Symbiotic Organisms Search Technique for SVC Installation in Voltage Control

Mohamad Khairuzzaman Mohamad Zamani, Ismail Musirin, Saiful Izwan Suliman


Increasing demand experienced by electric utilities in many parts of the world involving developing country is a normal phenomenon. This can be due to the urbanization process of a system network, which may lead to possible voltage decay at the receiving buses if no proper offline study is conducted. Unplanned load increment can push the system to operate closes to its instability point. Various compensation schemes have been popularly invented and proposed in power system operation and planning. This would require offline studies, prior to real system implementation. This paper presents the implementation of Symbiotic Organisms Search (SOS) algorithm for solving optimal static VAr compensator (SVC) installation problem in power transmission systems. In this study, SOS was employed to perform voltage control study in a transmission system under several scenarios via the SVC installation scheme. This realizes the feasibility of SOS applications in addressing the compensating scheme for the voltage control study. Minimum and maximum bound of the voltage at all buses have been considered as the inequality constraints as one of the aspects. A validation process conducted on IEEE 26-Bus RTS realizes the feasibility of SOS in performing compensation scheme without violating system stability. Results obtained from the optimization process demonstrated that the proposed SOS optimization algorithm has successfully reduced the total voltage deviation index and improve the voltage profile in the test system. Comparative studies have been performed with respect to the established evolutionary programming (EP) and artificial immune system (AIS) algorithms, resulting in good agreement and has demonstrated its superiority. Results from this study could be beneficial to the power system community in the planning and operation departments in terms of giving offline information prior to real system implementation of the corresponding power system utility.

Full Text:




  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics