Performance evaluation of different configurations of system with DSTATCOM using proposed Icos \(\phi \) technique

Atma Ram, Parsh Ram Sharma, Rajesh Kumar Ahuja
Department of Electrical Engineering, Faculty in Engineering and Technology, J. C. Bose University of Science and Technology, YMCA, Faridabad, India

Article Info

ABSTRACT

The proposed Icos \(\phi \) control technique has been applied for power quality improvement using different configurations of system with distribution static compensator (DSTATCOM). Modeling, design and control of DSTATCOM are analyzed in detail. Three phase reference current are extracted with this technique. The proposed technique has been used for power factor enhancement, voltage regulation, harmonic suppression and load balancing under dynamic condition with non-linear load. The proposed control is very effective for three different configurations of system with DSTATCOM for power quality improvement. Results for each configuration of system with DSTATCOM are simulated using MATLAB/Simulink sim power tool box. For teaching the power quality course, these can also be helpful.

This is an open access article under the CC BY-SA license.

Corresponding Author:
Atma Ram
Department of Electrical Engineering, Faculty in Engineering and Technology
J. C. Bose University of Science and Technology, YMCA
Faridabad, Haryana 121006, India
Email: atma.ram12@gmail.com, atmaram@jcboseust.ac.in

1. INTRODUCTION

At the present the poor power quality is the major problems at load end in distribution system [1]-[4]. Most of linear loads are lagging power factor and non-linear loads which creates power quality problems, for example converter based on power electronics used in uninterruptible power supply (UPS), variable speed alternating current (AC) and direct current (DC) drives, television (TV), domestic load, battery charger. Reactive power is drawn by this type of load and generates harmonic problems in distribution system, which creates distortion in source and reduces load side voltage. For enhancement of these kinds of problems distribution static compensator (DSTATCOM) can be used at point of common coupling (PCC). Various configuration of DSTATCOM for enhancement of power quality are presented in literature for example, 3-legs voltage source converter (VSC) [1], three legs VSC with split capacitor [3], four legs based VSC [4], and H-bridge using star/delta transformer [5], and three legs VSC using zig-zag transformer [6]-[10].

Various control methods are presented literature for control of DSTATCOM and computation of supply reference current such as proportional integral (PI) controller based instantaneous reactive power theory (IRPT), instantaneous-symmetrical component (ISC), neural network controller and synchronous reference frame theory (SRFT) [1]-[4]. Mechanism based on Icos \(\phi \) control technique has been described power factor improvement using DSTATCOM in [11]-[13]. The 3-phases 4-wires distribution system with zig-zag transformer and DSTATCOM are presented in [14] using MATLAB. DSTATCOM with 3-different system topologies have been implemented using synchronous reference frame theory (SRFT) technique [15]. Self tuned filter based IRPT technique for enhancement of power quality has been reported in [16]. Different
topologies with DSTATCOM for mitigation of power quality issues in distribution system have been
developed and implemented [17]. LMS based control technique is developed for reference current extraction
and these currents are subtracted from real supply current for estimation of firing pulses for DSTATCOM [18].
Neural network based on back propagation in Icos φ technique is presented for 3-phases 4-wires
DSTATCOM for reduction of power quality related problems and active/reactive components of weight are
estimated smoothly for reference current generation with this technique [19]. The comparison of star/delta
and zig/zag transformer based DSTATCOM with unit templates based control technique has been presented
in [20]. Fuel cell integration in distribution system through DSTATCOM for power quality improvement
using Icos φ technique for reference current extraction has been described [21]. The photovoltaic supported
DSTATCOM in distribution system has been implemented with Icos φ control technique for power quality
improvement [22]. Comparisons of phase locked loop (PLL) based control mechanism with DSTATCOM
have been implemented for mitigation of load created power quality problems [23]. The quasi newton least
mean fourth based control mechanism has been described with DSTATCOM and used mitigation of power
quality problems in PSMG which is used as wind generation unit [24]. The optimal step least mean square
(LMS) based control technique with DSTATCOM in three phase distribution system has been presented for
harmonic suppression and reactive power compensation [25]. Least mean square-least mean forth (LMS-
LMF) based control technique for DSTATCOM in power factor correction (PFC) and zero voltage regulation
(ZVR) mode operation has been presented for mitigation of power quality problems [26]. Adaptive voltaire
second-order filter (AVSF) based control algorithm with DSTATCOM has been presented for harmonic
suppression and compensation of reactive power in distribution system [27].

The technique based on hopfield neural network (HNN) for DSTATCOM has been developed for
improvement of power quality in terms of power factor improvement, source side harmonic suppression and
load balancing in a distribution system [28]. The SRFT technique using advance phase-locked loop (PLL) for
H bridge multilevel inverter based DSTATCOM has been presented for mitigation of power qualities issues
[29]. The adaptive control using Kernel based training in Icos φ technique used for retained the direct and
quadrature component of load currents, has been proposed for fuel cell based DSTATCOM for power
qualities problems improvement [30]. Different configurations of systems with DSTATCOM are described
using proposed Icos φ technique in MATLAB. DSTATCOM performances are studied in terms of supply
current harmonics elimination, load balancing and reactive power compensation under non-linear varying load.

2. THREE DIFFERENT CONFIGURATIONS OF SYSTEM WITH DSTATCOM

Many configurations of system are exists with DSTATCOM. Out of many configurations of system
three are selected and these are;
- Configuration1 of system with DSTATCOM using source side rectifier is presented in Figure 1 and
 implemented for power quality improvement with proposed Icos φ technique for PFC mode of
 DSTATCOM operation for harmonic suppression, load balancing, reactive power compensation and voltage
 regulation.

![Figure 1. DSTATCOM with configuration1](image-url)
Configuration 2 of system with DSTATCOM using rectifier on load side is presented in Figure 2 and implemented for power quality improvement with proposed Icos ϕ technique for PFC mode of DSTATCOM operation for harmonic suppression, compensation of reactive power, load balancing and voltage regulation.

Configuration 3 of system with DSTATCOM using DC voltage source is presented in Figure 3 and implemented for power quality improvement with proposed Icos ϕ technique for PFC mode of DSTATCOM operation for harmonic suppression, reactive power compensation, load balancing and voltage regulation.

Non-linear load with has been selected for all above system configurations under dynamic condition.

![Figure 2. DSTATCOM with configuration 2](image)

![Figure 3. DSTATCOM with configuration 3](image)

3. PROPOSED CONTROL METHOD

The proposed Icos ϕ is shown in Figure 4. The coupling point voltages (V_{sa}, V_{sb}, V_{sc}), source currents (i_{sa}, i_{sb}, i_{sc}), load current (i_{la}, i_{lb}, i_{lc}), and V_{dc}, DC output voltage of DSTATCOM are used as feedback signal for controller design. Supply reference currents are extracted with the help of these signals.
Here it is assumed that using Icos ϕ technique only active power components of load current are supplied by source. Where I and ϕ represents the amplitude of essential load current and displacement angle w.r.t. PCC voltage. For estimation of supply reference current, Icos ϕ and Isin ϕ component of load currents are multiplied unit templates of coupling point voltage. The instantaneous value load currents are given by,

$$i_{La} = \sum_{n=1}^{\infty} I_{lan} \sin(n\omega t - \phi_{an})$$

(1)

$$i_{Lb} = \sum_{n=1}^{\infty} I_{lbn} \sin(n\omega t - \phi_{bn} - 120^\circ)$$

(2)

$$i_{Lc} = \sum_{n=1}^{\infty} I_{lcn} \sin(n\omega t - \phi_{cn} - 240^\circ)$$

(3)

where ϕ_a, ϕ_b and ϕ_c are phase’s angle for a, b and c phase respectively of essential component of load currents. ϕ_{an}, ϕ_{bn}, ϕ_{cn} are the phase angle for a, b, c phase respectively of nth harmonic current. i_{La}, i_{Lb}, i_{Lc} are the amplitude for a, b, c phase respectively of load current fundamental component. I_{lan}, I_{lbn} and I_{lcn} are the amplitude for a, b and c phase respectively of load current nth harmonic current component.

The magnitude Icos ϕ of essential active component of load current is computed at zero crossing of in-phase templates of coupling point voltage by shifting the load current via 90° from load current, through low power filter sets. Filters having cut of frequency 50 Hz are used to abstract essential load current. Zero crossing detector (ZCD) and a sample and hold circuit (SHC) are used for extraction of Icos ϕ. Reference source current active component average value magnitude is given by (5),

$$I_{sp} = \frac{I_{La} \cos \phi_a + I_{Lb} \cos \phi_b + I_{Lc} \cos \phi_c}{3}$$

(4)

where I_{La}, I_{Lb}, I_{Lc} are the amplitude of active component for a, b and c phase respectively. I_d. Output current of DC PI controller of DSTATCOM and written as (6),

$$I_d = K_{pdc}V_{dce} + K_{ide} \int V_{dc} \, dt$$

(6)

where $V_{dce} = V_{dc} - V_{dc}^*$ = error signal, V_{dc} = output of DSTATCOM, V_{dce} = Reference DC voltage. K_{pdc} and K_{ide} are gains for DC PI controller.
In same way the amplitude I sin ϕ of essential load current reactive component is computed at zero crossing of quadrature template of coupling point voltage, from filtered essential load current. Average value of reference source current reactive component is given by (7),

$$I_{sa} = \frac{-[|I_{ia}| \sin \phi_a + |I_{ib}| \sin \phi_b + |I_{ic}| \sin \phi_c + i_a]_3}{3}$$ \hspace{1cm} (7)

where $|I_{ia}| \sin \phi_a$, $|I_{ib}| \sin \phi_b$ and $|I_{ic}| \sin \phi_c$ are amplitude of reactive component a, b and c phase respectively. Output current of AC PI controller I_a is expressed as (8),

$$I_a = K_{pac}V_{dac} + K_{iac} \int V_{dac} \, dt$$ \hspace{1cm} (8)

where $V_{dac} = V_{ac}^* - V_{ac}$ = coupling point voltage error signal, V_{ac}^* = coupling point voltage reference value, V_{ac} = coupling point actual voltage. K_{pac} and K_{iac} are gains for AC-PI controller.

Source current active component for each phase can be achieved using in phase templates and given by (9).

$$I_{sap} = I_{sp}U_{pa}, \quad I_{sbp} = I_{sp}U_{pb}, \quad I_{scp} = I_{sp}U_{pc}$$ \hspace{1cm} (9)

Source current reactive component for each phase can be achieved using quadrature templates and given by (10).

$$I_{saq} = I_{sd}U_{qa}, \quad I_{sbq} = I_{sd}U_{qb}, \quad I_{scq} = I_{sd}U_{qc}$$ \hspace{1cm} (10)

Reference total source currents (I_{sa}^*, I_{sb}^* and I_{sc}^*) are calculated with addition of respective active and reactive phase component.

$$I_{sa}^* = I_{sap} + I_{saq}, \quad I_{sb}^* = I_{sbp} + I_{sbq}, \quad I_{sc}^* = I_{scp} + I_{scq}$$ \hspace{1cm} (11)

By subtracting these currents (I_{sa}^*, I_{sb}^* and I_{sc}^*) from source currents (I_{sa}, I_{sb} and I_{sc}) and an error signal for each leg of VSC are extracted. Error signal are supplied to hysteresis current controller (HCC). HCC produces the pulses with the help of these error signals for insulated gate bipolar transistor (IGBT) based DSTATCOM.

4. RESULTS AND DISCUSSION

Three different system configurations are implemented with DSTATCOM in MATLAB/Simulink. Then proposed Icos ϕ method is used for control of DSTATCOM for enhancement of power quality, under dynamic condition, with non-linear load in distribution system. The performance of DSTATCOM with proposed controller is analyzed in time domain in three different system configuration.

4.1. DSTATCOM performance in PFC mode

Three system configurations performance with DSTATCOM is simulated in time domain analysis for 1.0 s. Following analysis is prepared based on simulation results. Figure 5 shows the DSTATCOM performance for configuration 1 of system in PFC mode for nonlinear load with varying load of phase ‘a’ for time 0.6-0.7s and expressed in terms of coupling point voltage (V_{sabc}), supply current (I_{sabc}) load current (i_{labc}) and inverter current (i_{cabc}) respectively. Source current is balanced and sinusoidal, load and inverter currents are unbalanced and non-sinusoidal. Figure 6 shows the $V_{dc}dc$ link voltage of DSTATCOM is continuously increased before DSTATCOM is switched on and attain a value of 600V and after the switch on of DSTATCOM it increased to 825 V and finally it becomes constant 700V at t= 0.3 second. Figure 7 shows the DSTATCOM performance for configuration 2 of system in PFC mode for nonlinear load with varying load of phase a for time 0.6-0.7s and expressed in terms of coupling point voltage (V_{sabc}), supply current (I_{sabc}) load current (i_{labc}) and inverter current (i_{cabc}) respectively. Source current is balanced and sinusoidal, load and inverter currents are unbalanced and non-sinusoidal. Figure 8 shows the $V_{dc}dc$ link voltage of DSTATCOM is continuously increased before DSTATCOM is switched on and attain a value of 600V and after the switch on of DSTATCOM it increased to 810V and finally it becomes constant 700V at t= 0.27 second. Figure 9 shows the DSTATCOM performance for configuration 3 of system in PFC mode for nonlinear load with varying load of phase a for time 0.6-0.7s and expressed in terms of coupling point voltage (V_{sabc}), supply current (I_{sabc}) load current (i_{labc}) and inverter current (i_{cabc}) respectively. Source current is balanced and sinusoidal, load and inverter currents are unbalanced and non-sinusoidal. Figure 10 shows $V_{dc}dc$ link voltage of DSTATCOM 700V constant.
Figures 11(a)-(c) (see Appendix) shows the configuration1 harmonic spectrum of source current with modified Icos ϕ, source current with existing Icos ϕ and load current for phase ‘a’ are 3.13%, 3.78%, 27.31% respectively. Figures 11(d)-(f) (see Appendix) shows the configuration2 harmonic spectrum of source current with modified Icos ϕ, source current with existing Icos ϕ and load current of phase ‘a’ are 3.07%, 3.22%, 27.10% respectively. Figures 11(g)-(i) (see Appendix) shows the configuration3 harmonic spectrum of source current with modified Icos ϕ, source current with existing Icos ϕ and load current for phase ‘a’ are 0.53%, 2.02%, 27.74% respectively. Comparison of THD spectrum of modified Icos ϕ technique with existing Icos ϕ for different system configuration of the system is shown in Table 1. THD % for three different configuration are graphically presented in Figures 11(a)-(i) (see Appendix). The Table 1 shows the modified Icos ϕ technique is better than existing Icos ϕ technique.

![Figure 5. DSTATCOM performance for system configuration1](image1)

![Figure 6. DC link voltage in PFC mode under variable nonlinear load for system configuration1](image2)
Performance evaluation of different configurations of system with DSTATCOM using … (Atma Ram)

Table 1. The performance analysis for different system configurations

<table>
<thead>
<tr>
<th>Sr.No.</th>
<th>System configuration type</th>
<th>Source current harmonics</th>
<th>Load current harmonics</th>
<th>DC link voltage settling time(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Configuration1</td>
<td>3.13%</td>
<td>3.78%</td>
<td>27.31%</td>
</tr>
<tr>
<td>2.</td>
<td>Configuration2</td>
<td>3.07%</td>
<td>3.22%</td>
<td>27.10%</td>
</tr>
<tr>
<td>3.</td>
<td>Configuration3</td>
<td>0.53%</td>
<td>2.02%</td>
<td>27.24%</td>
</tr>
</tbody>
</table>

Figure 7. DSTATCOM performance for system configuration2

Figure 8. DC link voltage in PFC mode under variable nonlinear load for system configuration3
5. CONCLUSION

Three different systems configurations are simulated with DSTATCOM using proposed $I_{cos \phi}$ in MATLAB/Simulink for DSTATCOM operation in PFC mode. For all three systems configuration DC link voltage of DSTATCOM is controlled in varying nonlinear load. The behavior of DSTATCOM with proposed $I_{cos \phi}$ is found very effective for different systems configuration in terms of harmonic elimination of source current, load balancing and power factor correction. The modified $I_{cos \phi}$ technique is found better than existing $I_{cos \phi}$ in term of THD elimination of source current. These models can be used for teaching and research purpose for study the different types of power quality problems and also other configurations of system can be developed with DSTATCOM which are not considered in this paper.
Figure 11. (a)-(c) shows the harmonic spectrum of source current with modified \(I_{\cos \phi} \), source current with existing \(I_{\cos \phi} \) and load current for phase ‘a’ respectively for configuration 1.
Figure 11. (d)-(f) shows the harmonic spectrum of source current with modified $\text{Icos } \phi$, source current with existing $\text{Icos } \phi$ and load current for phase ‘a’ respectively for configuration 2 (continue)
Figure 11. (g)-(i) shows the harmonic spectrum of source current with modified Icos ϕ, source current with existing Icos ϕ and load current for phase ‘a’ respectively for configuration 3 (continue)
REFERENCES

BIOGRAPHIES OF AUTHORS

Atma Ram born in 1985 in India and received his B. Tech degree from Kurukshetra University in 2007 in Electrical engineering and M.Tech degree from J. C. Bose University of Science and Technology, YMCA, (formerly YMCAUST) Faridabad (Haryana) in 2012 in Power System and Drives. He has currently working as Assistant professor in Electrical Engineering department and Pursuing Ph.D from J. C. Bose UST, YMCA, Faridabad. His research area is power system, power electronics and drives, renewal energy, active filters and power quality. He can be contacted at email: atma.ram12@gmail.com.

Parsh Ram Sharma born in 1966 in India and received his B. Tech degree from REC Kurukshetra 1988 in Electrical engineering and M. Tech degree from PEC, Chandigarh (Pujab) in 1992 in power system and drives and Ph.D in 2005 from MDU, Rohtak (Haryana). He has currently working as professor in Electrical Engineering Department since 1996 joined as lecture and supervised a number of projects/thesis. He has also published more than 100 papers in reputed journals and IEEE conference. His research area is power system, FACTS, renewal energy, active filters power electronics and drives, and power quality. He can be contacted at email: prsharma1966@gmail.com.

Rajesh Kumar Ahuja born in 1966 in India and received his B.E from Nagpur University, M. Tech from IIT Khargpur and Ph.D from IIT Delhi in 2012. He has more than 20 years teaching experience and currently working as professor in Department of Electrical Engineering at J. C. Bose University of Science and Technology, YMCA, and Faridabad (Haryana), India. He has supervised a number of projects/thesis works in his area. He has published more than 50 papers in reputed journals and conferences few papers in international journals and IEEE conferences. His research area is power system, FACTS, renewal energy, active filters power electronics and drives, and power quality. He can be contacted at email: rajeshkrahuja@gmail.com.