CFS: An effective statistical texture descriptor

Alireza Akoushideh

Abstract


Coarseness is an effective description for texture analysis and many approaches capture this property of texture in different methods. In this research, we propose a new texture descriptor (CFS) that works based on coarseness and the fineness similarity score. For tuning of its configuration, we collect coarse and fine textures based on human visual perception at first. After that, we relabel the "coarse" and "fine" categories of the gathered textures during the configuration of the operator in a proposed framework. We concatenated the features of two pyramid representations with the CFS information of the original texture (PCFS). In addition, we combine the PCFS information with our last proposed feature selection approach to improve the efficiency of the CFS. We evaluated the proposed feature extraction method with classification of one of the well-known data set, Outex. Experimental results depict satisfactory performance of the CFS with very low-dimensional feature length.


Keywords


Texture classification; feature extraction; coarseness; fineness

References


‎[1]‎ A. Paiement, M. Mirmehdi, X. Xianghua, and M. C. K. Hamilton, "Integrated Segmentation ‎and Interpolation of Sparse Data," Image Processing, IEEE Transactions on, vol. 23, pp. 110-125, ‎‎2014.‎

‎[2]‎ H. Farsi and S. Mohamadzadeh, "Colour and texture feature-based image retrieval by using ‎hadamard matrix in discrete wavelet transform," Image Processing, IET, vol. 7, pp. 212-218, 2013.‎

‎[3]‎ M. A. Ferrer, J. F. Vargas, A. Morales, and A. Ordonez, "Robustness of Offline Signature Verification ‎Based on Gray Level Features," Information Forensics and Security, IEEE Transactions on, vol. 7, pp. ‎‎966-977, 2012.‎

‎[4]‎ P. Filiberto, G. Gema, G.-S. Pedro, M. Mirmehdi, and X. Xianghua, "Multi-spectral Texture ‎Characterisation for Remote Sensing Image Segmentation," presented at the Proceedings of the 4th ‎Iberian Pattern Recognition and Image Analysis Conference, 2009.‎

‎[5]‎ A. Satpathy, J. Xudong, and E. How-Lung, "LBP-Based Edge-Texture Features for Object ‎Recognition," Image Processing, IEEE Transactions on, vol. 23, pp. 1953-1964, 2014.‎

‎[6]‎ B. R. Rowshan, "Texture Classifcation in Underwater Images," MSc Erasmus Mundus in Vision and ‎RoBOTics (ViBOT), Department of Computer Architecture and Technology, Universitat de Girona, ‎Spain, 2011.‎

‎[7]‎ C. M. R. Caridade, A. R. S. Marc¸al, and T. Mendonc, "The use of texture for image classification of ‎black & white air-photographs," presented at the New Developments and Challenges in Remote ‎Sensing, Z. Bochenek (ed.), Rotterdam, 2007.‎

‎[8]‎ Z. Baochang, G. Yongsheng, Z. Sanqiang, and Z. Bineng, "Kernel Similarity Modeling of Texture ‎Pattern Flow for Motion Detection in Complex Background," Circuits and Systems for Video ‎Technology, IEEE Transactions on, vol. 21, pp. 29-38, 2011.‎

‎[9]‎ L. F. A. Pereira, H. N. B. Pinheiro, G. D. C. Cavalcanti, and R. Tsang Ing, "Spatial surface coarseness ‎analysis: technique for fingerprint spoof detection," Electronics Letters, vol. 49, pp. 260-261, 2013.‎

‎[10]‎ K. Yung-Ming, L. Jiann-Shu, and C. Pau-Choo, "The nude image identification with adaptive skin ‎chromatic distribution matching scheme," in Computer Engineering and Technology (ICCET), 2010 ‎‎2nd International Conference on, 2010, pp. V7-117-V7-120.‎

‎[11]‎ M. Tuceryan and A. K. Jain, Texture analysis: The Handbook of Pattern and Computer Vision, 1998.‎

‎[12]‎ T. Ojala and M. Pietik¨ainen. (2001 ). Texture classification. Available: ‎http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/OJALA1/texclas.htm

‎[13]‎ M. Roumi, "Implementing Texture Feature Extraction Algorithms on FPGA," MSc, Electrical ‎Engineering, Delft University of Technology, 2009.‎

‎[14]‎ J. Chamorro-Martinez and P. Martinez-Jimenez, "A comparative study of texture coarseness ‎measures," in Image Processing (ICIP), 2009 16th IEEE International Conference on, 2009, pp. 1337-‎‎1340.‎

‎[15]‎ R. M. Haralick, "Statistical and Structural Approaches to Texture," Proceedings of the IEEE vol. 67, ‎pp. 786-804, 1979.‎

‎[16]‎ R. Chellappa, R. L. Kashyap, and B. S. Manjunath, Model-based Texture Segmentation and ‎Classification In: Chen, C.H., Pau, L.F.,Wang, P.S.P. (eds.) The Handbook of Pattern Recognition and ‎Computer. Singapore: World Scientific, 1998.‎

‎[17]‎ H. Tamura, S. Mori, and T. Yamawaki, "Textural Features Corresponding to Visual Perception," ‎Systems, Man and Cybernetics, IEEE Transactions on, vol. 8, pp. 460 - 473, June 1978.‎

‎[18]‎ T. Ojala, M. Pietikainen, and D. Harwood, "A comparative study of texture measures with ‎classification based on featured distributions," Pattern recognition, vol. 29, pp. 51-59, 1996.‎

‎[19]‎ T. Ojala, T. Maenpaa, M. Pietikainen, J. Viertola, J. Kyllonen, and S. Huovinen. (2002). Available: ‎http://www.outex.oulu.fi

‎[20]‎ R. M. Haralick, K. Shanmugam, and I. H. Dinstein, "Textural Features for Image Classification," ‎Systems, Man and Cybernetics, IEEE Transactions on, vol. 3, pp. 610-621, 1973.‎

‎[21]‎ M. V. Boland, "Quantitative Description and Automated Classification of Cellular Protein Localization ‎Patterns in Fluorescence Microscope Images of Mammalian Cells," PH.D., Pittsburgh, 1999.‎

‎[22]‎ L.-E. Santos and C. Rene, "Decision Tree Based FPGA-Architecture for Texture Sea State ‎Classification," in Reconfigurable Computing and FPGA's, 2006. ReConFig 2006. IEEE International ‎Conference on, 2006, pp. 1-7.‎

‎[23]‎ J. M. H. du Buf, M. Kardan, and M. Spann, "Texture Feature Performance for Image Segmentation," ‎Pattern Recognition, vol. 23, pp. 291–309, 1990.‎

‎[24]‎ A. R. Akoushideh, A. Shahbahrami, and B. Mazloom-Nezhad M., "High performance implementation ‎of texture features extraction algorithms using FPGA architecture," Real-Time Image Processing, 23 ‎November 2012.‎

‎[25]‎ Z. Haiying, X. Zhengguang, and H. Peng, "Performance Evaluation for Three Classes of Textural ‎Coarseness," in Image and Signal Processing, 2009. CISP '09. 2nd International Congress on, 2009, ‎pp. 1-4.‎

‎[26]‎ P. Howarth and S. Rüger, "Evaluation of Texture Features for Content-Based Image Retrieval," in ‎Image and Video Retrieval. vol. 3115, P. Enser, Y. Kompatsiaris, N. O’Connor, A. Smeaton, and A. M. ‎Smeulders, Eds., ed: Springer Berlin Heidelberg, 2004, pp. 326-334.‎

‎[27]‎ X. Qian, X.-S. Hua, P. Chen, and L. Ke, "PLBP: An effective local binary patterns texture descriptor ‎with pyramid representation," Pattern Recognition, vol. 44, pp. 2502-2515, 2011.‎

‎[28]‎ A. Akoushideh and B. M.-N. Maybodi. (2015, Efficient levels of spatial pyramid representation for ‎local binary patterns. Institution of Engineering and Technology, -. Available: http://digital-‎library.theiet.org/content/journals/10.1049/iet-cvi.2015.0028‎

‎[29]‎ S. Lazebnik, C. Schmid, and J. Ponce, "Beyond Bags of Features: Spatial Pyramid Matching for ‎Recognizing Natural Scene Categories," in Computer Vision and Pattern Recognition, 2006 IEEE ‎Computer Society Conference on, 2006, pp. 2169-2178.‎

‎[30]‎ X. Qian, G. Liu , D. Guo, Z. Li, Z. Wang, and H. Wang, "HWVP: hierarchical wavelet packet descriptors ‎and their applications in scene categorization and semantic concept retrieval," Multimedia Tools and ‎Applications vol. 69, pp. 897-920 Jun 2012.‎

‎[31]‎ A. Bosch, A. Zisserman, and X. Muñoz, "Representing shape with a spatial pyramid kernel," presented ‎at the CIVR, Amsterdam, The Netherlands, 2007.‎

‎[32]‎ L. Spreeuwers, "Fast and Accurate 3D Face Recognition," International Journal of Computer Vision, ‎vol. 93, pp. 389-414, 2011/07/01 2011.‎

‎[33]‎ S.-H. Cha, "Taxonomy of Nominal Type Histogram Distance Measures," presented at the American ‎Conference on Applied Mathematics (MATH '08), Harvard, Massachusetts, USA, 2008.‎

‎[34]‎ B. Caputo, E. Hayman, M. Fritz, and J.-O. Eklundh, "Classifying materials in the real world," Image ‎Vis. Comput. , vol. 28 pp. 150-163, 2010.‎

‎[35]‎ T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture ‎classification with local binary patterns," Pattern Analysis and Machine Intelligence, IEEE ‎Transactions on, vol. 24, pp. 971-987, 2002.‎

‎[36]‎ L. Li, L. Zhao, Y. Long, G. Kuang, and P. Fieguth, "Extended local binary patterns for texture ‎classification☆," Image and Vision Computing, vol. 30, pp. 86–99, 2012.‎

‎[37]‎ M. Varma and A. Zisserman, "A statistical approach to texture classification from single images," Int. ‎J. Comput. Vis. , vol. 62 pp. 61-81, 2005.‎

‎[38]‎ D. P. Dogra, K. Tripathy, A. K. Majumdar, and S. Sural, "A comparative study on texture features used ‎for segmentation of images rich in texture," in Signal and Image Processing Applications (ICSIPA), ‎‎2009 IEEE International Conference on, 2009, pp. 336-339.‎

‎[39]‎ M. Varma and A. Zisserman, "A statistical approach to material classification using image patches," ‎IEEE Trans. Pattern Anal. Mach. Intell., vol. 31 pp. 2032-2047, 2009.‎

‎[40]‎ Z. Guo, L. Zhang, and D. Zhang, "A completed modeling of local binary pattern operator for texture ‎classification," IEEE Trans. Image Process, vol. 9 pp. 1657-1663, 2010.‎

‎[41]‎ R.-j. Liu, M.-s. Fu, and J. Fang, "A new texture image segmentation algorithm," in Computer Science ‎and Education (ICCSE), 2010 5th International Conference on, 2010, pp. 574-577.‎

‎[42]‎ L. Li, L. Yunli, P. W. Fieguth, L. Songyang, and Z. Guoying, "BRINT: Binary Rotation Invariant and ‎Noise Tolerant Texture Classification," Image Processing, IEEE Transactions on, vol. 23, pp. 3071-‎‎3084, 2014.‎




DOI: http://doi.org/10.11591/ijeecs.v19.i2.pp%25p
Total views : 13 times

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics