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 MapReduce is the preferred computing framework used in large data analysis 

and processing applications. Hadoop is a widely used MapReduce framework 

across different community due to its open source nature. Cloud service 

provider such as Microsoft azure HDInsight offers resources to its customer 

and only pays for their use. However, the critical challenges of cloud service 

provider is to meet user task Service level agreement (SLA) requirement (task 

deadline). Currently, the onus is on client to compute the amount of resource 

required to run a job on cloud. This work present a novel makespan model for 

Hadoop MapReduce framework namely OHMR (Optimized Hadoop 

MapReduce) to process data in real-time and utilize system resource 

efficiently. The OHMR present accurate model to compute job makespan time 

and also present a model to provision the amount of cloud resource required 

to meet task deadline. The OHMR first build a profile for each job and 

computes makespan time of job using greedy approach. Furthermore, to 

provision amount of resource required to meet task deadline Lagrange 

Multipliers technique is applied. Experiment are conducted on Microsoft 

Azure HDInsight cloud platform considering different application such as text 

computing and bioinformatics application to evaluate performance of OHMR 

of over existing model shows significant performance improvement in terms 

of computation time. Experiment are conducted on Microsoft Azure 

HDInsight cloud. Overall good correlation is reported between practical 

makespan values and theoretical makespan values. 
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1. INTRODUCTION 

 The Many organizations such as industrial, government and education institution collects massive 

amount of data from various sources such as sensor network, social network, bioinformatics and World  

Wide Web etc. for various application uses. Performing scalable and analysis on these unstructured data is 

most desired across many organization. The state-of-art model finds difficulties in performing real-time 

analysis on continuous/stream data. For performing real-time analysis for data intensive applications, Google 

have come up with parallel programming model called MapReduce framework [1]. It is highly scalable,  

fault tolerant and parallelize execution in distributed nature across cluster of computing nodes. Hadoop 

MapReduce framework [2] has been widely adopted across various organization when compared with counter 

parts Phoenix [3], Mars [4] and Dryad [5] due to open source nature [6].  

 The Hadoop MapReduce model predominantly consist of following phases, Setup, Map, Shuffle, Sort 

and Reduce which is shown in Figure 1. The Hadoop frameworks consists of a master node and a cluster of 

computing nodes. Jobs submitted to Hadoop are further distributed into Map and Reduce tasks. In setup phase, 
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input data of a job to be processed (residing generally on the Hadoop Distributed File Systems (HDFS)) is 

logically partitioned into homogenous volumes called chunks for the Map worker nodes. Hadoop divides each 

MapReduce job in to set of tasks were each chunk is processed by Map worker. Map phase takes input as 

key/value pair as (𝑘1, 𝑣1) and generate list of (𝑘2, 𝑣2) intermediate key/value pair as output. Shuffle phase 

begins with completion of Map phase that collects the intermediate key/value pair from all the Map task. A 

sort operation is performed on the intermediate key/value pair of map phase. For simplicity sort and shuffle 

phases are cumulatively considered in the shuffle phase.  Reduce phase processes sorted intermediate data 

based on user defined function. Output of reduce phase is stored/written to HDFS.  

 

 

 
 

Figure 1. Hadoop MapReduce Computation Model 

  

 

 The Azure HDInsight Cloud aid in achieving scalable performance i.e. user can set up and run Hadoop 

application on a large-scale cluster. Azure HDInsight Cloud allow user to configure the amount of resource 

(virtual computing node) required to perform certain task. However, at present Hadoop job with deadline 

requirement is not supported in HDInsight cloud. The onus is on the cloud user/client to compute the amount 

of resource requirement to meet task deadline which is a challenging task. Therefore, Hadoop makespan 

modelling has become an important criteria in computing amount of resources required to meet task deadline. 

It should be noted that makespan modeling is a challenging task since Hadoop jobs involves multiple 

processing stage which composed of three core stage (i.e. Map, Shuffle and Reduce stage). Moreover, the first 

wave of shuffle stage is generally processed in parallel fashion with Map stage (i.e. overlapping phase) and 

rest of the waves of the Shuffle stage are processed post completion of Map stage (i.e. non-overlapping phase).  

To utilize the cloud resources efficiently, numerous makespan models for Hadoop is presented [7], and [8]. 

However, these approaches are not accurate and incurs high computing overhead/time. Since these approaches 

did not consider overlapping and non-overlapping phases of the Shuffle stage.  

 Recently, a number of sophisticated Hadoop performance models are proposed [9-14]. Starfish [9] 

collects a running Hadoop job profile at a fine granularity with detailed information for job estimation and 

optimization. On the top of Starfish, Elasticiser [10] is proposed for resource provisioning in terms of virtual 

machines. However, collecting the detailed execution profile of a Hadoop job incurs a high overhead which 

leads to an overestimated job execution time. In [11], [12], and [13] considers both the overlapping and non-

overlapping stages and uses simple linear regression for job estimation. This model also estimates the amount 

of resources for jobs with deadline requirements. CRESP [14] estimates job execution and supports resource 

provisioning in terms of map and reduce slots. However, both the HP model and CRESP ignore the impact of 

the number of reduce tasks on job performance. The HP model is restricted to a constant number of reduce 

tasks, whereas CRESP only considers a single wave of the reduce phase. In CRESP, the number of reduce 

tasks has to be equal to number of reduce slots. It is unrealistic to configure either the same number of reduce 

tasks or the single wave of the reduce phase for all the jobs. It can be argued that in practice, the number of 

reduce tasks varies depending on the size of the input dataset, the type of a Hadoop application (e.g. CPU 

intensive, or disk I/O intensive) and user requirements. Furthermore, for the reduce phase, using multiple waves 
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generates better performance than using a single wave especially when Hadoop processes a large dataset on a 

small amount of resources. While a single wave reduces the task setup overhead, multiple waves improve the 

utilization of the disk I/O. 

 To address the research challenges this work present an accurate and efficient makespan model for 

Hadoop MapReduce framework namely OHMR (Optimized Hadoop MapReduce) to process data in real-time 

and utilize system resource efficiently. The OHMR present accurate model to compute job makespan time and 

also present a model to provision the amount of cloud resource required to meet task deadline. The OHMR 

first build a profile for each job and computes makespan time of job using greedy approach. Furthermore, to 

provision amount of resource required to meet task deadline Lagrange Multipliers technique is applied.    

 The Contribution of research work is as follows: 

1) This work present an accurate makespan model for HMR aiding performance improvement. 

2) Experiments considering diverse cloud configurations and varied application configuration. 

3) Correlation between theoretical makespan model and experimental values. 

 The rest of the paper is organized as follows. Extensive research survey is carried out in Section 2. In 

Section 3 the proposed makespan modelling for Hadoop MapReduce framework is presented. In penultimate 

section experimental study is carried out. The conclusion and future work is described in last section.   

 

 

2. RELATED WORK   

 In this section, a detailed literature is presented about the conventional state-of-art data analytic 

techniques. In [9], a locality based Hadoop cluster model is adopted which rely upon the distance between 

input information and processing nodes. This technique try to overcome from various issues of state-of-art 

techniques such as high overhead, required large storage capacity and expensive in real time. However, it also 

induces large delay and causes performance degradation. 

 In [10], a cloud based optimization framework is adopted to meet deadlines and accomplish data 

locality. They presented heuristic technique to provision task SLA requirement of cloud user. This technique 

presented an optimization technique to meet task dead line and minimize the number of nodes required for task 

processing. They solved single node failure and presented a tradeoff between minimizing deadline and locality 

constraint. Outcome shows reduction of storage and computation overhead. However they did not considered 

task deadline awre scheduling and performance evaluation considering compute intensive application.  

 In [11], a performance enhancement technique is introduced for Hadoop model based on metadata of 

interrelated tasks. This technique permits Name Nodes to find block which are preset in the cluster to store 

specific data. Their model attained superior performance than Hadoop framework. For performance evaluation 

they considered Bioinformatics application. Experiment outcome shows good performance in terms of I.O cost 

minimization and makespan time reduction. However, they did not considered performance evaluation 

considering different application and they considered performance evaluation for small genomic data size. 

In [12], a Hadoop model is presented based on MapReduce performance modules to reduce delay and 

contention in the network and enhance performance of the system. And it also helps to decrease 

synchronization delay and schedule different tasks at a time. They also presented a theoretical evaluation of 

their makespan model. Attained good accuracy and performance evaluation is carried out for word count 

applications. However, they did not considered performance evaluation considering diverse application and 

evaluation on cloud platform.  

 In [13], an AffordHadoop application is adopted to reduce cost in finishing various tasks and to 

allocate data and schedule tasks and hence efficiency of system get enhanced. However, a NP-hard problem 

occurs while scheduling different tasks in state-of-art technique. To address NP-hardness, they adopted integer 

programming techniques and heuristic reduction and optimization to enable an optimal solution. Experiment 

are conducted considering Word count and Sort application attained good results in terms of cost minimization. 

However, theoretical accuracy performance evaluation is not presented. 

 In [14], a Hadoop model is proposed to predict tasks run-time and allocate some specified resources 

to accomplish tasks in an assigned time period. Hence, the deadline constraints are met. It uses multiple waves 

of a shuffle stage. Experiment are conducted considering word count and sort application. Theoretical accuracy 

performance evaluation of makespan model is presented shows good accuracy. However, it induces high 

overhead to finish tasks and data intensive and diverse application such as bioinformatics application is not 

considered for performance evaluation.  

 In [15], A Hadoop model is adopted to optimize Hadoop parameters with the help of programming 

based PSO. The PSO technique helps to find optimal parameters in Hadoop networks for a specified task. 

However, performance evaluation under cloud computing environment is not considered. In [16], a BigData 

computational model is adopted to reduce cost with the help of geo-distributed datacenters. This technique 

helps to decide the parameters to select the final data center.  Here, a framework for efficient information 
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movement and to provide resource allocation and to select a required data center to decrease cost of the system 

is described. However, task deadline requirement of task is not considered. 

 Extensive research survey carried out shows numerous approach is presented to minimize cost, time 

and amount of resource required to compute a task on Hadoop MapReduce framework. The survey shows need 

to develop a new makespan model that minimize amount of resource required to task deadline with good 

accuracy considering diverse application. In next section the proposed makespan model for Hadoop 

MapReduce framework is presented. 

 

 

3. MAKESPAN MODELLING FOR PROPOSED OPTIMIZED SCHEDULAR FOR HADOOP 

MAPREDUCE FRAMEWORK   
 This work present an optimized scheduler for scheduling job to meet task deadline to meet QoS 

requirement of application on Hadoop MapReduce (HMR) framework. Firstly, this work present a 

mathematical model to compute completion time of MapReduce job. Secondly, the amount of resource 

required to meet task deadline of application is presented. 

 

3.1. Makespan modelling/proposition 

 Firstly we evaluate the performance limits for a given makespan of a specified set of 𝓆 tasks that is 

processed by 𝒿 slots/servers. Let 𝒲1, 𝒲2, 𝒲3, … , 𝒲𝓆 be the time period of 𝓆 tasks of a particular jobs. This 

work consider slot allocation to a task based on slot with Minimum Execution Time (𝑀𝐸𝑇) by adopting Greedy 

algorithm. 

 

Let 𝜑 be the maximum time period of 𝓆 task which is represented as: 

 

𝜑 = max
𝓃

{𝒲𝓃} (1) 

 

and 𝛽 be the average time period of 𝓆 task which is represented as: 

 

𝛽 =
(∑ 𝒲𝓃

𝓆
𝓃=1 )

𝓆⁄ . 
(2) 

 

The makespan of a task to meet 𝑀𝐸𝑇 is at least 𝓆 ∙
 𝛽

𝒿
 and at most (𝓆 − 1) ∙

 𝛽

𝒿+𝜑
. We consider the worst case 

scenario for upper limit, that is, the longest task 𝕎 ∈ {𝒲1, 𝒲2, 𝒲3, … , 𝒲𝓆 } with time period 𝜑 is the last 

processed task. Considering this scenario, the time taken before commencement of last task 𝕎 is scheduled is 

at least 
(∑ 𝒲𝓃

𝓆−1
𝓃=1 )

𝒿
⁄ ≤ (𝓆 − 1) ∙

𝛽
𝒿⁄ .  Therefore, total execution time of all assignment is at least (𝓆 − 1) ∙

𝛽
𝒿 + 𝜑⁄ . The lower limit is smaller, since the best case is when 𝓆 task distributed equally among the 𝒿 available 

slots. Therefore, the total execution time of is at least 𝓆 ∙
𝛽

𝒿⁄ . The total job completion time for scheduling lies 

between the lower and upper limit. These limit are mostly beneficial in case when the time period of longest 

task is small as compared to total execution time, i.e. when 𝜑 ≪
𝓆 ∙ 𝛽

𝒿⁄ . 

 

3.2. Computing job completion time 

 Let consider job 𝒦 with known execution time that is obtained from previous execution. Let 𝒦 be 

executed with new set of data that is segmented into 𝒬ℋ
𝒦 map tasks and 𝒬ℬ

𝒦 reduce tasks. Let 𝒜ℋ
𝒦 be the number 

of map slots assigned to job 𝒦 and 𝒜ℬ
𝒦 be the number of reduce slots assigned to job 𝒦. Let ℋ→ be the mean 

time period of map task of a particular job  𝒦 and ℋ↑ be the maximum time period of map tasks of a particular 

job 𝒦. Then, using makespan modelling (proposition) in section a, the lower limits 𝒲ℋ
↓  and upper limits 𝒲ℋ

↑  

on time period of all map phase are computed as follows: 

 

𝒲ℋ
↓ =

𝒬ℋ
𝒦 ∙ ℋ→

𝒜ℋ
𝒦  

(3) 

 

𝒲ℋ
↑ =

(𝒬ℬ
𝒦 − 1) ∙ ℋ→

𝒜ℋ
𝒦 + ℋ↑ 

 
(4) 
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 The reduce phase is composed of shuffle, sort and reduce stage. Similar to map phase, the makespan 

modelling (proposition) can be applied to estimate the lower limit (𝒲ℬ
↓)and upper limits (𝒲ℬ

↑) of reduce stage 

completion time. Since, we possess measurement of mean and maximum tasks time periods in reduce stage, 

allocated reduce slots 𝒜ℬ
𝒦and the number of reduce task 𝒬ℬ

𝒦 .  
 The refinement lies in computing the time period of the shuffle stage. For easiness, the sort stage is 

merged with shuffle stage. Therefore, the shuffle stage in the remaining reduce phase is estimated as follows: 

 

𝒲𝒮
↓ = (

𝒬ℬ
𝒦

𝒜ℋ
𝒦  

− 1) ∙ 𝒮→
𝓉  

(5) 

 

𝒲𝒮
↑ = (

𝒬ℬ
𝒦

𝒜ℋ
𝒦  

− 1) ∙ 𝒮→
𝓉 + 𝒮↑

𝓉 
(6) 

 

Finally, taking Equation (5) and (6) together, we can formulate the lower and upper limit of the overall job 

completion time of 𝒦, which is shown as follows: 

 

𝒲𝒦
↓ = 𝒲ℋ

↓ + 𝒮→
1 + 𝒲𝒮

↓ + 𝒬ℬ
↓  (7) 

 

 

𝒲𝒦
↑ = 𝒲ℋ

↑ + 𝒮↑
1 + 𝒲𝒮

↓ + 𝒬ℬ
↑  (8) 

 

where 𝒲𝒮
↓ depicts the optimistic prediction of job 𝒦 completion time and 𝒲𝒮

↑ depicts the pessimistic prediction 

of job 𝒦 completion time. In section c, we compare whether the prediction that is based on mean value between 

lower limit and upper limits tends to be closer to measured time period. Therefore, we state: 

 

𝒲𝒦
↑ =

(𝒲ℋ
↑ + 𝒲𝒦

↓ )

2
 

(9) 

 

 

The Equation (7) can be re-written for 𝒲ℋ
↓ by replacing parts with Eq. (3) and (5), and similar equation for sort 

and reduce stages as follows: 

 

𝒲𝒦
↓ =

𝒬ℋ
𝒦 ∙ ℋ→

𝒮ℋ
𝒦 +

𝒬ℬ
𝒦 ∙ (𝒮→

𝓉 + ℬ→)

𝒮ℬ
𝒦 + 𝒮→

1 − 𝒮→
𝓉  

(10) 

 

The Equation (8) can be simplified to compute the makespan time is as follows: 

 

𝒲𝒦
↓ = 𝒳𝒦

↓ ∙
𝒬ℋ

𝒦

𝒮ℋ
𝒦 + 𝒴𝒦

↓ ∙
𝒬ℬ

𝒦

𝒮ℬ
𝒦 + 𝒵𝒦

↓ , 
(11) 

 

where 𝒳𝒦
↓ = ℋ→, 𝒴𝒦

↓ = (𝒮→
𝓉 + ℬ→), and 𝒵𝒦

↓ = 𝒮→
1 − 𝒮→

𝓉 . The Equation (11), represent a makespan time of job 

as a function/operation of map and reduce slots assigned to job 𝒦 for performing its map and reduce tasks, that 

is, as a function of (𝒬ℋ
𝒦 , 𝒬ℬ

𝒦). In similar way𝒲𝒦
↑  and 𝒲𝒦

→ is written as follows: 

 

𝒲𝒦
↓ = 𝒳𝒦

→ ∙
𝒬ℋ

𝒦

𝒮ℋ
𝒦 + 𝒴𝒦

→ ∙
𝒬ℬ

𝒦

𝒮ℬ
𝒦 + 𝒵𝒦

→, 
(12) 

 

𝒲𝒦
↓ = 𝒳𝒦

↑ ∙
𝒬ℋ

𝒦

𝒮ℋ
𝒦 + 𝒴𝒦

↑ ∙
𝒬ℬ

𝒦

𝒮ℬ
𝒦 + 𝒵𝒦

↑ , 
(13) 

 

3.3. Resource requirement estimation to meet task deadline 

 Here we evaluate the minimum number of map and reduce slots required to meet task deadline. To 

assure guaranties of task deadline of a Job 𝒦 in time 𝒲 we need to compute what is the minimum number of 

MapReduce slots needed to be allocated to meet task deadline 𝒲 with input data size ℐ. For achieving it the 

following questionnaires needs to be considered. 
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 𝒲 is considered as a lower limit of the job makespan time. Generally, this aid in reducing amount of 

resources allocated for job to meet task deadline 𝒲. This setting might not be idealistic in real environment. 

 𝒲 is considered as an upper limit of the job makespan time. This will lead to over allocation of 

resources and might lead to very smaller job completion time than 𝒲 because worst case scenario are very 

rare phenomenon in production environment. 

 𝒲 is considered as a mean between lower and upper limits on the job makespan time. This strategy 

may aid in providing balanced resource allocation/utilization that is closer to job makespan time 𝒲. 

 The assignment of map and reduce slots to job 𝒦 for meeting task deadline 𝒲 considering known 

job profile are evaluated using variation in Equation (11), where 𝒳𝒦
↓ , 𝒴𝒦

↓ , and 𝒵𝒦
↓  are defined.  

 

𝒳𝒦
↓ .

𝒬ℋ
𝒦

𝒮ℋ
𝒦 +

𝒬ℋ
𝒦

𝒮ℋ
𝒦 + 𝒴𝒦

↓ = 𝒲 − 𝒵𝒦
↓  

(14) 

 

The Equation (14) can be simplified as follows: 

 
𝓍

𝒽
∙

𝓎

𝒷
= ℐ 

(15) 

 

where 𝒽 and 𝒷depicts the number of map and reduce slots allocated to job 𝒦 respectively, and 𝓍, 𝓎 and ℐ 

depicts the corresponding expression from Equation (14). 

 The objective of our model is to minimize the number of map and reduce slot for job 𝒦. i.e., we 

minimize ℱ(𝒽, 𝒷) = 𝒽 + 𝒷 over 
𝓍

𝒽
∙

𝓎

𝒷
= ℐ. We consider Lagrange multiplier and set ℒ = 𝒽 + 𝒷 + 𝜑

𝓍

ℎ
+

𝜑
𝓎

𝒷
− ℐ. By differentiating ℒ with respect to 𝒽, 𝒷 and 𝜑 and equating to zero, we obtain, 

 
𝜕ℒ

𝜕𝒽
= 1 − 𝜑

𝓍

ℎ2
= 0 

(16) 

 
𝜕ℒ

𝜕𝒷
= 1 − 𝜑

𝓍

𝒷2
= 0 

(17) 

 
𝜕ℒ

𝜕𝜑
=

𝓍

𝒽
+

𝓎

𝒷
− ℐ = 0 

(18) 

 

Solving Equation (16), (17) and (18) simultaneously, we obtain, 

 

𝒽 =
√𝓍(√𝓍 + √𝓎)

ℐ
,   𝒷 =

√𝓍(√𝓍 + √𝓎)

ℐ
 

(19) 

 

 Using these equation the optimal value of map and reduce slot are obtained such that the number of 

slots is minimized while meeting task deadline constraint. Here we round up the values obtained from these 

equation for approximation. Since these values have to be integral. 

 In next section the performance evaluation of proposed scheduler over state of art technique is shown.  

 

 

4. RESULT AND ANALYSIS 

 This section present performance evaluation of proposed OHMR over state-of-art Hadoop 

MapReduce Framework [11]. Hadoop is the most widely used/adopted MapReduce platform for computing on 

cloud environments [17], hence it is considered for comparisons. Hadoop 2.0 i.e. version 2.7 is used and is 

deployed on azure cloud using HDInsight. The Hadoop cluster is composed of one master worker node and 

four worker/slave nodes. Each worker node is deployed on A3 virtual machine instances which composed of 

4 virtual computing cores, 7 GB RAM and 120 GB of storage space. Uniform configuration is considered for 

both OHMR and HMR. For experiment analysis different application are considered such as Gene sequencing 

(Bioinformatics), Word frequency statistics computation and Hot-word detection. 

 

4.1. Gene sequencing 

 Gene sequence alignment is a fundamental operation adopted to identify similarities that exist between 

a query protein sequence, DNA or RNA and a database of sequences maintained. Sequence alignment is 

computationally heavy and its computation complexity is relative to product of two sequences being currently 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 3, December 2018 :  1132 – 1142 

1138 

analyzed. Massive volumes of sequences maintained in the database to be searched induces additional 

computation burden. BLAST is a widely adopted bioinformatics tool for sequence alignment which perform 

faster alignments, at expense of accuracy (possibly missing some potential hits) [18]. Drawbacks of BLAST 

and its improvements is discussed in [19]. For evaluation here the improved BLAST algorithm of [19] is 

adopted. To improve computation time a heuristic strategy is used compromising accuracy minimally. In the 

heuristic strategy initial match is found and is later extended to obtain the complete matching sequence. 

 Experiment are conducted to evaluate OHMR and HMR performance for performing gene sequence 

alignment. The dataset for experiment analysis is obtained from NCBI [20]. For performing alignment 

Drosophila database as a reference database and Query sequence of varied sizes of from Homo sapiens 

chromosomal sequences and genomic scaffolds is considered similar to [19] which are tabulated in Table 1. 

All six experiment are conducted using BLAST algorithm on HMR and OHMR frameworks. The total 

makespan time of both HMR and OHMR for all six experiment is noted and graph is plotted as shown in  

Figure 2. It must be noted that the initialization time of the VM cluster is not considered is computing makespan 

as it is uniform in both OHMR and HMR owing to similar cluster configurations. 

 The total makespan of OHMR and HMR is dependent on task execution time of virtual 

computing/worker nodes during Map and Reduce phase. The total makespan observed in BLAST sequence 

alignment experiments executed on HMR and OHMR frameworks is shown in Figure 2. The outcomes shows 

significant performance in terms of reduce makespan times of OHMR over HMR. A makespan reduction of 

43.44%, 44.85%, 56.9%, 57.17%, 62.83% and 65.01% is obtained for six experiment by OHMR over HMR. 

An average makespan reduction of 55.03% is achieved by OHMR over HMR across all experiments.    

 Theoretical makespan of OHMR i.e., 𝒲 given by Equation (11) is computed and compared against 

the practical values observed in all the experiments. Results obtained is shown in Figure 3. Minor variations is 

observed between practical and theoretical makespan computations. Overall good correlation is reported 

between practical makespan values and theoretical makespan values. Based on the results presented it is evident 

that execution of BLAST sequence alignment algorithm on proposed OHMR yields superior results when 

compared to similar experiments conducted on existing HMR framework. Accuracy and correctness of 

theoretical makespan model of OHMR presented is proved through correlation measures. 

 

 

Table 1. Simulation parameter considered 
Experiment 

Id 

Query genome Query genome 

size  

Reference genome Reference genome 

size 

1 NT_007914 14866257 Drosophila database 122,653,977 

2 AC_000156 19317006 Drosophila database 122,653,977 

3 NT_011512 33734175 Drosophila database 122,653,977 

4 NT_033899 47073726 Drosophila database 122,653,977 

5 NT_008413 43212167 Drosophila database 122,653,977 

6 NT_022517 90712458 Drosophila database 122,653,977 

 

 

 
 

Figure 2. BLAST sequence alignment total makespan time observed for experiments conducted on OHMR 

and HMR frameworks 
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Figure 3. Correlation between theoretical and practical makespan times for BLAST sequence alignment 

execution on OHMR framework 

 

 

4.2. Word frequency statistics computations 
 The word frequency statistic application is developed using Java programing language. The Wikipedia 

dataset [21] is considered for experiment analysis. The Wikipedia dataset is huge in size (i.e. >100 GB) and is 

split into2048 MB each and stored in Azure cloud container. For experimental analysis this work consider 

16GB of data. The word frequency statistics applications were executed on the OHMR and HMR framework 

and the results obtained are noted. The outcomes shows significant performance in terms of reduce makespan 

times of OHMR over HMR. A makespan reduction of 43.7%, 44.34%, 45.69% and 51.57% is obtained for data 

size of 2048 MB, 4096 MB, 8192 MB and 16384 MB respectively by OHMR over HMR. An average makespan 

reduction of 46.39% is achieved by OHMR over HMR across all experiments.   

 Theoretical makespan of OHMR i.e., 𝒲 given by Equation (11) is computed and compared against 

the practical values observed in all the experiments. Results obtained is shown in Figure 5. Minor variations is 

observed between practical and theoretical makespan computations. Overall good correlation is reported 

between practical makespan values and theoretical makespan values. Based on the results presented it is evident 

that execution of word frequency statistic application on proposed OHMR yields superior results when 

compared to similar experiments conducted on existing HMR framework. Accuracy and correctness of 

theoretical makespan model of OHMR presented is proved through correlation measures. 

 

 

 
 

Figure 4. Word frequency statistic application total makespan time observed for experiment conducted on 

OHMR and HMR frameworks 
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Figure 5. Correlation between theoretical and practical makespan times for word frequency statistic 

application execution on OHMR framework 

 

 

4.3. Hot-word detection computations 

 The hot-word detection algorithm [22] is developed using Java programing language. 

The “Movietweetings” dataset [23] is considered for experiment analysis and stored in Azure cloud container. 

Tweets consisting of 20000, 40000, 60000 and 80000 movies is considered and is represented as 20K, 40K, 

60K and 80K. The hot-word detection algorithm were executed on the OHMR and HMR framework and the 

results obtained are noted. The total makespan time of OHMR and existing model is noted and is shown in 

Figure 6. Experiment analyses shows as number of tweets increases the computation time of both OHMR and 

HMR increases. The outcomes shows significant performance in terms of reduce makespan times of OHMR 

over HMR. A makespan reduction of 54.19%, 45.13%, 60.68% and 54.69% is obtained for tweet size of 20K, 

40K, 60K and 80K respectively by OHMR over HMR. An average makespan reduction of 53.67% is achieved 

by OHMR over HMR across all experiments.   

 Theoretical makespan of OHMR i.e., 𝒲 given by Equation (11) is computed and compared against 

the practical values observed in all the experiments. Results obtained is shown in Figure 7. Minor variations is 

observed between practical and theoretical makespan computations. Overall good correlation is reported 

between practical makespan values and theoretical makespan values. Based on the results presented it is evident 

that execution of Hot-word detection on proposed OHMR yields superior results when compared to similar 

experiments conducted on existing HMR framework. Accuracy and correctness of theoretical makespan model 

of OHMR presented is proved through correlation measures. 

 

 

 
 

Figure 6. Hot-word detection total makespan time observed for experiment conducted on OHMR and HMR 

framework 
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Figure 7. Correlation between theoretical and practical makespan times for BLAST sequence alignment 

execution on OHMR framework 

 

 

 In this section the execution of the imprecise and bioinformatics applications namely word frequency 

statistics, hot word detection, and gene sequencing (BLAST) is presented. The results presented here prove 

that the OHMR model reduces the makespan observed due to the optimized makespan model incorporated in 

to HMR. An average reduction of 53.67% for word frequency statistics and 46.39% for the hot word detection 

is reported and 53.67% for the gene sequencing (BLAST) considering the OHMR model when compared to 

the existing HMR model [11]. The cumulative analysis over state-of-art technique in Table II shows the 

efficiency of OHMR over state-of-art technique in terms of robustness and scalability. Since, OHMR support 

execution of different application such as Bioinformatics and text mining over cloud platforms. Our OHMR 

makespan model aided in better cloud resource utilization. Theoretical comparison evaluation is considered 

and attained better result when compared with [12] and [14]. Adoption cloud platform aid in proving scalability 

of processing of large amount of data of various types on large computing clusters. All these feature attributed 

to the performance improvement of OHMR over state-of-art models.  

 

 

Table 2. Comparison with state of art technique 

 [11] [12] [13] [14] [15] OHMR 

MapReduce platform 

considered 

Hadoop Hadoop Hadoop Hadoop Hadoop Hadoop 

Cloud adopted Yes NO Yes Yes No Yes 

Application considered  Bioinformatics Word count Word count 

and Tera sort  

Word count 

and Sort 

Word count 

and Sort 

Bioinformatics 

and text mining  

Makespan accuracy 

evaluation considered  

No Yes No Yes No Yes 

Average percentage 

improvement over 

HMR framework 

40.28% 13.33% 34.83% 27.7% 43.91% 51.16% 

 

 

5. CONCLUSION 

 The significance of cloud computing platforms is discussed. Commonly adopted Hadoop map reduce 

framework working with its drawbacks is presented. To lower makespan times and enable effective utilization 

of cloud resources this paper proposes an OHMR framework. The main contribution of this work is presenting 

an accurate and efficient makespan model for Hadoop MapReduce framework. The amount resource required 

to meet task deadline is done based makespan model presented here. To evaluate the performance of proposed 

OHMR framework computationally heavy bioinformatics application and imprecise application such as word 

frequency statistics and hot word detection is considered. Performance of OHMR framework is compared with 

HMR framework in terms of makespan time. Average overall makespan times reduction of 55.03%, 46.39, and 

53.67% is achieved using OHMR framework when compared to HMR framework for BLAST, word frequency 

statistics, and hot word detection applications. Experiments presented prove robustness of OHMR framework, 

its capability to handle diverse applications on public and private cloud platforms. Results presented through 

experiments conducted prove superior performance of OHMR against Hadoop framework. Good matching is 

reported between the theoretical makespan of OHMR presented and experimental values observed.  
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 The future work would consider performance evaluation considering different application and also 

would further consider optimization of MapReduce scheduler for further reduction of computation time. We 

also consider presenting accurate and fast gene sequencing and novel bioinformatics applications. Then, 

evaluate the performance of OHMR considering different performance parameters.  
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