Using Cloud-Based (Rashidah Funke Olanrewaju)

353

[2] D. R. Tsai, et al., “Optimum tuning of defense settings for common attacks on the web applications,” in 43rd
Annual 2009 International Carnahan Conference on Security Technology, pp. 89–94, 2009.

[3] H. Shahriar and M. Zulkernine, “Information Theoretic Detection of SQL Injection Attacks,” Proceedings of 14th
International Symposium on High Assurance System Engineering, 2012.

[4] H. Shahriar, et al., “Design and development of Anti-XSS proxy,” in Internet Technology and Secured
Transactions (ICITST), 2013 8th International Conference for, pp. 484–489, 2013.

[5] I. Lim, et al., “Securing Cloud and Mobility: A Practitioner’s Guide,” CRC Press, New York, 2013.
[6] I. Balasundaram and E. Ramaraj, “An Authentication Scheme for Preventing SQL Injection Attack Using

Hybrid Encryption (PSQLIAHBE),” vol/issue: 53(3), pp. 359-368, 2011.
[7] J. Shanmugam and M. Ponnavaikko, “A solution to block Cross-Site Scripting Vulnerabilities based on Service

Oriented Architecture,” in 6th IEEE/ACIS International Conference on Computer and Information Science, pp.
861–866, 2007.

[8] K. X. Zhang, et al., “TransSQL: A Translation and Validation-based Solution for SQLInjection Attacks,”
Proceedings of First International Conference on Robot, Vision and Signal Processing, IEEE, pp. 248-252, 2011.

[9] Kieyzun, et al., “Automatic creation of SQL Injection and cross-site scripting attacks,” presented at the Software
Engineering, 2009. ICSE 2009. IEEE 31st International Conference on, pp. 199–209, 2009.

[10] L. K. Shar and H. B. K. Tan, “Defending against Cross-Site Scripting Attacks,” Computer, vol/issue: 45(3), pp. 55–
62, 2012.

