Enhancement transient stability of power system using UPFC with M-PSO

Rashid H. AL-Rubayi, Luay G. Ibrahim


During the last few decades, electrical power demand enlarged significantly whereas power production and transmission expansions have been brutally restricted because of restricted resources as well as ecological constraints. Consequently, many transmission lines have been profoundly loading, so the stability of power system became a Limiting factor for transferring electrical power. Therefore, maintaining a secure and stable operation of electric power networks is deemed an important and challenging issue. Transient stability of a power system has been gained considerable attention from researchers due to its importance. The FACTs devices that provide opportunities to control the power and damping oscillations are used. Therefore, this paper sheds light on the modified particle swarm optimization (M-PSO) algorithm is used such in the paper to discover the design optimal the Proportional Integral controller (PI-C) parameters that improve the stability the Multi-Machine Power System (MMPS) with Unified Power Flow Controller (UPFC). Performance the power system under event of fault is investigating by utilizes the proposed two strategies to simulate the operational characteristics of power system by the UPFC using: first, the conventional (PI-C) based on Particle Swarm Optimization (PI-C-PSO); secondly, (PI-C) based on modified Particle Swarm Optimization (PI-C-M-PSO) algorithm. The simulation results show the behavior of power system with and without UPFC, that the proposed (PI-C-M-PSO) technicality has enhanced response the system compared for other techniques, that since it gives undershoot and over-shoot previously existence minimized in the transitions, it has a ripple lower. Matlab package has been employed to implement this study. The simulation results show that the transient stability of the respective system enhanced considerably with this technique.


FACTS;MMPS;PI-C-PSO;PI-C-M-PSO;UPFC;Transient stability

Full Text:


DOI: http://doi.org/10.11591/ijeecs.v17.i1.pp61-69
Total views : 156 times


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

shopify stats IJEECS visitor statistics