
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 12, No. 1, October 2018, pp. 87~94 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v12.i1.pp87-94      87 

  

Journal homepage: http://iaescore.com/journals/index.php/ijeecs 

Theoretical Analysis and Empirical Comparison of Different 

Population Initialization Techniques for Evolutionary 

Algorithms 
 

 

Devika. K, G. Jeyakumar 
Department of Computer Science and Engineering, Amrita School of Engineering, Coimbatore 

Amrita Vishwa Vidyapeetham, India 

 

 

Article Info  ABSTRACT 

Article history: 

Received Dec 26, 2017 

Revised Jan 09, 2018 

Accepted May 26, 2018 

 Evolutionary Algorithms (EAs) are the potential tools for solving 

optimization problems. The EAs are the population based algorithms and 

they search for the optimal solution(s) from a initial set of candidates 

solutions known as population. This population is to be initialized at first 

before the evolution of the algorithm starts. There exists different ways to 

initialize this population. Understanding and choosing the right population 

initialization technique for the given problem is a difficult task for the 

researchers and problem solvers. To alleviate this issue, this paper is framed 

with two objectives. The first objective is to present the details of various 

Population Initialization (PI) techniques of EAs, for the readers to give brief 

description of all the PI techniques. The second objective is to present the 

steps and empirical comparison of the results of two different PI techniques 

implemented for Differential Evolution (DE) algorithm. Theoretical insights 

and empirical results of the PI techniques are presented in this paper. 

Keywords: 

Differential Evolution 

Evolutionary Algorithms 

Population Initialization  

Random Initialization and 

Oppositional based 

initialization 

Copyright © 2018 Institute of Advanced Engineering and Science.  

All rights reserved. 

Corresponding Author: 

Devika.K,  

Department of Computer Science and Engineering, 

Amrita School of Engineering, Coimbatore, 

Amrita Vishwa Vidyapeetham, India. 

Email: cb.en.p2cse16008@cb.students.amrita.edu 

 

 

1. INTRODUCTION 

An optimization problem is a problem to which the best possible optimal solution is to be searched 

from a set of feasible ones in the population space. There exist numerous optimization algorithms in 

Mathematics and Computer Science. The Evolutionary Computation (EC) field of Computer Science has a 

set of algorithms known as Evolutionary Algorithms (EAs) for solving optimization problems. They are the 

most widely used tools to solve real time optimization problems [1-3]. It is a family of algorithms used for 

global optimization inspired from Darwin‟s theory of natural selection. Natural selection is the process by 

which the fittest candidate will survive longer. EAs are population based optimization algorithms. In EAs, a 

population of candidate solutions is generated initially and new solutions are generated iteratively by 

following the evolutionary process. Instances of EAs are Evolution Strategies (ES), Genetic Programming 

(GP), Evolutionary programming (EP), Genetic Algorithm (GA) and Differential Evolution (DE). In which, 

DE is a recent addition to EA family. All these instances follow the generate-and-test strategy of problem 

solving [4].  

In EA, the population is a set of possible solutions for a given problem. Each solution is represented 

as a vector (also termed as chromosome). Each chromosome consists of attributes and each attributes hold 

some value. The evolutionary search of an EA starts with an Initial Population (IP) of solutions. In general, 

the IP is generated randomly if no problem specific information is known. Otherwise, problem specific 

heuristics can be added for the population initialization. Considering these facts, there exist different 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 :  87 – 94 

88 

population initialization (PI) techniques in the literature of EC community. This includes algorithm specific 

and problem specific PI techniques.  

Each PI technique has its own characteristics. The objective of this paper is to present, in detail, 

different PI techniques of EAs. Further, in order to provide experimental evidences to the reader, this paper 

also discusses the results obtained by implementing two different PI techniques applied for DE algorithm. 

The theoretical information about PI techniques and the empirical results obtained using DE algorithm 

provided in this paper would definitely help the researchers in EC community to understand the importance 

of PI for solving the given problem. 

The paper is organized as follows. Section 2 discusses about the framework of Evolutionary 

Algorithm, Section 3 introduces the population concepts of EAs and Section 4 presents the details of PI 

techniques. The Section 5 explains the design of experiment and the Section 6 presents the empirical results 

of PI techniques on DE algorithm. Finally, the Section 7 concludes the papers. 

 

 

2. EVOLUTIONARY ALGORITHMS 

To solve an optimization problem, a set of few possible solutions (candidates) to the problem is 

created initially and given as input to the EA. The nature of EA is to generate new candidates (children) from 

the selected candidates (parents) of the initial population, and allow the fittest candidates among the parents 

and children to survive for the next generation. This phenomenon is derived from the „survival of the fittest‟ 

concept of Darwin‟s natural evolution theory. The candidates in a population are supplied with limited 

resources in an environment. Under the environment pressure, the individuals must compete each other for 

the resources which results in survival of the fitter individuals. Based on the objective of the chosen problem, 

a fitness function is defined to measure the fitness of each candidate in the population. Based on the fitness 

values fittest candidates are chosen for the next generation. The evolutionary operators used during the EA 

process are Recombination and mutation. Recombination is applied between two or more selected 

candidates, which are called as parent candidates. Recombination results in one or more new candidates. 

Mutation is applied on a single candidate and results a new candidate. Mutation and recombination on 

selected candidates leads to the creation of new candidates (offsprings). Hence they are named as variation 

operators. Then the selection operator decides the survivors for next generation from the pool of parents and 

offsprings. The variation and selection operations are carried out iteratively until the algorithm reaches a user 

defined stopping criteria. It is very well evident that, after every iteration, the best candidate in the population 

moves towards the global optimal solution [4]. The general structure of EA is shown in Figure 1. As it is 

noted from the algorithmic structure shown in Figure 1, the EA comes under the category of generate-and-test 

algorithms. The most important components of EA are 1) Candidate Representation 2) Population 

Initialization 3) Fitness function 4) Parent selection mechanism 5) Variation operators and 6)Survivor 

selection mechanism  

 

 

3. POPULATION 

Population creates the unit of evolution for the EA. The candidates (individuals or chromosomes) in 

a population represent possible solutions of the problem to be solved. The number of parameters represented 

in a candidate is equal to the dimension of the problem. This is denoted as chromosome length. All the 

candidates in a population will have equal length. It is necessary to initialize/define a population by 

specifying the number of individuals (population size) in the population. Most of the cases the population 

size of the EA are kept constant. This leads to the competition for limited resources between the candidates. 

For instances, the fittest candidate of a population is selected for next generation and the worst candidate is 

replaced by the best candidate. The number of different candidates present in a population specifies the 

diversity of the population. The population with set of possible solutions is also termed as solution space. The 

dimension of the solution space is the dimension of the problem to be solved. The EA, start the search of 

global optimal solution from the initial population. As the search proceeds, the evolutionary operators 

(selection, recombination and mutation) bring changes in the population by adding/deleting/modifying the 

candidates. This evolutionary change in the population spaces can be depicted as an adaptive population 

landscape. An example adaptive landscape of a population with two dimensional problems is shown in 

Figure 2 (This figure is directly taken from [4]). 

 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Theoretical Analysis and Empirical Comparison of Different Population… (Devika.K) 

89 

  
  

Figure 1. The structure of EA Figure 2. A sample landscape of a population 

 

 

4. POPULATION INITIALIZATION TECHNIQUES 

The population initialization is the initial step for all EAs and it randomly or heuristically provides 

initial guess of solutions. If the initial guesses are good, it helps the EA to find the optimal solution faster. 

The wrong initial guesses will affect the performance the EA, by directing it to waste the time in searching 

for the solutions in the non-promising area of the solution space. Also, it is difficult to determine whether the 

initialized population is good or not. 

Since success of an EA starts with a good initial population, investigating and proposing different 

population initialization techniques is a good research area for the EC community. There are many 

population initialization (PI) techniques proposed by different researchers, which are supporting EAs in 

finding the optimal solution with less computational cost [5-8].  

This section discusses different PI techniques commonly used in EA design. The different 

population initialization techniques are: Pseudo Random Number Generators (PRNGs), Chaotic Number 

Generators (CNGs), Quasi Random Sequence (QRS), Uniform Experimental Design (UED), Sobol Set (SBL), 

Good Lattice Point (GLP), Random Start Quasi Random Sequence (RSQRS), Scrambled Quasi Random 

Sequence (SQRS),Mixed Pseudo Random Sequence (MPRS), Oppositional Based Learning (OBL) and 

Centroid Voronoi tessellation (CVT) 

These PI techniques can be categorized in to three groups, based on their characteristics and the way 

it works for generating the random numbers. The three broad categories are: Group 1: „Randomness‟ group, 

Group 2: „Compositionality‟ group and Group 3: „Generality’ group 

The PI techniques in which the random numbers are uniformly distributed and predictions of the 

future values are not possible are grouped under „randomness’ group. The „compositionality’ of PI 

techniques deals with the number of steps used for generating the population and „generality’ deals with the 

usage of PI technique to solve normal problems as well as to solve specific problems. Each  group has again 

two sub categories. A chart visualizing this categorization is shown in Figure 3, and the sub categories are [5] 

Stochastic - Population depends upon the initial seed, Deterministic - Always generate same population, Non-

compositional:- Produces population in a single step, Compositional: - Comprises more than one step, 

Generic: - Can be used in all type of optimization problems and Application specific: - Applicable to 

particular real world problems. 

 

 

 
 

Figure 3. Categorization of PI techniques 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 :  87 – 94 

90 

4.1.  Pseudo Random Number Generators (PRNGs) 

As computers fails in producing true random numbers, pseudo random numbers are used to generate 

random numbers. PRNGs will generate numbers which look like random. Ranking of different PRNGs can be 

done based on two factors – Cycle_Time and Equidistribution. 

Cycle_Time is the smallest integer that the PRNG repeats producing from the previously produced 

numbers and equidistribution is the range of points which have equal distribution [5]. The different pseudo 

Random generators are:  (1) GCC RAND (2) Multiply With Carry Generator (MWC) (3) Complimentary 

Multiply With Carry Generator (CMWC) (4) Linear Congruential Generator (LCG) (5) XOR Shift Generator 

(XOR) (6) Mersenne Twister (MT) (7) Well Equidistributed Long Period Linear (WELL) (8) Keep It Simple 

Stupid (KISS). 

The GCC RAND is an inbuilt PRNG which is available in all programming languages like C, C++. 

The MWC can be used to generate random numbers quickly and slight modification in modulo arithmetic 

give rise to another PRNG called CMWC. The XOR PRNG uses Exclusive-OR Boolean operation to generate 

random numbers. One of the well-known and the oldest PRNG is LCG and it generates non continuous 

random numbers using linear equations. To generate high quality random numbers MT is used and it‟s the 

most widely used PRNG. Mersenne Twister name is derived from Mersenne Prime because the period length 

chosen to be a Mersenne Prime. Mersenne Prime is a prime number that is one less than power of two. The 

MT is the first PRNG to generate fast and high quality random numbers. Commonly used version of MT 

algorithm is based on Mersenne Prime 2
19937

-1. Different versions of WELL generator are proposed for 

generating random numbers. The KISS PRNG can‟t be used in context where cryptographic security is 

important.  The MT is available in all programming languages so it‟s the most popular method in PRNG. 

Choice of PRNG can affect the performance of EA [5, 9, 10].  The PRNG has several merits and demerits. 

The merits are: 

a. PRNG‟s are easily available in every programming language. 

b. There is no restriction for population size and on the number of decision variables. 

c. Simple technique. 

d. Uniform population can be generated 

e. Transformation from uniform population to biased population is easy. 

The demerits are: 

a. Can‟t generate perfect evenly distributed points. 

b. PRNG suffers from the curse of dimensionality. 

These demerits will affect EA process more when the search space is vast and the dimensionality of 

the problem is too low. 

 

4.2.  Chaotic Number Generators (CNGs) 

The working of CNGs is based on chaos theory. Chaos is very sensitive to initial conditions. It is 

difficult to predict the numbers generated by CNGs. The CNGs mainly use recursive algorithms. To generate 

chaotic sequence an initial seed is selected randomly and a function (map) is applied on it. The map is 

applied several times to the previously generated numbers to get the sequence. Different types of one 

dimensional and two dimensional maps are available [5, 11]. They are Circle Map, Cubic Map, Gauss Map, 

ICMIC map, Logistic Map, Sinusoidal Iterator, Tent Map, Baker‟s Map, Arnold‟s Map and Zaslavskli‟s Map  

Baker‟s, Arnold‟s and Zaslavskli‟s are two dimensional maps and all others are one dimensional 

maps. To generate a population using CNG proper maps are required. Tent map is most commonly used in 

CNG, because it has higher iterative speed compared to other maps. Tent map generate uniformly generated 

chaotic sequence within the range of [0, 1]. 

The main properties of CNG are ergodicity, randomness and regularity. Opting CNG as PI technique 

will improve the performance of EA in terms of population size, success rate and convergence rate [5, 11]. 

 

4.3.  Quasi Random Sequence (QRS) 

The QRS will generate the sequences which are neither true random nor pseudo random and it 

doesn‟t require any random element. The QRS is also called as low discrepancy sequences or sub random 

sequences. In worst case QRS can be non-uniform. Compared to PRNG, the QRS is used in high dimensional 

problems. Sometimes the numerical algorithms in the QRS will contradict each other [5]. 

 

4.4.  Uniform Experimental Design (UED) 

It is a type of space filling algorithm which looks for the points that have to be evenly distributed in 

a given range. The UED is mainly used in computer simulated designs. The QRS uses only one dimension 

projection whereas UED uses D dimension projections this is one advantage of UED over QRS [5].  

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Theoretical Analysis and Empirical Comparison of Different Population… (Devika.K) 

91 

4.5.  Sobol Set (SBL) 

The SBL will generate populations which are well distributed in the decision space. The Sobol 

sequence values will be in between zero and one. Most commonly used algorithm for generating sobol 

sequence is Algorithm-659 and it can generate the integers up to 40 dimensions [8]. 

 

4.6.  Good Lattice Point (GLP) 

The GLP generates points which are evenly distributes in the decision space. Lattice point is a group 

of points in the same location. Lattice rules are used to create sequence in GLP [8]. 

 

4.7.  Centroid Voronoi Tessellation (CVT) 

The CVT helps to divide the search space in equal volumes. The CVT doesn‟t use fitness function to 

evaluate the population. Initial population is created using any of the PI techniques. The population space is 

divided into some partitions using randomly generated auxiliary points. These partitions are iteratively 

enhanced till the termination criteria are met [5].  

 

4.8. Oppositional Based Learning (OBL) 

Initially, OBL generates population called original population. The original population can be 

generated using any of the existing population initialization techniques. Then a new population is created by 

applying some heuristics rules and that new population is called opposite population. By comparing the 

fitness of the candidates in both the populations, a subset is created from the union of initial and opposite 

populations. Main goal of OBL is to make the population closer to the optimal solution [5, 8]. The variants of 

OBL are Quasi Opposition Based Learning (QOBL), Quasi Reflection Opposition Based Learning (QROBL), 

Center Based Sampling (CBS), Generalized Opposition Based Learning (GOBL) and Current Optimum 

Opposition Based Learning (COOBL) 

In QOBL instead of actual opposite point quasi opposite point is used. Quasi opposite point is a 

point which is randomly generated and it‟s located between the opposite point and the middle point. The 

performance of OBL and its variants depends upon the original population. Compared to OBL and QOBL the 

QROBL will generate the population which is more close to the optimal solution. The OBL tends to find the 

optimal solution faster than other PI techniques. Several studies claim that for wide range of problems the 

best performing PI technique is OBL [10]. The CNG, OBL and QOBL PI techniques can work well on both 

high dimensional and low dimensional problems. Studies show that PI component of EA is an interesting 

research segment for EC community. Further research studies on this can add new advanced PI techniques to 

work well on large scale optimization problems. 

As discussed above, there exist several PI techniques for EA. The performance of the EA can be 

affected by the usage of particular PI technique. Categorization of PI techniques gives a rough picture about 

the working of various PI techniques. Each technique has different variants. The PI is the initial stage of all 

EA, therefore it is important to choose the best suitable PI technique for the problem to be solved. The studies 

on PI techniques reveal that OBL is the best PI technique for EA [12, 13] which helps in generating high 

quality solutions. The OBL based PI was experimented on DE algorithm in [14]. 

 

 

5. DESIGN OF EXPERIMENT 

The DE algorithm proposed by Rainer Storn in [15] is used in this experiment. DE has the 

algorithmic structure similar to other EAs [16], however it has a unique mutation scheme called as 

differential mutation. There are many research works to propose improved DE algorithms [17, 18] and to use 

it for real time optimization problems [19]. There exists few works where different population initialization is 

experimented for DE [20, 21]. A research work to study the performance of OBL PI technique using 

convergence speed is presented in [12], for a DE variant with 34 benchmark functions. The population 

dynamics of the chosen DE algorithms is analyzed well and reported in the literature using the random PI 

technique [22-25]. 

The empirical results obtained by implementing two PI techniques for DE is presented in this 

Section. The DE algorithm has been implemented using random and OBL PI techniques. The experimental 

setup includes 4 different DE variants and 4 benchmarking functions. The DE variants used are 

DE/rand/1/bin, DE/rand/1/exp, DE/best/1/bin and DE/best/1/exp. The benchmark functions used are Sphere 

model – f1, Schewefel's problem - f2, Generalized Rosenbrock's function – f3 and Generalized Schewefel's 

problem – f4. The details of the benchmarking functions are presented in Table 1. The design experiment 

includes setting up values for the parameters. The parameters for DE algorithm and their corresponding 

values used in the experiment are shown in Table 2. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 :  87 – 94 

92 

The PI techniques used in the experiment are random PI and OBL PI. The DE algorithms with these 

PI techniques are names as DERPI and DEOBLPI, henceforth. They are implemented for two different 

population sizes: NP = 5 (with D = 5) and NP = 60 (with D = 30). In DERPI, the values for each of the 

component of a chromosome are generated randomly within the allowed range mentioned in the 

benchmarking functions. For the chromosome i of the population X, the j
th

 component is initialized as follows 

 

  [ ]     (     )      (    )      (1) 

 

where xl and xu are the lower and upper bound of the allowed values of the component and seed is the input 

for the random number generator. 

In DEOBLPI, an initial population is created randomly (as above) then an opposite population is 

generated with this initial population which contains the opposite of each individual. The opposite candidate 

(OXi) for each candidate (Xi) in the population is created using the equation (2). New population is created by 

combining the initial population and opposite population. Then the best NP candidates from the combined 

population are selected for initial population. 

 

   [ ]           [ ]        (2) 

 

The performance of DERPI and DEOBLPI is compared by the mean objective function (MOV) values. 

The MOV is the average of the best objective function values obtained by the algorithm at the end of each 

run. It is calculated as follows 

 

     (∑        
      
   )             (3) 

 

where MaxRun is the maximum number of runs (which is set as 50) and BestOVi is the best objective 

function value obtained by the algorithm for the run i. 

 

 

Table 1.  Functional description of the benchmarking functions 
f1 – Sphere model 

     ( )  ∑   
  

     

                  
   (       ); 

   ( 
 )      

f2 – Schwefel’s Problem 1.2 

    ( )  ∑ (∑   
 
   )

  
     

                 
   (       ); 

    ( 
 )      

f3 - Generalized Rosenbrock's Function  

    ( )  ∑ |   (       
 )  (    )

 | 
     

               
    (       ); 
   ( 

 )      

f4 – Generalized Schwefel’s Problem 2.26 

      ( )  ∑ (     (√|  |))
 
     

 
                

     (                   ); 
      ( 

 )                        

 

 

Table 2. The parameter set up for the experiment 
Sno Parameter Value 

1 Population Size (NP) 5 and 60 

2 Dimension (D) 5 and 30 

3 Crossover Rate (Cr) 0.9 
4 Mutation Step Size (F) 0.1 to 0.9 

5 Maximum Number of Generation (MaxGen) 1000 

6 Number of runs (MaxRun) 50 

 

 

6. RESULTS AND DISCUSSIONS 

The chosen benchmarking problems are solved by the DERPI and DEOBLPI algorithms for two 

different parameter set ups considering for smaller and larger population sizes (as mentioned below). 

(1) NP = 5, D = 5, Cr = 0.9, F = 0.1 to 0.9, MaxGen = 1000 and MaxRun = 50 and 

(2) NP = 60, D = 30, Cr = 0.9, F = 0.1 to 0.9, MaxGen = 1000 and MaxRun = 50  

Each benchmarking functions are solved by four variants of both the algorithms. Considering 4 

benchmarking functions, 4 Variants and 2 algorithms, the experiment covers 32 possible combinations of 

functions, algorithms and the variants.The MOVs measured for the smaller population size (ie., NP  = 5) is 

presented in Table 3, and for the larger population size (ie NP = 60) it is presented in Table 4. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Theoretical Analysis and Empirical Comparison of Different Population… (Devika.K) 

93 

It is observed from the comparative results that for the lower population size (Table 3) the DEOBLPI 

outperforms DERPI only in 7 out of 16 cases, by providing more accurate solutions. However for the larger 

population size (Table 4) the DEOBLPI outperforms DERPI in all the cases, except in the case of f1-rand/1/bin 

combination where both the algorithms performed similar. It is worth noting that the effect opposite 

population in population initialization is not significant while the population size is smaller. In case of larger 

population size the opposite population had greater influence in the initial population thus all the function and 

variant combinations were able to achieve good solutions. This proves the novelty of the OBL PI technique in 

improving the search of EA. Thus the validity of the OBL PI is reiterated in this small experimental set up. 

 

 

Table 3. MOV obtained for NP = 5 
Function  Variant DERPI DEOBLPI 

f1 

 
rand/1/bin 1284.85 2022.57 
rand/1/exp 1105.60 1400.32 

best/1/bin 2582.08 10216.14 

best/1/exp 1956.78 1174.14 
f2 

 

rand/1/bin 1167.37 1815.35 

rand/1/exp 1233.14 5201.73 

best/1/bin 2392.33 661.05 
best/1/exp 626.10 5293.89 

f3 

 

rand/1/bin 467173 93637.02 

rand/1/exp 43856.51 77850.57 
best/1/bin 1542797 2564800 

best/1/exp 442737.31 179507.71 

f4 
 

rand/1/bin 5664.98 7721.12 
rand/1/exp 5706.62 5482.35 

best/1/bin 10817.67 10187.12 

best/1/exp 10230.97 9114.67 

 

 

Table 4. MOV obtained for NP = 5 
Function Variant DERPI DEOBLPI 

f1 rand/1/bin 0.00 0.00 
rand/1/exp 1.78 1.45 

best/1/bin 3284.47 3183.07 

best/1/exp 734.18 640.93 
f2 

 

rand/1/bin 46.65 24.63 

rand/1/exp 475.83 445.17 

best/1/bin 5162.91 3700.08 
best/1/exp 25.99 16.83 

f3 

 

rand/1/bin 40.68 35.10 

rand/1/exp 731.35 434.53 
best/1/bin 1370607 1137933 

best/1/exp 463698.81 319656 

f4 
 

rand/1/bin 0.15 0.08 
rand/1/exp 0.09 0.03 

best/1/bin 130.26 0.12 

best/1/exp 0.01 0.00 

 

 

7. CONCLUSIONS 

This paper presents a survey on existing PI techniques for EAs. The categorization presented in the 

paper would support the researchers to get an insight of various PI techniques and their types. This in turn 

will help them to select a suitable PI technique for solving their problem. The experimental details of 

implementing the random PI and OBL PI techniques for DE algorithm also presented in this paper. The 

comparative study of these two techniques reveals that the OBL PI technique is performing better than the 

random PI technique for larger population sizes. 

As an initial attempt, this study is done on a simple experimental setup with one 4 DE variants and 4 

benchmarking functions. However, this work can be extended further by implementing all the PI techniques 

on a single EA with uniform design of experiment. A systematic empirical comparison of all the PI 

techniques can be performed based on the results, to understand and validate the unique nature of each of 

them.  

 

 

REFERENCES 
[1] Sandip Chanda, Abhinandan De, “Congestion Relief of Contingent Power Network with Evolutionary Optimization 

Algorithm”. TELKOMNIKA (Telecommunication, Computing, Electronics and Control), Vol.10, No.1, pp. 1-8, 

2012. 

[2] Shufang Wu, Tiexiong Su, “Optimization Design of Cantilever Beam for Cantilever Crane Based on Improved GA”, 

Indonesian Journal of Electrical Engineering and Computer Science, Vol.12, No.4, pp. 2652 - 2657, 2014. 

[3] Liu Xiaoxiong, Wang Juan, Wu yan, Liu Yu, “The Optimization of Lateral Control Augmentation based on Genetic 

Algorithms”. Indonesian Journal of Electrical Engineering and Computer Science, Vol. 11, No. 6, pp. 2962 – 2967, 

2013. 

[4] Eiben, Agoston E., and James E. Smith. Introduction to evolutionary computing. Vol. 53. Heidelberg: springer, 

2003. 

[5] Kazimipour Borhan, Xiaodong Li, and A. Kai Qin. "A review of population initialization techniques for 

evolutionary algorithms." 2014 IEEE Congress on Evolutionary Computation (CEC), 2014. 

[6] Kondamadugula, Sita, and Srinath R. Naidu. "Accelerated evolutionary algorithms with parameter importance based 

population initialization for variation-aware analog yield optimization." Circuits and Systems (MWSCAS), 2016 

IEEE 59th International Midwest Symposium on. IEEE, 2016. 

[7] Kazimipour, Borhan, Xiaodong Li, and A. Kai Qin. "Initialization methods for large scale global optimization." 

2013 IEEE Congress on Evolutionary Computation (CEC), 2013. 

[8] Kazimipour  Borhan, Xiaodong Li, and A. Kai Qin. "Effects of population initialization on differential evolution for 

large scale optimization." 2014 IEEE Congress on Evolutionary Computation (CEC), IEEE, 2014. 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 12, No. 1, October 2018 :  87 – 94 

94 

[9] Rajashekharan, Lekshmi, and C. Shunmuga Velayutham. "Is Differential Evolution Sensitive to Pseudo Random 

Number Generator Quality?–An Investigation." Intelligent Systems Technologies and Applications. Springer, Cham, 

2016. 305-313. 

[10] Segredo, Eduardo, et al. "On the comparison of initialisation strategies in differential evolution for large scale 

optimisation." Optimization Letters , pp. 1-14, 2017. 

[11] Lu, Hui, et al. "The effects of using Chaotic map on improving the performance of multiobjective evolutionary 

algorithms." Mathematical Problems in Engineering 2014 (2014). 

[12] Rahnamayan, Shahryar, Hamid R. Tizhoosh, and Magdy MA Salama. "A novel population initialization method for 

accelerating evolutionary algorithms." Computers & Mathematics with Applications, Vol.  53, No. 10, pp. 1605-

1614, 2007. 

[13] Shahryar Rahnamayan,  Hamid R. Tizhoosh, and Magdy M. A. Salama, “Opposition-Based Differential Evolution”. 

IEEE Transactions On Evolutionary Computation, Vol. 12, No. 1,  2008. 

[14] Rahnamayan S., Tizhoosh H.R. “Differential Evolution Via Exploiting Opposite Populations”. In: Tizhoosh H.R., 

Ventresca M. (eds) Oppositional Concepts in Computational Intelligence, Studies in Computational Intelligence, 

Vol 155, pp 143-160. Springer, Berlin, Heidelberg, 2009. 

[15] Storn, Rainer, and Kenneth Price. "Differential evolution–a simple and efficient heuristic for global optimization 

over continuous spaces." Journal of global optimization, Vol. 11, No. 4, pp. 341-359, 1997. 

[16] Jianfeng Qiu, Jiwen Wang, Dan Yang, Juanxie. “A Comparison of Improved Artificial Bee Colony Algorithms 

Based on Differential Evolution”, Indonesian Journal of Electrical Engineering and Computer Science, Vol. 11, No. 

10,  pp. 5579 – 5587, 2013. 

[17] Lingjuan HOU, Zhijiang HOU, “A Novel Discrete Differential Evolution Algorithm”, Indonesian Journal of 

Electrical Engineering and Computer Science, Vol. 11, No. 4, pp. 1883~1888, 2013. 

[18] Jeyakumar, G. and ShunmugaVelayutham, C. “Distributed Heterogeneous Mixing of Differential and Dynamic 

Differential Evolution Variants for Unconstrained Global Optimization”, Soft Computing – Springer, Volume 18, 

Issue 10 (2014), Page 1949-1965, October -2014. 

[19] Zain Zaharn, Ruifeng Shi, Xiangjie Liu, “The Power Unit Coordinated Control via Uniform Differential Evolution 

Algorithm”. Indonesian Journal of Electrical Engineering and Computer Science, Vol.11, No. 7, pp. 3498 - 3507, 

2013. 

[20] Wang, Jiahai, Weiwei Zhang, and Jun Zhang. "Cooperative differential evolution with multiple populations for 

multiobjective optimization." IEEE transactions on cybernetics 46.12 (2016): 2848-2861. 

[21] Salehinejad, Hojjat, and Shahryar Rahnamayan. "Effects of centralized population initialization in differential 

evolution." Computational Intelligence (SSCI), 2016 IEEE Symposium Series on. IEEE, 2016. 

[22] S. Thangavelu,G. Jeyakumar and C. Shunmuga Velyautham, “Population Variance Based Empirical Analysis of the 

Behavior of Differential Evolution Variants”, Applied Mathematical Sciences, HIKARI Ltd,  Vol. 9, No. 66, pp.  

3249 – 3263, 2015.  

[23] Ramya Raghu and G Jeyakumar, “Empirical Analysis on the Population Diversity of the Sub-populations in 

Distributed Differential Evolution Algorithm,” In Proceedings of Springer International Conference on Soft 

Computing Systems, and in International Journal of Control Theory and Applications, Vol. 8,No. 5, pp. 1809-1816, 

2016.  

[24] M.S. Akhila, C.R. Vidhya and G. Jeyakumar, “Population Diversity Measurement Methods to Analyze the Behavior 

of Differential Evolution Algorithm,” In Proceedings of Springer International Conference on Soft Computing 

Systems, and in International Journal of Control Theory and Applications, Vol. 8, No. 5, pp. 1709-1717, 2016.  

[25] Ramya Raghu and G.Jeyakumar, “Mathematical Modelling of Migration Process to Measure Population Diversity of 

Distributed Evolutionary Algorithms”, Indian Journal of Science and Technology, Vol, 9., No. 31, pp. 1-10, 2016.  

 


