State and fault estimation based on fuzzy observer for a class of Takagi-Sugeno singular models

Kaoutar Ouarid, Mohamed Essabre, Abdellatif El Assoudi, El Hassane El Yaagoubi

Abstract


Singular nonlinear systems have received wide attention in recent years, and can be found in various applications of engineering practice. On the basis of the Takagi-Sugeno (T-S) formalism, which represents a powerful tool allowing the study and the treatment of nonlinear systems, many control and diagnostic problems have been treated in the literature. In this work, we aim to present a new approach making it possible to estimate simultaneously both non-measurable states and unknown faults in the actuators and sensors for a class of continuous-time Takagi-Sugeno singular model (CTSSM). Firstly, the considered class of CTSSM is represented in the case of premise variables which are non-measurable, and is subjected to actuator and sensor faults. Secondly, the suggested observer is synthesized based on the decomposition approach. Next, the observer’s gain matrices are determined using the Lyapunov theory and the constraints are defined as linear matrix inequalities (LMIs). Finally, a numerical simulation on an application example is given to demonstrate the usefulness and the good performance of the proposed dynamic system.

Keywords


Fault diagnosis; Fuzzy observer; LMIs; Lyapunov theory; Takagi-Sugeno singular model;

Full Text:

PDF


DOI: http://doi.org/10.11591/ijeecs.v25.i1.pp172-182

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

The Indonesian Journal of Electrical Engineering and Computer Science (IJEECS)
p-ISSN: 2502-4752, e-ISSN: 2502-4760
This journal is published by the Institute of Advanced Engineering and Science (IAES) in collaboration with Intelektual Pustaka Media Utama (IPMU).

shopify stats IJEECS visitor statistics