Lampiran 1a

Hasil Wawancara dengan Kepala Seksi Data dan Informasi Sta. Geof. Kelas I Badan Meteorologi, Klimatologi, dan Geofisika (BMKG) Kota Ambon

Nama Pewawancara : Haziel Latupapua.

Narasumber : Andi Azhar Rusdin, S. Si, M.Sc.

Jabatan : Kepala Seksi Data dan Informasi Sta. Geof. Kelas I Badan

Meteorologi, Klimatologi, dan Geofisika (BMKG) Kota Ambon.

Tempat : Jl. A. I. S. Nasution No.8, Karang Panjang, Kel. Amantelu,

Kec. Sirimau, Kota Ambon.

Tanggal dan Waktu : 02 November 2017, 09:30 – 09:59 (WIT).

Keterangan : "P" (Pertanyaan dari Pewawancara); "J" (Jawaban dari Narasumber).

- 1. P: "Selamat pagi Pak Andi, terimakasih saya telah berkesempatan wawancara dengan bapak dan terimakasih juga telah menyempatkan waktu, bersedia untuk wawancara bersama saya perihal bencana tanah longsor yang terjadi beberapa waktu lalu di Ambon.
- J: "Selamat pagi bu, iya terimakasih sudah datang dan mau mewawancarai saya, apa yang bisa saya bantu untuk bu sendiri?"
- 2. P: "Pak langsung saja ke pertanyaan saya, ijin meminta informasi tentang gempa bumi yang terjadi beberapa hari yang lalu, apakah benar melalui berita yang dimuat di berita online yang saya baca: "nasional.tempo.co pada tanggal 01 November 2017" BMKG melalui Bapak sendiri menyatakan bahwa menyatakan bahwa Gempa di Pulau Ambon sendiri tercatat hingga terjadi 88 kali?"
- J: "Ya benar sekali, melalui berita online yang bu baca, memang kami dari BMKG mencatat ada sekita 88 kali gempa yang terjadi secara beruntun di Pulau Ambon sendiri"
- 3. P : "Sejak kapan terjadi gempa bumi yang dirasakan masyarakat Kota Ambon sendiri pak Andi ?"
- J: "Gempa pertama kali terasa sejak hari selasa malam sampai pukul 11 siang ini, ada tercatat 88 kali gempa di Kota Ambon, dan dari semua yang dapat dicatat BMKG, ada 11 kali gempa yang dapat dirasakan getarannya."
- 4. P: "Pusat gempa sendiri berada di mana, pak Andi?"
- J: "Pusat gempa tercatat oleh BMKG di kedalaman 10 kilometer dan 38 kilometer, dan terletak tepat di 37 kilometer Barat Daya Kota Ambon."
- 5. P: "Berarti sama dengan apa yang disampaikan berita online tersebut, pak Andi. Pertanyaan selanjutnya pak, gempa terbesar yang dapat dirasakan dan tercatat oleh BMKG itu berapa kekuatan magnitudonya pak?"
- J: "Dari gempa yang tercatat oleh BMKG, tiga di antaranya berkekuatan 6,2 skala richter, hal demikian yang membuat panik warga disangka akan terjadi tsunami, namun gempa yang terjadi sendiri tidak berpotensi tsunami."
- 6. P: "Penyebab terjadinya gempa sendiri, apa pak Andi?"

- J: "Untuk penyebab gempa yang dilansir dan dicatat oleh BMKG dikarenakan adanya patahan sesar yang masih aktif di beberapa titik berdekatan dengan Pulau Ambon, hal demikian yang mengakibatkan getaran magnitudo yang relatif kecil namun ada pula yang besar getarannya dan berpotensi terjadi gempa susulan mungkin dalam kurun-waktu 2-3 hari kedepan."
- 7. P: "Akibat gempa yang terjadi segitu banyaknya, apakah ada kerugian yang tercatat oleh BMKG dan mungkin koordinasi dengan BNPB, pak Andi?"
- J : "Kami BMKG sedang berkoordinasi dengan BNPB saat ini melakukan pencatatan dan verifikasi data korban dan kerugian material akibat gempa yang terjadi. Saat ini tidak ada korban jiwa yang tercatat, namun tercatat ada fasilitas umum yang rusak dikarenakan longsor yang terjadi yaitu di jalan Batumerah Kota Ambon, dan mengakibatkan sejumlah bangunan rusak di sekitar lokasi longsor, bangunan rusak juga terjadi di antaranya bandara Pattimura Ambon yang mengalami kerusakan pada bangunan tower, Maluku City Mall yang rusak parah diakibatkan runtuhnya plafon bangunan, Ambon City Mall sama demikian dan bergesernya jembatan penyebrangan di galala mengakibatkan tidak dapat dilintasi kendaraan saat ini."
- 8. P: "Adakah himbauan dari bapak sendiri perihal gempa yang masih terjadi, yang saya sendiri rasakan pagi ini masih ada gempa kecil susulan?"
- J: "ada, dari BMKG sendiri telah berkoordinasi dengan stasiun televisi lokal yaitu TVRI dan Molluca TV mengabarkan bahwa status waspada bagi masyarakan Kota Ambon yang tinggal di lereng bukit, dan daerah rawan longsor, diharapkan untuk selalu waspada. Apabila terjadi gempa susulan, masyarakat Kota Ambon dihimbau untuk tidak panik dan melakukan proses evakuasi yang sudah disosialisasi di masyarakat sendiri. Melalui Balai Kota Ambon juga telah memberikan informasi yang sama. Diharapkan masyarakat kota Ambon juga tidak terpengaruh atau tidak termakan isu akan terjadinya tsunami. Apabila adanya air pasang di pantai sekitar Kota Ambon, masyarakat Kota Ambon tidak perlu panik karena itu sendiri hal wajar apabila terjadi patahan kecil. Akan ada pemberitahuan selanjutnya oleh BNPB perihal gempa bumi dan tanah longsor."
- 9. P: "Ok Pak, mungkin sudah semua pertanyaan yang ingin saya sampaikan ke Bapak, dan juga saya telah mendapatkan informasi penting untuk penyusunan Tesis saya Pak. Terimakasih banyak Pak untuk semua informasi, penjelasan dan bantuan bapak hari ini. Semoga sukses selalu, Pak."
- J: "Ok bu, terimakasih juga sudah datang dan wawancara dengan Bapak, semoga bermanfaat dan juga sukses untuk penyusunan."

Lampiran 1b

Hasil Wawancara dengan Kepala Badan Penanggulangan Bencana Daerah (BPBD) Kota Ambon

Nama Pewawancara : Haziel Latupapua.

Narasumber : Ir. Enrico R. Matitaputty, M. Tech.

Jabatan : Kepala Badan Penanggulangan Bencana Daerah (BPBD)

Kota Ambon.

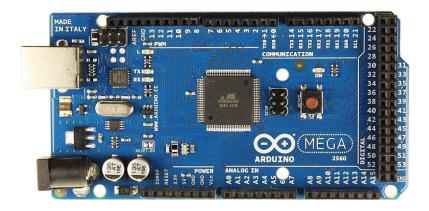
Tempat : Jl. Ina Tuni No.37, Karang Panjang, Kel. Amantelu, Kec. Sirimau,

Kota Ambon.

Tanggal dan Waktu : 20 Juli 2017, 08:30 – 09:17 (WIT).

Keterangan : "P" (Pertanyaan dari Pewawancara); "J" (Jawaban dari Narasumber).

- 1. P: "Selamat pagi Pak Rico, terimakasih sudah memberikan kesempatan bagi saya untuk melakukan wawancara dengan bapak dan terimakasih juga telah menyempatkan waktu, bersedia di pagi hari ini untuk wawancara bersama saya perihal bencana tanah longsor yang terjadi beberapa waktu lalu di Ambon. Pak langsung saja, apakah benar melalui berita yang dimuat di berita online yang saya baca: "BPNP melalui Bapak sendiri menyatakan bahwa sedang menverifikasi data bencana berupa tanah longsor dan banjir di beberapa titik di Kota Ambon?"
- J : "Selamat pagi nyong Haziel, terimakasih juga sudah datang dan mau mewawancarai saya. Benar yang diberitakan media online tersebut. Kami BNPB melalui saya sendiri menyatakan hal tersebut."
- 2. P: "Pak, kalau boleh tau berapa titik menurut data yang *real* dari BNPB sendiri untuk bencana tanah longsor di Kota Ambon?"
- J: "Di sini melalui tim verifikasi data BNPB Kota Ambon, kita mencatat ada 124 titik bencana longsor potensial dan sudah terjadi bencana tanah longsor tersebut di 5 Kecamatan Kota Ambon."
- 3. P: "Berarti benar bahwa terjadi di 124 titik di Kota Ambon dan terbagi di 5 Kecamatan di Kota Ambon. Untuk verifikasi data sendiri sudah dilakukan sejak kapan Pak?"
- J: "Kita dari BNPB melalui team verifikasi data sudah terjun langsung di lapangan dari terhitung awal Mei 2017 tepatnya tanggal 2, hingga Juni tanggal 19. Hal itu bertepatan dengan hujan lebat yang sedang berlangsung di Kota Ambon sendiri belakangan ini, nyong."
- 4. P: "Jadi salah satu faktor pengaruh tanah longsor sendiri adalah hujan besar ya Pak. Untuk korban jiwa sendiri, sudah terhitung berapa korban jiwa, rumah rusak atau fasilitas umum yang telah didata oleh BNPB sendiri, Pak?"
- J: "Ya. Benar sekali nyong, hujan juga salah satu faktor penyumbang bencana tanah longsor di Kota Ambon. Kawasan Batu Gajah, Kayu Putih dan Skip sendiri itu sedang rawan-rawannya bencana tanah longsor diakibatkan intensitas hujan yang masih tinggi sejak bulan Mei. Kemarin kita baru turun untuk pengerukan material tanah longsor yang terjadi di kawasan Batu Gantung. Untuk korban jiwa, kita tidak menemukan adanya korban jiwa, karena masyarakat sendiri sudah diberikan peringatan melalui sosialisasi di Balai Kota dan melalui TV, untuk waspada akan hujan yang masih intens bisa menyebabkan tanah longsor. Untuk kerugian yang dialami sendiri, kita mendata bahwa rumah rusak ringan sebanyak 88


unit, rumah rusak sedang 10 unit, dan rumah rusak berat sebanyak 28 unit, sedangkan talut penahan jalan dan fasilitas umum lainnya itu terhitung 6 titik."

- 5. P: "Untuk bencana yang terjadi, bulan apa saja yang menjadi titik puncak bencana tanah longsor yang terjadi di Kota Ambon, Pak?"
- J: "Titik puncak nya itu terjadi pada akhir bulan Mei hingga awal Juni lalu, dikarenakan hujan yang cukup intens. Tanah longsor terjadi di awal Juni, merusak 24 unit rumah rusak berat, dan ringan 88 unit rumah. Sedangkan untuk akhir Mei, tanah longsor sendiri mengancam 61 unit rumah di beberapa titik, yang paling rawan sendiri di daerah Batu Gajah."
- 6. P: "Apakah ada himbauan dari Pak Rico sendiri untuk menimalisir terjadinya bencana tanah longsor pak?"
- J : "Dari BNPB menyarankan untuk masyarakat yang tinggal di daerah rawan bencana tanah longsor, seperti di daerah Batu Gajah, Kayu Putih, Skip, dan Bere-bere, untuk lebih waspada karena apabila hujan yang terjadi cukup intens, masyarakat yang merasa kurang aman selain di daerah tersebut haruslah mengungsikan diri atau lebih baik tidak berada di daerah-daerah rawan tanah longsor tersebut. Masyarakat juga dihimbau untuk memasangkan terpal di sekitar atau depan rumah mereka guna mengurangi medan luncur tanah longsor akibat resapan air hujan yang lebat ke dalam tanah. Dan juga untuk tidak membuang sampah sembarangan karena hal demikian bisa memicu penumpukan air hujan di saluran-saluran air."
- 7. P: "Siap Pak, pertanyaan terakhir Pak, apakah ada tindak lanjut dari BNPB untuk mengatasi atau pun menimalisir bencana-bencana seperti tanah longsor?"
- J : "Untuk saat ini kami hanya menghimbau masyarakat untuk selalu waspada, apalagi di bulan penghujan seperti sekarang ini, melalui berita, pengumuman di Balai Kota, dan juga mendatangi langsung daerah tersebut untuk kita berikan informasi yang wajib mereka ketahui. Untuk daerah yang telah terjadi tanah longsor kita melakukan normalisasi melalui pengerukan alat berat, pembersihan akses jalanan umum, dan juga pendataan agar kedepannya kita dapat antisipasi bencana seperti ini."
- 8. P: "Maaf Pak kalau *out of topic*, ini perihal bencana yang terjadi juga dan berhubungan dengan bencana tanah longsor, yaitu bencana gempa bumi yang terjadi. Saya pernah mendengar bahwa Kota Ambon sendiri tanggal 16 September 2016 tahun lalu diguncang gempa bumi dengan kekuatan yang besar Pak?, Hal ini juga terjadi pada tanggal 07 Desember 2016?"
- J: "Iya benar. Penyebab utama gempa bumi yang terjadi di Kota Ambon sendiri adalah karena adanya patahan naik di dasar laut selatan Kota Ambon. Energi dari patahan tersebut disebut masih aktif, karena gempa susulan masih terus berlangsung saat itu. Oleh karena itu gempa sering kali terjadi sampai saat ini. Gempa yang terjadi mengakibatkan terjadinya bencana tanah longsor juga di beberapa titik krusial pemukiman penduduk di Kota Ambon seperti di daerah Halong Atas, Kayu Putih, Kayu Tiga dan Seri."
- 9. P: "Siap Pak, kira-nya sudah semua pertanyaan yang ingin saya sampaikan ke Bapak, dan juga saya telah mendapatkan informasi penting untuk penyusunan Tesis saya Pak. Terimakasih banyak Pak untuk semua informasi, penjelasan dan bantuan bapak hari ini. Semoga sukses selalu, Pak."
- J: "Ok nyong, terimakasih juga sudah datang dan wawancara dengan Bapak, semoga bermanfaat dan juga sukses untuk penyusunan."

Lampiran 2 Komponen Perangkat Keras

1. Arduino Mega2560 dan Mikrokontroler Atmega2560

Arduino Mega 2560 adalah *mainboard* Arduino yang kompatibel dengan WIFI SHIELD FI250, dan Arduino SIM-900 GSM/GPRS (layanan *short message service*), memiliki komunikasi antarmuka berupa XBee *socket*, modul nRF24L01+, micro SD *card interface*, UART (*Universal Asynchronous Receiver-Transmitter*), modul ITDB02 paralel LCD *interface*, dan *electronic brick interface*. Modul ini beroperasi pada tegangan 3,3 – 5,5V DC dan maksimum frekuensi *board* adalah 16 Mhz. Berikut ini adalah Tabel spesifikasi Arduino Mega 2560 dan Gboard Pro SIM-900.

Gambar 2.6. Bentuk Fisik Arduino Mega 2560 dan Mikrokontroler ATmega2560

Tabel 1 Spesifikasi Arduino Mega2560 dan Gboard Pro

PCB size	131.0mm X 68.8mm X 1.6mm
Supply voltage	7~23V DC
Operating voltage	3.3V DC
Microprocessor	ATmega2560
Indicators	PWR, NET, Status, Test
Communication interfaces	XBee , nRF24L01+ , UART , IIC , ITDB02
	LCD, micro SD

Tabel 2 Karakteristik Kelistrikan Arduino Mega 2560 dan Mikrokontroler Atmega2560

Parameter	Min	Typic	Max	Uni
		al		t
Supply voltage	7	-	23	VD
				C
Input high voltage VH	3	3.3	3.6	V
Input low voltage	-0.3	0	0.5	V
Average Current consumption	-	100	500	mA
Peak Current consumption	-	-	2	A

Tabel 3 Pemetaan Pin Arduino Mega2560 dan Mikrokontroler Atmega2560

Index of	Name of Interface	Index of Arduino	Pin of Atmega2560
Interface			
1	GND	-	-
2	DB0	D37	PC0
3	5V VCC	-4.2V	-
4	DB1	D36	PC1
5	NC	-	-
6	DB2	D35	PC2
7	LCD_RS	D38	PD7
8	DB3	D34	PC3
9	LCD_WR	D39	PG2
10	DB4	D33	PC4
11	LCD_RD	3V3	3V3
12	DB5	D32	PC5
13	DB8	D22	PA0
14	DB6	D31	PC6
15	DB9	D23	PA1
16	DB7	D30	PC7
17	DB10	D24	PA2
18	Touch_CLK	D6	PH3
19	DB11	D25	PA3
20	Touch_CS	D5	PE3
21	DB12	D26	PA4
22	Touch_DIN	D48	PL1
23	DB13	D27	PA5
24	Touch_BUSY	-	-
25	DB14	D28	PA6
26	Touch_DOUT	D3	PE5
27	DB15	D29	PA7
28	Touch_IRQ	D2	PE4

29	LCD_CS	D40	PG1
30	SD_MISO	D50	PB3
31	NC	-	-
32	SD_SCK	D52	PB1
33	LCD_RST	D41	PG0
34	SD_MOSI	D51	PB2
35	NC	-	-
36	SD_CS	D53	PB0
37	LED+	3V3	3V3
38	LED-	GND	GND

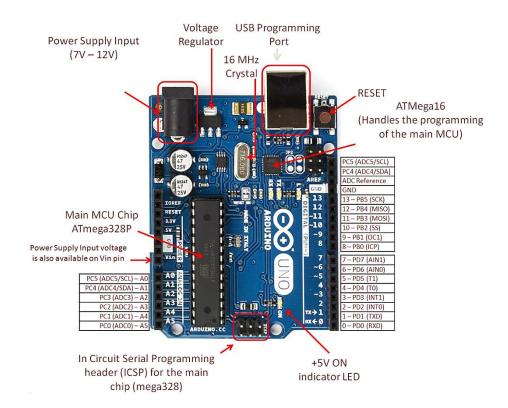
Tabel 4 Pemetaan Pin Xbee Interface Arduino Mega2560 dan Mikrokontroler Atmega2560

Index of Interface	Name of Interface	Index of Arduino	Pin of Atmega2560
1	XBee_DOUT	D15(RX3)	PJ0
2	Xbee DIN	D14(TX3)	PJ1

Tabel 5 Pemetaan Pin SIM900 Communication Arduino Mega 2560 dan Gboard Pro

Index of Interface	Name of Interface	Index of Arduino	Pin of Atmega2560
1	SIM900_TXD	D17(RX2)	PH0
2	SIM900_RXD	D16(TX2)	PH1
3	SIM900_RST	D47	PL2
4	SIM900_PWR	D46	PL3

2. Arduino Uno R3 dan Mikrokontroler ATmega328


Arduino Uno R3 adalah papan pengembangan (development board) mikrokontroler yang berbasis *chip* ATmega328. Arduino Uno R3 memiliki 14 pin input / output digital, 6 input analog, resonator keramik 16 MHz, koneksi USB, colokan listrik, *header* ICSP, dan tombol reset. Berikut ini adalah Tabel spesifikasi Arduino Uno dan Atmega328.

Gambar 2.7. Bentuk Fisik Arduino Uno R3 dan Mikrokontroler ATmega 328

Tabel 6 Spesifikasi Arduino Uno R3 dan Atmega328

Microprocessor	ATmega328
Supply voltage	6-20V DC
Operating voltage	5V DC
Digital I/O	14 (of which 6 provide PWM output)
Analog Input	6
DC Current per I/O Pin	40 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	32 KB (ATmega328) of which 0.5 KB used by
	bootloader
SRAM	2 KB (ATmega328)
EEPROM	1 KB (ATmega328)
Clock Speed	16 MHz

Masing-masing dari 14 pin digital di Uno dapat digunakan sebagai input atau output, dengan menggunakan fungsi pinMode (), digitalWrite (), dan digitalRead (). Mereka beroperasi pada 5 volt. Setiap pin dapat menyediakan atau menerima maksimum 40 mA dan memiliki resistor pull-up internal (terputus secara default) 20-50 kOhms. Selain itu, beberapa pin memiliki fungsi khusus:

• Serial: 0 (RX) dan 1 (TX). Digunakan untuk menerima (RX) dan mengirimkan (TX) data serial TTL. Pin ini dihubungkan ke pin pin ATmega8U2 USB-to-TTL Serial yang sesuai.

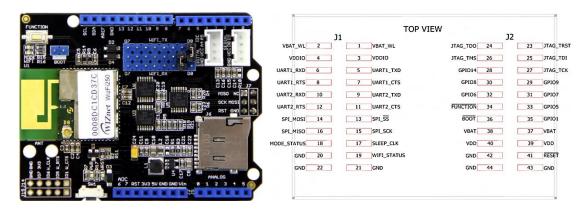
- **Interupsi Eksternal: 2 dan 3.** Pin ini dapat dikonfigurasi untuk memicu interupsi pada nilai rendah, tepi naik atau turun, atau perubahan nilai. Lihat fungsi attachInterrupt() untuk rinciannya.
- PWM: 3, 5, 6, 9, 10, dan 11. Sediakan output PWM 8 bit dengan fungsi analogWrite ().
- SPI: 10(SS), 11(MIA), 12(MISO), 13(SCK). Pin ini mendukung komunikasi SPI dengan menggunakan perpustakaan SPI.
- **LED: 13.** Ada LED built-in yang terhubung ke pin digital 13. Bila pin bernilai HIGH, LED menyala, bila pinnya RENDAH, tidak menyala.


3. Arduino SIM900 GSM/GPRS Shield

Arduino SIM900 GSM/GPRS merupakan produk komunikasi nirkabel ultra kompak dari SIMCom. Arduino SIM900 GSM/GPRS adalah modul GSM/GPRS Quad-band dalam tipe SMT dan dirancang berdasarkan *single-chip* yang mengintegrasikan inti AMR926EJ-S [17]. SIM900 menghadirkan kinerja GSM / GPRS pada frekuensi 850/900/1800/1900MHz untuk suara, SMS, Data, dan Faks dalam faktor bentuk kecil dan dengan konsumsi daya yang rendah. Komunikasi Arduino SIM900 GSM/GPRS dengan modul mikrokontroler dari Arduino melalui PIN digital 0 (RX) dan PIN digital 1(TX). Berikut ini adalah Tabel spesifikasi Arduino SIM900 GSM/GPRS:

Tabel 7 Spesifikasi Arduino SIM900 GSM/GPRS

 General Features Quad-Band 850/ 900/ 1800/ 1900 MHz GPRS multi-slot class 10/8 GPRS mobile station class B Compliant to GSM phase 2/2+ 		
 Class 1 (1 W @ 1800/1900MHz) Dimensions: 24* 24 * 3 mm Weight: 3.4g Control via AT commands (GSM 07.07,07.05 and SIMCOM enhanced AT Commands) SIM application toolkit Supply voltage range 3.4 4.5 V Low power consumption 	General Features	 GPRS multi-slot class 10/8 GPRS mobile station class B Compliant to GSM phase 2/2+ Class 4 (2 W @850/ 900 MHz) Class 1 (1 W @ 1800/1900MHz) Dimensions: 24* 24 * 3 mm Weight: 3.4g Control via AT commands (GSM 07.07,07.05 and SIMCOM enhanced AT Commands) SIM application toolkit Supply voltage range 3.4 4.5 V


Specifications for data	 GPRS class 10: max. 85.6 kbps (downlink) PBCCH support Coding schemes CS 1, 2, 3, 4 CSD up to 14.4 kbps USSD Non transparent mode PPP-stack
Interfaces	 Interface to external SIM 3V/ 1.8V analog audio interface RTC backup SPI interface Serial interface Antenna pad I2C GPIO PWM ADC
Specifications for SMS via GSM	 Point-to-point MO and MT SMS cell broadcast Text and PDU mode

Gambar 2.8. Bentuk Fisik Arduino SIM900 GSM/GPRS Shield

4. Arduino WiFi Shield berbasis WizFi250

Arduino Wi-Fi Shield berbasis WiznetFi250 adalah modul wireless dengan ukuran kecil yang memiliki tingkat integrasi yang tinggi, mendukung IEEE 802.11b/g/n. Kecepatan maksimum yang dapat dicapai modul Wi-Fi Shield berbasis WiznetFi250 adalah sampai dengan 65Mbit/s dan bekerja pada tegangan operasi 5V atau 3.3V DC (auto select). Modul kompatibel dengan semua sistem komunikasi yang beroperasi pada frekuensi 2,4 GHz, dan tersedia layanan layanan security berupa WEP, WPA/WPA2PSK. Modul terintegrasi dengan RF power amplifier, memiliki 1 megabyte flash memori, 128 kilobyte SRAM, 1 megabyte serial flash, bekerja pada frekuensi 2.412-2.484 GHz, memiliki UFL dan memiliki interface software sehingga pengguna dapat mengontrol dan memperbarui modul melalui konverter USB, dan memiliki serial interface berupa UART (Universal Asynchronous Receiver-Transmitter) dan SPI (serial peripheral interface). Berikut ini adalah spesifikasi Arduino WiFi Shield berbasis WizFi250:

Gambar 2.9(a). Bentuk Fisik Arduino Wi-Fi Shield Board; (b) Konfigurasi PIN WiFi Shield

Tabel 7 Spesifikasi Arduino WiFi Shield Berbasis WizFi250

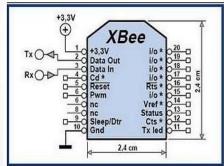
Module	WIZnet FI250
Operating Voltage	5V or 3.3V (Auto select)
Current	300mA (maximum)
Single band	2.4GHz IEEE 802.11b/g/n
Antenna	On board PCB antenna (reserver UFL connector)
Memory	1MB Flash Memory, 128KB SRAM, 1MB Serial Flash
Interface	UART(default)/SPI(upgrade firmware)
Dimensions	69.0x53.5x23.5 mm
Weight	

Tabel 8 Deskripsi Interface Arduino WiFi Shield Berbasis WizFi250

UART1 Interface	Pilihan alternatif untuk antarmuka Serial.
SPI Interface	Melalui pin ini, user bisa mengendalikan interface SPI.
USB Interface	Menyediakan power supply & interface Serial Informasi serial standar: ◆ Baud rate: 115200 ◆ Data rate: 8 ◆ Stop bit: 1 ◆ Paritas: Tidak ada

Tabel 9 Deskripsi PIN Arduino WiFi Shield Berbasis WizFi250

воот	Masuk ke mode boot ◆ SHORT : Mulai dalam mode booting ◆ OPEN : Mulai dalam mode aplikasi
5V Power	Pilihan alternatif untuk catu daya 5V
GPIO Pin	Melalui pin ini, pengguna bisa menggunakan sinyal GPIO


Tabel 10 Deskripsi Tombol Arduino WiFi Shield Berbasis WizFi250

Reset	Melalui tombol ini, pengguna bisa me-restart modul WizFi250.			
Function	Melalui tombol fungsi, pengguna bisa masuk ke mode tertentu tanpa AT Command. ◆ Pemulihan Pabrik: Saat melakukan Boot atau Reset, tekan tombol lebih dari 3,5 detik ◆ AP Mode: Saat modul bekerja, tekan sekali. ◆ Mode OTA: Saat modul bekerja, tekan dua kali. ◆ Factory Default: Saat modul bekerja, tekan tiga kali.			
Arduino Board Reset	Dengan tombol ini, pengguna bisa merestart papan Arduino.			

5. Xbee Pro Series 2 dan Xbee Shield

Perangkat Xbee Series 2 memiliki 20 pin dengan fungsi yang berbeda-beda dan bekerja pada tegangan 3.3 V DC. Xbee Series 2 memiliki 2 mW *wire antenna*. Bentuk fisik dan konfigurasi pin Xbee Pro Series 2 ditunjukan pada Gambar 2.9.

Gambar 2.10 Bentuk Fisik dan Konfigurasi Pin Xbee Pro Series 2

Tabel 11 Spesifikasi Xbee Pro Series 2

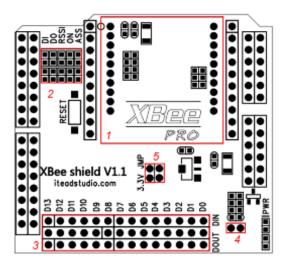
Specification XBee Series 2				
Performance				
Indoor/Urban Range	yn to 122 ft (40 m)			
	up to 133 ft. (40 m)			
Outdoor RF line-of-sight Range	up to 400 ft. (120 m)			
Transmit Power Output (software selectable)	2mW (+3dBm)			
RF Data Rate	250,000 bps			
Serial Interface Data Rate	1200 - 230400 bps			
(software selectable)	(non-standard baud rates also supported)			
Receiver Sensitivity	-95 dBm (1% packet error rate)			
Power Requirements				
Supply Voltage	2.8 – 3.4 V			
Operating Current (Transmit)	40mA (@ 3.3 V)			
Operating Current (Receive)	40mA (@ 3.3 V)			
Power-down Current	< 1 uA @ 25°C			
General				
Operating Frequency Band	ISM 2.4 GHz			
Dimensions	0.960" x 1.087" (2.438cm x 2.761cm)			
Operating Temperature	-40 to 85° C (industrial)			
Antenna Options	Integrated Whip, Chip, RPSMA, or U.FL Connector			
Networking & Security				
Supported Network	Point-to-point, Point-to-multipoint, Peer-to-peer			
Topologies	& Mesh			
Number of Channels (software selectable)	16 Direct Sequence Channels			
Addressing Options	PAN ID and Addresses, Cluster IDs and Endpoints (optional)			

Tabel 12 Karakteristik Kelistrikan Xbee Pro Series 2

Symbol	Param eter .	Condition	Min	Typical	Max	Units
VIL	Input Low Voltage	All Digital Inputs	-	-	0.2 * VCC	٧
V _{IH}	Input High Voltage	All Digital Inputs	0.8 * VCC		0.18* VCC	٧
V _{OL}	Output Low Voltage	IOL = 2 mA, VCC >= 2.7 V		-	0.18*VCC	٧
V _{OH}	Output High Voltage	IOH =-2 mA, VCC >= 2.7 V	0.82*VCC	-	-	٧
II _N	Input Leakage Current	VIN = VCC or GND, all inputs, per pin		-	0.5uA	uA
TX	Transmit Current	VCC = 3.3 V	-	45	-	mA
RX	Receive Current	VCC = 3.3 V	-	50	-	mA
PWR-DWN	Power-down Current	SM parameter = 1	-	<10	-	uA

Tabel 13 Pemetaan Pin Xbee Pro Series 2

Pin#	Name	Direction	Description		
1	VCC	-	Power supply		
2	DOUT	Output	UART Data Out		
3	DIN/ CONFIG	Input	UART Data In		
4	DIO8	Either	Digital I/O 8		
5	RESET	Input	Module Reset (reset pulse must be at least 200 ns)		
6	PWM0 / RSSI / DIO10	Output	PWM Output 0 / RX Signal Strength Indicator / Digital IO		
7	PWM / DIO11	Either	Digital I/O 11		
8	[reserved]	-	Do not connect		
9	DTR / SLEEP_RQ/ DI8	Input	Pin Sleep Control Line or Digital Input 8		
10	GND	-	Ground		
11	DIO4	Either	Digital I/O 4		
12	CTS DIO7	Either	Clear-to-Send Flow Control or Digital I/O 7		
13	ON /SLEEP	Output	Module Status Indicator		
14	[reserved]	-	Do not connect		
15	Associate / DIO5	Either	Associated Indicator, Digital I/O 5		
16	RTS DIO6	Either	Request-to-Send Flow Control, Digital I/O 6		
17	AD3 / DIO3	Either	Analog Input 3 or Digital I/O 3		
18	AD2 / DIO2	Either	Analog Input 2 or Digital I/O 2		
19	AD1 / DIO1	Either	Analog Input 1 or Digital I/O 1		
20	ADO / DIOO	Either	Analog Input 0 or Digital I/O 0		

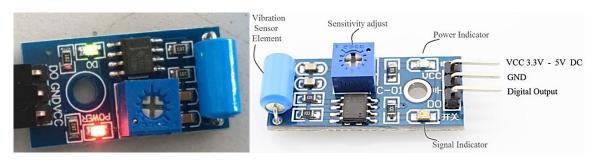

Xbee Shield V1.1 memungkinkan modul Arduino untuk berkomunikasi dengan protokol ZigBee. Hal ini didasarkan pada modul Xbee dari MaxStream. Berikut ini adalah spesifikasi Xbee Shield.

Tabel 14 Spesifikasi Xbee Shield V1.1

PCB size	54.9mm X 58.8mm X 1.6mm		
Indicators	PWR State, DI, DO, RSSI, ON, ASS		
Power supply	5V DC		
Communication Protocol	UART/XBee		
RoSH	Yes		

Tabel 15 Karakteristik Kelistrikan Xbee Shield V1.1

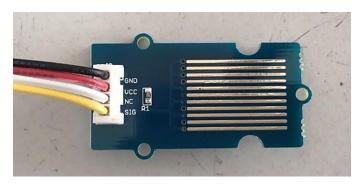
Specification		Туре	Max	Unit
Power Voltage		5	5.5	VDC
Input Voltage VH:	4.5	5	5.5	>
Input Voltage VL:		0	0.5	v
Current Consumption		20	40	mA


Tabel 15 Pemetaan Pin Xbee Shield V1.1

Zone	Description			
1	XBee Socket			
2	Indication LED			
3	Serial communication pin select			
4	Wireless program Arduino jumper			
5	3.3V operation voltage jumper (When operated in 3.3V,			
	install the jumper)			

6. Sensor Getar Arduino SW-420-NC

Pada Gambar 2.12 menunjukkan modul sensor getaran Arduino SW420-NC. Modul sensor getar Arduino SW-420-NC terdiri dari komparator LM393, indikator daya LED dan indikator sinyal LED. Komparator digunakan untuk mendeteksi apakah ada getaran yang


berada di luar ambang batas. Pasokan tegangan untuk modul sensor getar Arduino SW-420-NC berkisar antara 3.3V sampai 5V. Output dari modul sensor getar Arduino SW-420-NC berupa besaran *logic* digital melalui port D0 yang terhubung ke Mikrokontroler. Output port D0 yaitu bernilai *logic* "1" apabila adanya getaran "*shock*" yang terdeteksi sensor dan ditandai juga dengan matinya indikator lampu LED, dan sebaliknya output akan bernilai *logic* "0" apabila tidak terdeteksi adanya getaran yang ditandai juga dengan nyalanya lampu indikator LED.

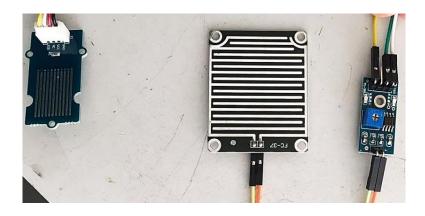
Gambar 2.12(a). Bentuk Arduino SW-420-NC; (b) Konfigurasi Pin Arduino SW-420-NC

7. Sensor Pendeteksi Curah Hujan Arduino Raindrop Grove Water Sensor V1.1

Sensor pendeteksi curah hujan yang digunakan pada penelitian adalah modul Arduino Grove Water Sensor V1.1. Rangkain terdiri dari komponen resistor sebagai komponen utama dan elektoda (tembaga) sebagai pendeteksi air. Modul Grove Water Sensor V1.1. menunjukkan apakah sensornya kering, lembab atau benar-benar terbenam dalam air dengan mengukur konduktivitas. Modul sensor bekerja seperti resistor variabel yang akan berubah dari $100 \mathrm{K}\Omega$ (ohm) ketika basah dan $1 \mathrm{M}\Omega$ (ohm) saat kering. Tegangan logic input dari modul sensor diolah oleh mikrokontroler sebagai informasi terhadap sistem. Modul sensor beroperasi pada tegangan 5V DC. Spesifikasi modul sensor level ketinggian air (Grove Water Sensor V1.1.) adalah sebagai berikut ini :

Gambar 2.15. Bentuk Fisik Arduino Raindrop Grove Water Sensor V1.1

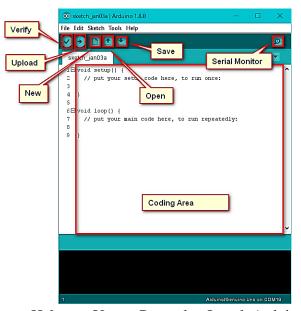
Tabel 16. Spesifikasi Arduino Raindrop Grove Water Sensor V1.1


Item	Min	Typical	Max	Unit
Working Voltage	4.75	5.0	5.25	V
Current		mA		
Working Temperature	10	-	30	°C
Working Humidity (without condensation)	10	-	90	96

8. Sensor Level Intensitas Curah Hujan Arduino FC-37

Arduino Raindrop Sensor FC-37 atau sensor level intensitas curah hujan berbasis Arduino berfungsi memberikan nilai pada tingkat elektolisasi volume air hujan yang menyentuh panel sensor. Rangkain terdiri dari komponen resistor sebagai komponen utama dan elektoda (tembaga) sebagai pendeteksi air. Modul sensor bekerja seperti resistor variabel yang akan berubah dari $100 \text{K}\Omega$ (ohm) ketika basah dan $2 \text{M}\Omega$ (ohm) saat kering. Tegangan logic input dari modul sensor diolah oleh mikrokontroler sebagai informasi terhadap sistem. Modul sensor beroperasi pada tegangan 3.3 V-5 V DC.

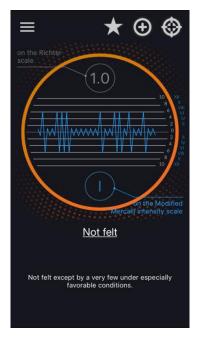
Spesifikasi Arduino Raindrop Sensor FC-37, adalah sebagai berikut ini :


- Area: pelat nikel 5cm x 4cm di sisi,
- Anti oksidasi, anti konduktivitas, dengan waktu penggunaan yang lama;
- Sinyal keluaran komparator gelombang bersih bagus, kemampuan mengemudi, >15mA;
- Potensiometer menyesuaikan sensitivitas;
- Tegangan kerja 5V;
- Format output: Output switching digital (0 dan 1) dan tegangan keluaran analog AO;
- Ukuran papan PCB kecil: 3.2cm x 1.4cm;
- Menggunakan komparator LM393 tegangan.

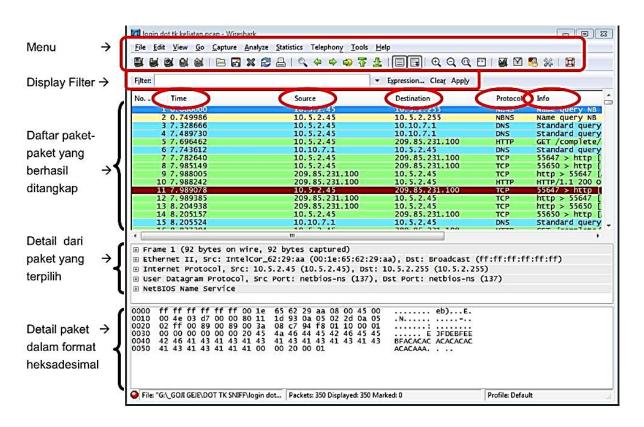
Gambar 2.15. Bentuk Fisik Sensor Level Intensitas Curah Hujan Arduino FC-37

Lampiran 3 Komponen Perangkat Lunak

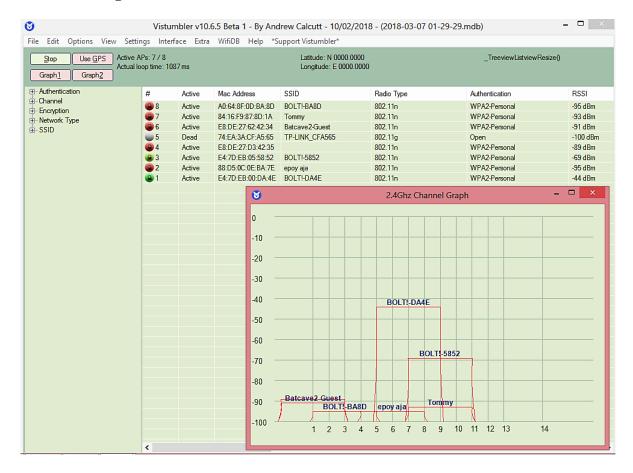
1. Perangkat Lunak Arduino IDE


Gambar xx. Halaman Utama Perangkat Lunak Arduino IDE

2. Perangkat Lunak X-CTU


Gambar xx. Halaman Utama Perangkat Lunak X-CTU

3. Perangkat Lunak Netigen Kluzowicz Smart Vibration Meter


Gambar xx. Halaman Utama Perangkat Lunak Netigen Kluzowicz Smart Vibration Meter

4. Perangkat Lunak Wireshark V2.4.5

Gambar xx. Halaman Utama Perangkat Lunak Wireshark V2.4.5

5. Perangkat Lunak Vistumbler V10.6.5

Gambar xx. Halaman Utama Perangkat Lunak Vistumbler V10.6.5

Lampiran 5

Listing Program

1. Listing Program Node Coordinator

```
#define ambanglevel 370
#define ambanggetar 400
int modem = 6;
String level=" ";
String getar=" ";
String buff;
String html;
unsigned char input;
unsigned char buzzer=0;
unsigned char koneksi='0';
unsigned char raindrop=0;
unsigned char sudahkirimlevel=0;
unsigned char sudahkirimgetar=0;
unsigned long alarmlevel=0;
unsigned long alarmgetar=0;
void setup() {
   pinMode(13,OUTPUT);
 digitalWrite(13,LOW);
 Serial.begin(9600);
 Serial1.begin(115200);
 Serial2.begin(115200);
 delay(1000);
 setAP();}
void loop() {
 if (Serial.available()) {
  input = Serial.read();
  if (input =='!') {
   while (!Serial.available());
   level=Serial.readStringUntil(0x0D);
   if (level.toInt()<ambanglevel) {
    if (sudahkirimlevel==0) {
      digitalWrite(13,HIGH);
      buzzer=1;
      alarmlevel=millis();
      kirimSMS("WASPADA!! LEVEL INTENSITAS CURAH HUJAN TELAH MELEBIHI 50mm SELAMA 24 JAM. INDIKASI
TERJADI BENCANA TANAH LONGSOR DAN BANJIR");
      sudahkirimlevel=1; } }
   else {
    digitalWrite(13,LOW);
    buzzer=0;
    sudahkirimlevel=0; } }
  if (input=='@') {
   while (!Serial.available());
   if (Serial.read()=='1') raindrop=1;
   else raindrop=0;
  if (input=='#') {
   while (!Serial.available());
   getar=Serial.readStringUntil(0x0D);
   if (getar.toInt()>ambanggetar) {
    if (sudahkirimgetar==0) {
      digitalWrite(13,HIGH);
      buzzer=1:
      alarmgetar=millis();
      kirimSMS("WASPADA!! GETARAN GEMPA TERDETEKSI MELEBIHI 4,0 SR. SEGERA LAKUKAN PROSES PERINGATAN
DAN EVAKUASI!");
      sudahkirimgetar=1; } }
   else{
    digitalWrite(13,LOW);
    buzzer=0;
    sudahkirimgetar=0; }} }
```

```
if (millis()>(alarmgetar+10000)){
     if (alarmlevel==0){
        digitalWrite(13,LOW);
       buzzer=0; }
     alarmgetar=0;
  if (millis()>(alarmlevel+10000)){
     if (alarmgetar==0){
        digitalWrite(13,LOW);
       buzzer=0: }
     alarmlevel=0;}
   if (Serial2.available()) if (Serial2.read()=='+')
     while (!Serial2.available());
     if (Serial2.read()=='I'){
       buff = Serial2.readString();
       koneksi=buff[3];
       if(buff.indexOf("favicon") > 0) {
          Serial2.print("AT+CIPCLOSE=");
          Serial2.write(koneksi);
          Serial2.println();
          while (Serial2.read()!='K');
          delay(100); }
       else {
          delay(100);
          webserver(); } } }
voidsetAP(){Serial2.println("AT+RST");delay(3000);Serial2.println("AT+CWMODE=2");delay(1000);
Serial2.println("AT+CWSAP=\"Haziel_Design\",\"gempalongsor\",1,3");
  delay(1000); Serial2.println("AT+CIFSR"); delay(1000); Serial2.println("AT+CIPMUX=1"); delay(1000);
   Serial2.println("AT+CIPSERVER=1,80");
  delay(1000); while (Serial2.available()) Serial2.read();}
void webserver(){
html = "<html><head><meta http-equiv=\"refresh\" content=\"5\"><style>#table1{border:none;}#table2,#table2 td{border: 1px solid black;
border-collapse: collapse; } p.small{line-height:1.5;}</style></head><body><h1><center>MITIGASI BENCANA GEMPA BUMI DAN
                       LONGSOR</center></h1><br/>corrections to the control of the contro
                                                                                                                                                         style=\"width:50%\">OLEH
                                                                                                                                                                                                                                              :HAZIEL
                                                                                         IZAAC LATUPAPUA
/td>KONTAK

LATUPAPUA
                                      DAN
                                                       ANDRIAS
                                                                                                                                                                                                                  :+6282310948969
hazielvanlatu@gmail.com : HAZIEL
style=\"width:60%\" cellpadding=\"10\"><b>NODE STASIUN TIMUR</b>";
if (getar.toInt()>ambanggetar) html = html + "";
else html = html + "";
html
                         html +
                                                        "<b><center>GETARAN:
                                                                                                                   GEMPA
                                                                                                                                                      TANAH
                                                                                                                                                                               LONGSOR
                                                                                                                                                                                                                                                                                 ")
                                                                                                                                                                                                                                     String(getar)
</ri>
</center></b>
<bn>NODE STASIUN SELATAN</b>";
if (raindrop==1) html = html + "";
else html = html + "";
html = html + "<b><center>TETESAN HUJAN / RAINDROP ("; if (raindrop==1) html = html + "YA";
else html = html + "TIDAK";
html = html + ")</center></b><b>NODE STASIUN SELATAN</b>";
if (level.toInt()<ambanglevel) html = html + "<td style=\"color:red\">";
else html = html + "";
ALARM</b>":
if (buzzer==1) html = html + "<b><center>YA";
else html = html + "<b><center>TIDAK";
html = html + "</center></b>html = html + "</center></b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b>/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b/b<
NODE STASIUN TIMUR (SENSOR ARDUINO SW-420-NC)<br/>
-NODE STASIUN SELATAN (RAINDROP GROVE WATER
SENSOR V1.1)<br/>
SENSOR V1.1)
  Serial2.print("AT+CIPSEND=0,");
  Serial2.println(html.length());
  while (Serial2.read()!='>');
  delay(10); Serial2.println(html); while (Serial2.read()!='K'); delay(50); Serial2.print("AT+CIPCLOSE="); Serial2.write(koneksi);
   Serial2.println(); while (Serial2.read()!='K'); delay(50); }void kirimSMS(char *teks)
     Serial1.print("AT+CMGF=1");
     Serial1.write(0x0D);
     delay(1000);
     //Serial1.print("AT+CMGS=\"0895639299692\"");
     Serial1.print("AT+CMGS=\"082310948969\"");
     Serial1.write(0x0D);
     delay(1000);
     Serial1.print(teks);
     delay(1000);
     Serial1.print((char)26);
     delay(5000); }
```

2. Listing Program *Node* Stasiun Timur

```
unsigned int x;
unsigned int i;
unsigned int maks;
void setup() {
    Serial.begin(9600); }

// the loop function runs over and over again forever
void loop() {
    maks=0;
    for (i=0;i<60000;i++) {
        x=analogRead(0);
        if (x>maks) maks=x; }
    Serial.print("#);
    Serial.println(maks);}
```

3. Listing Program *Node* Stasiun Selatan

```
unsigned int nilai=0;
unsigned int tes;
unsigned char x;
 void setup() {
      Serial.begin(9600);
pinMode(A0,INPUT);
       pinMode(A1,INPUT);
pinMode(A5,OUTPUT); }
// the loop function runs over and over again forever
void loop() {
       tes=0;
       for(x=0;x<50;x++){
            tes += analogRead(0);
delay(100); }
       tes=tes/50;
       Serial.println(nilai);
       Serial.println(tes);
       if ((nilai==tes-1)||(nilai==tes-1)||(nilai==tes-2)||(nilai==tes-2)|| (nilai==tes-2)|| (nila
              Serial.print('!');
              Serial.println(tes); }
      nilai=tes;
delay(5000);
       Serial.print('@');
      if (analogRead(1)<500) Serial.println('1'); else Serial.println('0');}
```