Internal pilot insertion for polar codes

Walled K. Abdulwahab, Abdulkareem A. Kadhim
College of Information Engineering, Al-Nahrain University, Baghdad, Iraq

ABSTRACT

Two internal pilot insertion methods are proposed for polar codes to improve their error correction performance. The presented methods are based on a study of the weight distribution of the given polar code. The insertion of pilot bits provided a new way to control the coding rate of the modified polar code on the basis of the Hamming weight properties without sacrificing the code construction and the related channel condition. Rate control is highly demanded by 5G channel coding schemes. Two short-length polar codes were considered in the work with successive cancellation list decoding. The results showed that advantages in the range of 0.1 to 0.75 dB were obtained in the relative tolerance of the modified coded signal to the additive white Gaussian noise and fading channels at a bit error rate of 10^{-4}. The simulation results also revealed that the performance improvements were possible with a careful insertion of the pilots. The modified polar code with pilot insertion provided performance improvement and offered the control of the coding rate without any added complexity at both the encoder and the decoder.

Keywords: 5G, Code rate control, Pilot insertion, Polar code, Successive cancellation list

This is an open access article under the CC BY-SA license.

1. INTRODUCTION

Polar code, introduced by Arikan in [1], is a linear block code that realises the symmetric capacity of a binary memoryless channel by exploiting channel polarisation. Polar codes split N independent channels into K reliable bit-channels, which are used to send the information bits and the (N–K) unreliable bit-channels to carry the frozen known bits. The promising bit error rate (BER) performance and low-complexity recursive structure decoding are the useful features that let polar codes be chosen as the candidate channel codes for 5G systems [2], [3]. Successive cancellation (SC) decoding algorithm is used for polar codes. Because of the mediocre performance of SC decoding at short and moderate block lengths, SC with list (SCL) decoding was proposed as a polar code decoder [4]. Additional improvement of the SCL performance is achieved when using the cyclic redundant check (CRC) code to select the correct codewords at the end of the decoding process. Such performance improvement in decoding results in increased complexity and latency [4], [5]. Polar codes with SCL decoding are approved by the 3rd generation partnership project (3GPP) to encode the control information for the enhanced mobile broadband (eMBB) use case. Polar codes are also candidate for use with other 5G use cases [5].

The construction of polar codes includes the process of finding the best K bit-channels out of N total bit-channels on the basis of a design signal-to-noise power ratio given by $R E_b/N_0$, where $R=K/N$ is the coding rate, E_b is the average energy per bit, and N_0 is the single-sided power spectral density of the additive white Gaussian noise (AWGN) [6]. The reliability order for the bit-channels of the polar codes is non-universal because it depends on the codeword length and the channel condition. This leads to practical
problems in constructing polar codes, particularly when flexibility in the coding rate is required [7]. Different works have attempted to achieve polar code rate flexibility, and among them, the construction of a rate-compatible polar code was proposed in [8]. A flexible, highly parallel, and low-complexity systematic algorithm for polar encoding was introduced in [9]. Different studies on the reliability order of bit-channels based on the polarisation effect have been reported [10]-[12]. These studies introduced opportunities to produce universal reliability sequences irrespective of the channel condition. A universal and unique sequence for bit-channel reliability was proposed for coding lengths smaller than or equal to 1024. This sequence is considered to be a base to find the reliability order for the bit-channels and to specify the frozen bits in constructing polar codes for 5G systems [7]. In addition, other works were concerned with increasing the minimum distance of the polar codes either by using other supper code, as in [13], or by using multikernal polar codes, as in [14].

Pilot signals are usually used in wireless transmission systems to estimate the impulse response of the transmission channel. The number and the locations of the pilots have a significant effect on the wireless system performance [15], [16]. Combining pilot symbols with channel coding has attracted the attention of several researchers. The pilot symbols can be inserted within the encoded bits after the encoding process in an arrangement known as ‘external pilot insertion’ [17]. This approach has been utilised in many works to improve the system performance. Low-density parity check (LDPC) codes were combined with pilot symbols in [18], [19] to reduce both the experienced error floor and the effect of error propagation. In addition, the problems of phase offset, frequency offset, and burst error in coherent reception for wireless communication systems were solved. In [20], [21], pilot symbols were combined with the turbo code to reduce the problem of error propagation and enhance the spectral efficiency for multiple-input multiple-output systems and multiple access sparse code systems. A pilot-assisted transmission scheme using polar codes was presented in [22]-[24] to improve the system performance and to reduce the overhead in channel estimation.

The pilot symbols (bits in this case) can be inserted among the data bits prior to the encoding process. This approach is called ‘internal pilot insertion’ and was utilised in the present work. A method was suggested in [25] for combining internal pilot insertion with the turbo code. The results showed an improvement in the BER performance, and thus, a wide range of coding rates could be provided. In the present work, internal pilot insertion methods were used with polar codes to enhance the code distance properties and thereby improve the BER performance of the code. These insertion methods introduced a new mechanism for data rate control on the basis of the distance properties of the code. The proposed methods avoid code reconstruction and provide a universal rate control mechanism for the given polar code independent of the channel condition. The remainder of this paper is organised as follows: The proposed methods for inserting pilot bits are described in section 2. The system model is presented in section 3. Results and the features of the proposed methods are given in section 4. Finally, the concluding remarks of the paper are presented in section 5.

2. PILOT INSERTION METHODS

Two methods for pilot insertion are introduced here. The pilots are inserted before the encoding process. The locations of the pilot bits are determined by these methods, and then, the pilot data bit (binary ‘1’) is inserted. This can be considered to be a type of pre-encoding process. The intention here is to improve the error performance for a given polar code by changing the distance properties of the code. This is achieved by either removing the codewords that have the least Hamming weights or reducing their multiplicity order. The two methods, named Method-1 and Method-2, share the common preliminary steps, which are described here first.

Consider a polar code PC (N, K) having a code length of N bits and a data block size of K bits. Initially, all 2^K possible input data sequences {X_i} are generated, and their corresponding codewords {C_i} are determined together with their Hamming weights H_w as follows:

\[H_w = [h_{\text{min}}, h_1, h_2, \ldots, h_{\text{max}}] \] \hspace{1cm} (1)

where \(h_{\text{min}} \) and \(h_{\text{max}} \) are the minimum and the maximum Hamming weight for the code, respectively. The weight distribution vector A of the code, with \{A_{hi}\} as its components, can be expressed as follows:

\[A = [A_{h_{\text{min}}}, A_{h_1}, A_{h_2}, \ldots, A_{h_{\text{max}}}] \] \hspace{1cm} (2)

where \(A_{hi} \) represents the number of codewords having Hamming weight \(h_i \). The first and the last components of \(A \) (\(A_{h_{\text{min}}} \) and \(A_{h_{\text{max}}} \)) represent the number of codewords having the minimum and the maximum weights, respectively, while other \(\{A_{hi}\} \) hold weights between the minimum and the maximum. The components of \(A \)
for polar codes are symmetric about their centre weight (h_{cent}). This weight also has the largest component in A. Moreover, h_{cent} can be expressed as follows [26]:

$$h_{\text{cent}} = N / 2$$

To insert N_p pilots within the input data sequences $\{X_i\}$, we need to determine N_p pilot positions $\{s_i\}$ for $v = 1, 2, \ldots, N_p$ among the K bits of the input data sequence where $N_p < K$. For weight h_i, $h_i \in H_a$ and $\text{min.} \leq i \leq \text{max.}$, define the matrix B_{hi} with dimensionality $A_{hi} \times K$, where $A_{hi} \in A$. The matrix B_{hi} holds the subset of input data sequences $\{X^h_i\}$, $\{X^h_i\} \subset \{X\}$, producing codewords $\{C^h_i\}$, $\{C^h_i\} \subset \{C\}$, having a Hamming weight of h_i. For the successful operation of each method, the zeros at each position of the input data sequences, $\{X^h_i\}$, are determined first. There are K such positions possible. The redundant number of zeros at each position is simply determined by the number of zeros in each column of B_{hi}. The resulting number of zeros is stored in the K-component row vector R.

$$R = [r_1, r_2, r_3, \ldots, r_K]$$

Thus, R holds the number of repeated zeros at each data bit position of the input subsets $\{X^h_i\}$. For example, the first component r_1 is determined by the number of zeros occurring in the first position of all the input sequences $\{X^h_i\}$, and the second component r_2 is determined by the number of zeros occurring in the second position. The best pilot position s_1 is then determined by selecting the subscript i of the maximum r_i for the given matrix B_{hi} as the first pilot position. After inserting the first pilot, a new data sequence $\{X_i\}$ and the corresponding codewords $\{C_i\}$ are generated. A new weight vector H_a and a weight distributed vector A are then determined, and the process just described is used to determine the second pilot position. This is also repeated for all the required number of pilots N_p.

2.1. Method-1

In this method, the matrix B_{hi} is constructed on the basis of the minimum Hamming weight (h_{min}), i.e. $B_{hi} = B_{hi}$. The dimension of the matrix $B_{hi} = A_{hi} \times K$. From the K-element vector R, the index with the maximum value is considered the best position for inserting the first pilot s_1. The pilot bit value is set to binary ‘1’ at position s_1 for all the input sequences $\{X_i\}$. Inserting such pilot values produces new data sequences $\{X_i\}$, which are used to generate the corresponding codewords $\{C_i\}$. The vectors H_a and A are then determined for the new $\{C_i\}$ and the corresponding matrix B_{hi} is constructed on the basis of the new minimum weight h_{min}. The procedure is then repeated to determine the second pilot position (s_2). This process is then repeated until all the N_p pilots are inserted. Note that the value of the minimum weight may increase during this procedure.

In the case where q ($q > 1$) components of the vector R sharing the maximum value of r_i, an ambiguity about the best position for the pilot will occur. To solve such a problem, the Hamming weight (h_i) is selected to construct the matrix B_{hi} (i.e. B_{hi} in this case) with the dimension of $A_{hi} \times K$. Create the vector R' with q components to hold the number of repeated zeros in the columns of B_{hi} only for the q positions that share the same maximum value in the vector R. The index of the component with the maximum value in R' will be selected as the pilot position. This approach is used here to make the selection process more accurate and to solve the problem of having more than one component in R sharing the same maximum number of repeated zeros.

2.2. Method-2

This method follows the same steps as Method-1, but here, the construction of the matrix B_{hi} is based on the centre Hamming weight h_{cent}, given in (3), rather than on h_{min} as in Method-1. Therefore, the matrix $B_{h_{\text{cent}}}$ with the dimension of $A_{h_{\text{cent}}} \times K$ is used to determine the vector R. The index of the maximum component of R is used as the position s_1 to insert the first pilot. A new data sequence $\{X_i\}$ is then created, and the corresponding codewords $\{C_i\}$, their Hamming weight vector H_w, and weight distribution vector A are determined to be ready to construct new $B_{h_{\text{cent}}}$. The position of the second pilot bit is then determined, and the process is continued in this manner until all the N_p pilots are inserted.

When two or more components of R share the maximum value, Method-2 considers the minimum weight component h_{min} of the vector H_w instead of h_{cent} to construct the matrix $B_{h_{\text{min}}}$ (in this case). The vector R' is constructed as described in Method-1. Therefore, the index of the component with the maximum value in R' is selected as the pilot position. The internal pilot insertion procedure for the polar code with the two considered methods is clarified by Algorithm-1.
3. **SYSTEM MODEL**

A fading channel model based on 5G parameters is used in this work to evaluate the BER performance of the proposed encoder. The main features of the system model are: the use of millimeter Wave (mmWave) band, orthogonal frequency division multiplexing (OFDM), quadratic phase shift keying (QPSK) modulation, and multi-input multi-output (MIMO) [27]-[29]. The channel model considered here was approved by 3GPP and defined over range of frequencies from 0.5 GHz to 100 GHz for maximum bandwidth of 2 GHz [27]. Model D (indoor office with short-delay profile) is considered using tapped delay line channel model. The system related parameters used in the simulation are those presented in Tables 1 and 2. The justification of the used parameters values and details of their settings can be found elsewhere [27]-[29].

Algorithm-1: Pilot insertion algorithm for polar codes

```
1 Specify N, K, and Np;                  // Np: number of inserting pilots
2 s = { };                              // s: a set holds indexes for pilot positions
3 Generate (Xij, [Cij], Hs and As);
4 Select pilot insertion method (M);
5 For i = 1 to Np
6    If M = "Method-1" then
7        hi = hi, where hax ∈ Hs;
8    Else
9        hi = hax, where hax ∈ Hs;
10   End If
11   hi = Call Constructing_matrix_B (Xij, [Cij], hi) // Bhi: matrix hold data set Xlij
12   R ← Call Constructing_vector_R (Bhi, K)           // R : a vector hold zeros multiplicity at Bhi columns
13   iax ← Max (R)                                     // iax: an index of maximum element in R
14   If R hold single maximum element then
15      s = iax;                                     // s: a set holds indexes share max. value in R
16   Else
17      s = { };                                    // s: a set holds indexes share max. value in R
18      sj ← indexes of maximum elements in vector R
19     If M = "Method-1" then
20        hi = hi, where hi ∈ Hs                     // hi: a Hamming weight used if R hold multiple maximum element
21     Else
22        hi = hax, where hax ∈ Hs
23     End If
24     sj ← Call Finding_Best_Position (hi, [Xij], [Cij], K, sj)
25     End if
26     s = sj;                                        // s: a set holds indexes share max. value in R
27   ∀ p ≤ K, p ∈ sj, set {Xij} at p to 1           // p: an index for data block
28   generate {Cij}, Hs, and A
29 End for
30 Return s;
```

Subroutine-1: Constructing matrix B

```
1 Constructing_matrix_B ([Xij], [Cij], hi)
2 ∀ c ∈ [Cij] and weight(c) = hi, then c ∈ Clij;  // Clij: a set of codewords with Hamming weight hi
3 ∀ x ∈ [Xij] and encode(x) → c where c ∈ Clij, then x ∈ Xlij;  // Xlij: a data set that produce Clij
4 Bhi ← [Xlij]
5 Return Bhi;
```

Subroutine-2: Constructing vector R

```
1 Constructing_vector_R (Bhi, K)
2 For i = 1 to K
3    R(i) ← zeros count at Bhi(:,i) // Counts the number of zeros at each column of Bhi,
4 End for
5 Return R
```
Internal pilot insertion for polar codes (Walled K. Abdulwahab)

4. SIMULATION TESTS AND DISCUSSION

Polar codes with short lengths and low coding rates were considered the best choice for 5G system among all the coding schemes [2]. The complexity of the proposed methods is mainly based on the value of K; therefore, relatively small values of N and K were used in the simulation tests. In fact, two short lengths polar codes were considered in the tests: the first was with N=32 and K=12 (i.e. PC(32,12)) and the second one with N=32 and K=16 (i.e. PC(32,16)). Up to four pilots were assumed in the simulation tests. An SCL decoder was used with different list sizes (L) of 8, 16, and 32. The simulation tests were carried out to study the effect of pilot insertion on the distance properties and the BER performance of the considered polar codes. The performance of both the original polar code (without pilot insertion) and the modified polar code (with pilot insertion) was compared according to the corresponding BER performance over AWGN and fading channels. The comparison was based on the SNR gain (in decibels) achieved by the modified polar code at a BER of 10^-4. Test results with unclear improvement, because of the selection of the list size and the number of pilots, are not presented. Instead, remarks on such cases are given in the following subsections.

4.1. Distance properties of modified polar codes

The main intention of the proposed pilot insertion methods was to improve the distance properties of the given polar code, aiming to achieve better BER performance. The Hamming weight distribution for the codewords of the original and modified polar codes by using Method-1 and Method-2 is shown in Tables 3 and 4 for PC(32,12) and PC(32,16), respectively. As the pilot bits were fixed, the total number of possible output codewords was reduced from 2^K to 2(K - Np) with the maximum number of codewords having the centre weight (hcent) as expected. The weight distribution after the pilot insertion maintained its symmetry around hcent. The above-mentioned tables also clarified that the minimum (non-zero) weight increased after the insertion of the pilot bits for both the methods in an indication for a possible BER performance improvement. Both the tables showed that when the number of inserted pilots increased, the
minimum distance of the code also increased or the number of codewords having the minimum weight decreased. This clarified the improvement in the BER performance for the modified polar code, as will be shown next.

Table 3. The number of codewords with given Hamming weight for the proposed methods using PC(32,12)

<table>
<thead>
<tr>
<th>Hamming Weight</th>
<th>Original Code</th>
<th>M1</th>
<th>M2</th>
<th>M1</th>
<th>M2</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>62</td>
<td>75</td>
<td>25</td>
<td>32</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>12</td>
<td>440</td>
<td>218</td>
<td>171</td>
<td>109</td>
<td>87</td>
<td>54</td>
<td>49</td>
</tr>
<tr>
<td>14</td>
<td>920</td>
<td>486</td>
<td>571</td>
<td>249</td>
<td>294</td>
<td>122</td>
<td>150</td>
</tr>
<tr>
<td>16</td>
<td>1135</td>
<td>554</td>
<td>409</td>
<td>279</td>
<td>193</td>
<td>142</td>
<td>89</td>
</tr>
<tr>
<td>18</td>
<td>872</td>
<td>410</td>
<td>553</td>
<td>211</td>
<td>276</td>
<td>106</td>
<td>138</td>
</tr>
<tr>
<td>20</td>
<td>440</td>
<td>238</td>
<td>177</td>
<td>119</td>
<td>97</td>
<td>58</td>
<td>51</td>
</tr>
<tr>
<td>22</td>
<td>136</td>
<td>66</td>
<td>81</td>
<td>27</td>
<td>38</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>24</td>
<td>17</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4. The number of codewords with given Hamming weight for the proposed methods using PC(32,16)

<table>
<thead>
<tr>
<th>Hamming Weight</th>
<th>Original Code</th>
<th>M1</th>
<th>M2</th>
<th>M1</th>
<th>M2</th>
<th>M1</th>
<th>M2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>319</td>
<td>126</td>
<td>126</td>
<td>51</td>
<td>67</td>
<td>20</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>2007</td>
<td>1032</td>
<td>1032</td>
<td>528</td>
<td>516</td>
<td>272</td>
<td>266</td>
</tr>
<tr>
<td>10</td>
<td>6970</td>
<td>3576</td>
<td>3576</td>
<td>1840</td>
<td>1732</td>
<td>932</td>
<td>858</td>
</tr>
<tr>
<td>12</td>
<td>14050</td>
<td>7160</td>
<td>7160</td>
<td>3496</td>
<td>3724</td>
<td>1728</td>
<td>1866</td>
</tr>
<tr>
<td>14</td>
<td>18727</td>
<td>8980</td>
<td>8980</td>
<td>4486</td>
<td>4330</td>
<td>2236</td>
<td>2160</td>
</tr>
<tr>
<td>16</td>
<td>14214</td>
<td>7160</td>
<td>7160</td>
<td>3648</td>
<td>3676</td>
<td>1840</td>
<td>1838</td>
</tr>
<tr>
<td>18</td>
<td>6916</td>
<td>3576</td>
<td>3576</td>
<td>1752</td>
<td>1748</td>
<td>876</td>
<td>886</td>
</tr>
<tr>
<td>20</td>
<td>1949</td>
<td>1032</td>
<td>1032</td>
<td>520</td>
<td>532</td>
<td>256</td>
<td>254</td>
</tr>
<tr>
<td>22</td>
<td>345</td>
<td>126</td>
<td>126</td>
<td>63</td>
<td>59</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>24</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

4.2. BER Performance of modified polar codes

4.2.1. AWGN channel

The BER performance of PC(32,12) for the original and modified polar codes with the list sizes of 8, 16, and 32 are presented in Figures 1, 2, and 3, respectively. These figures show the effect of different parameters and pilot insertion methods on the BER performance. As shown in Figure 1, Method-2 with one pilot (M2, Np=1) achieved an SNR gain of approximately 0.5 dB. Method-1 and Method-2 with four pilots (i.e. (M1, Np=4) and (M2, Np=4)) achieved gains less than 0.35 dB. The performance of the different cases of PC(32,12) with L=16 and 32 was almost identical, as shown in Figures 2 and 3, respectively. In general, the gains achieved with L=16 and 32 were less than those with L=8. For (M2, Np=1), the obtained gain was about 0.35 dB for both the list sizes of 16 and 32. In addition, less gains (≤0.2 dB) were obtained by both the methods with four pilots using L=16 and 32.

Figures 4, 5, and 6 show the performance of PC(32,16) for the list sizes of 8, 16, and 32, respectively, with one to four pilots. Both the methods produced the same pilot position in the case of a single pilot; therefore, Method-1 with a single pilot was considered to represent both the cases in the results. In general, the SNR gains achieved by PC(32,16) were higher than those achieved by PC(32,12) with the same list size. For PC(32,16) with the list size of 8, the gain achieved by (M2, Np=4) was approximately 0.75 dB. Moreover, gains in the range of 0.4 to 0.5 dB were provided by Method-1 with 1, 3, and 4 pilots (i.e (M1, Np=1), (M1, Np=3), and (M1, Np=4)). As in PC(32,12), when larger list sizes (L=16 and 32) were used, the resulting gains were less than those with L=8. Furthermore, the performances of PC(32,16) with L=16 and 32 were close to each other. A gain of approximately 0.55 dB was obtained by (M2, Np=4), while the corresponding gains for (M1, Np=1), (M1, Np=3), and (M1, Np=4) were in the range of 0.25 to 0.35 dB. As final remarks for the BER performance, the modified polar codes achieved gains compared to the original polar codes in the SNR range from 0.2 to 0.5 dB for PC(32,12) and from 0.25 to 0.75 dB for PC(32,16) at a BER of 10⁻⁴ for most of the considered cases.
4.2.2. Fading channel

The performance for PC(32,16) is evaluated over the considered fading channel with 5G environment using one to four pilots and with the list sizes of 8, 16, and 32. As the selection of pilot positions is independent on the channel and is based on the Hamming weight, the pilot positions with fading channel are identical to that with AWGN channel. The performance of PC(32,16) with list sizes of 8, 16, and 32 is shown by Figures 7, 8, and 9, respectively. For PC(32,16) with the list size of 8, the gain achieved by (M1, Np=1) was about 0.5 dB. Moreover, about 0.3 dB gain was provided by (M1, Np=3) and (M2, Np=4). The performance of the modified code with (M1, Np=4), and for all list sizes, is close to that for the original polar code with slight advantage at high SNR (0.1 dB). Furthermore, the performances of PC(32,16) with L=16 and 32 were almost identical to each other. A gain of approximately 0.5 dB was obtained by (M1, Np=3), while the corresponding gains for (M1, Np=1), and (M2, Np=4) were about 0.3 dB. As final remarks for the BER performance, the modified polar codes achieved gains compared to the original polar codes in the SNR ranging from 0.1 to 0.5 dB for PC(32,16) at a BER of 10−4 for most of the considered cases.

Figure 1. BER performance for PC(32,123) with L=8 over AWGN channel

Figure 2. BER performance for PC(32,12) with L=16 over AWGN channel

Figure 3. BER performance for PC(32,12) with L=32 over AWGN channel

Figure 4. BER performance for PC(32,16) with L=8 over AWGN channel

Figure 5. BER performance for PC(32,16) with L=16 over AWGN channel
4.3. Rate flexibility of the modified polar codes

The pilot insertion approach presented in this work reduced the actual K input data bits of the polar code. This changed the coding rate of the modified polar code. As a result, the code rate was actually \(\frac{(K-N_p)}{N} \) instead of \(\frac{K}{N} \). Thus, the coding rate for the modified polar codes could be varied from \(\frac{K}{N} \) (without any inserting pilot) to \(\frac{(K-N_p)}{N} \) (with \(N_p \) inserting pilots). The modified polar code can insert different numbers of pilot bits in order to control the coding rate or/and to improve the BER performance. The pilot insertion approach provides a rate control mechanism independent of the channel condition.

4.4. Discussion

In general, the design of polar codes relies on channel polarisation by selecting the code construction that guarantees a large coding gain. The bit-channels are divided into lower-reliability bit-channels carrying the frozen bits and higher-reliability bit-channels carrying the data bits. The data bit-channels are also ordered according to their reliability into high-index bit-channels (with high reliability and capacity) and low-index bit-channels [5], [7]. The proposed pilot insertion methods improved the BER performance in most of the considered arrangements related to the selected test parameters according to the obtained distance properties. In some of the test arrangements, the methods did not show any performance improvement when the selected pilot positions encountered the location of reliable bit-channels. This resulted in a violation of the polar code construction rules.

According to the weight distribution of the modified codes, the performance improved when the pilots were inserted in positions of the low-reliability information bit-channels with one of the following two conditions being satisfied (for most of the studied conditions of the number of pilots, as shown in Tables 3 and 4): There was a reasonable reduction in the number of codewords having a weight equivalent to \(h_{\text{cent}} \) combined with an increase in the minimum Hamming weight of the modified code; There was a large reduction in the number of codewords having a weight equivalent to \(h_{\text{cent}} \) combined with a considerable reduction in the number of codewords associated with the minimum weight of the modified code.

The pilot positions were determined before the transmission of the actual data. Their positions were known for both the encoder and the decoder. The rate control obtained was based on the number of inserted pilot bits. In addition, the possible improvement in the distance properties of the polar code could have resulted in improving the BER performance. The pilot insertion might not provide all the possible rates in the range of \(\frac{(K-N_p)}{N} \) to \(\frac{K}{N} \), when a reliable bit-channel position was selected as the pilot position. This
resulted in the BER performance degradation. Finally, the following remarks regarding the comparison of the conventional polar code to the proposed one were deduced: Both the conventional and the proposed polar codes had the same decoding complexity and hence the same latency; Unlike the proposed polar code, the change in the coding rate of the conventional polar code required code reconstruction; The BER performance for the proposed polar code was better than that of the conventional code; The only drawback of the proposed polar code was the decrease in the bit rate due to the pilot insertion.

5. CONCLUSION
A new approach to improve the performance of short-length polar codes and to provide a mechanism for coding rate control was presented in this paper. The approach relied on internal pilot insertion by setting the binary ‘1’ of the selected pilot position(s) among the input data blocks. Two methods were proposed to choose the pilot positions on the basis of an examination of the Hamming weight distribution of the codewords. The pilot positions were determined to improve the distance properties of the modified polar code and hence guaranteed an improvement in the BER performance. In addition to the minimum Hamming weight, this work emphasised on the importance of the centre Hamming weight in the polar code performance. The proposed pilot insertion methods introduced a new approach to change the nominal coding rate by varying the number of data bits in the input block according to the number of inserted pilots. The construction of the modified polar codes was not changed by the pilot insertion. The simulation results showed that the SNR gains of the modified code over that of the original polar code in tolerance of the system to AWGN and fading channels were in the range of 0.1 to 0.75 dB were achieved at a BER of 10^{-4}. This was obtained under the preferred conditions regarding the number of pilots and the pilot insertion method. Thus, the use of internal pilot insertion with polar codes seems to be a promising approach where no added complexity is needed at both the encoder and the decoder during an actual transmission.

REFERENCES

[27] 3rd Generation Partnership Project, “5G; Study on Channel Model for Frequencies from 0.5 to 100 GHz’’ TR 38.901 version 14.1.1 Release 14 ; Aug 2017.

BIOGRAPHIES OF AUTHORS

Walled K. Abdulwahab was born in Baghdad, Iraq, in 1978. He received the B.Sc. degree from the University of Baghdad in 2001 and M.Sc. degree from Al-Nahrain University, Iraq in Information and Communication Engineering, in 2012. He is currently pursuing Ph.D. degree in the Department of Information and Communication Engineering. His research interests include FEC for next generation networks, polar code performance over mmWave channel, and reduced complexity polar code decoding.

Dr. Abdulkareem A. Kadhim was born in Baghdad, Iraq, in 1958. He received his B.Sc. degree in Electrical and Electronics Engineering in 1981 from MEC, University of Technology, Iraq, and M.Sc. and Ph.D. degrees from Loughborough University of Technology, UK, in 1984 and 1989, respectively, in Digital Communication Systems. He is IEEE Senior Member and Member of ACM. Now he is a professor of Digital Communications in the College of Information Engineering, Al-Nahrain University, Iraq. He published 58 papers in international and national journals and scientific conferences. He successfully supervised 10 Ph.D. dissertations and 59 M.Sc. thesis. His research interests cover: Modern error correction codes for next generation networks, Detection of coded and modulated signal, Low complexity decoders, mmWave channel modeling, Network coding, Software defined environments, Efficient routing for WSN and IoT networks.