
TELKOMNIKA Indonesian Journal of Electrical Engineering
Vol. 12, No. 12, December 2014, pp. 8278 ~ 8285
DOI: 10.11591/telkomnika.v12i12.6572 8278

Received July 4, 2014; Revised September 21, 2014; Accepted October 12, 2014

Accelerating Computation of DNA Multiple Sequence
Alignment in Distributed Environment

Ramdan Satra*1,2, Wisnu Ananta Kusuma1, Heru Sukoco1
1Department of Computer Science, Bogor Agricultural University

Kampus IPB Dermaga, Jl. Meranti, Wing 20 Level 5-6, Bogor 16680, Indonesia
Telp./Fax.: +62-251-8625584

2Department of Informatics Engineering, University of Muslim Indonesia, Makassar, Indonesia
*Corresponding author, e-mail: ramdanstr@gmail.com1, ananta@ipb.ac.id2, hsrkom@ipb.ac.id2

Abstract
Multiple sequence alignment (MSA) is a technique for finding similarity in many sequences. This

technique is very important to support many Bioinformatics task such as identifying Single Nucleotide
Polymorphism (SNP), creating phylogenetic tree, and metagenome fragments binning. The simplest
algorithm in MSA is Star Algorithm. This algorithm consists of aligning all possible pairs of sequences,
finding a sequence Star chosen from sequence that has maximum alignment score, and aligning all
sequences refered to the sequence Star. Each of pairwise alignments is conducted using dynamic
programming technique. The complexity of DNA multiple sequence alignment using dynamic programming
technique is very high. The computation time is increased exponentially due to the increasing of the
number and the length of DNA sequences. This research aims to accelerate computation of Star Mutiple
Sequence Alignment using Message Passing Interfaces (MPI). The performance of the proposed method
was evaluated by calculating speedup. Experiment was conducted using 64 sequences of 800 bp Glycine-
max-chromosome-9-BBI fragments yielded by randomly cut from reference sequence of Glycine-max-
chromosome-9-BBI taken from NCBI (National Center for Biotechnology Information). The results showed
that the proposed technique could obtain speed up three times using five computers when aligning 64
sequences of Glycine-max-chromosome-9-BBI fragments. Moreover, the increasing of the number of
computers would significantly increase speed up of the proposed method.

Keywords: DNA multiple sequence alignment, distributed computing, star algorithm, message passing

interface

Copyright © 2014 Institute of Advanced Engineering and Science. All rights reserved.

1. Introduction

Multiple Sequence Alignment (MSA) is a technique for aligning multiple biological
sequences [1] to find similarities and differences in the sequence [2]. MSA is used in
phylogenetic analysis to assessing the origin of species. MSA is also used to search a single
nucleotide polymorphism (SNP) for molecular-based plant breeding genetics [3]. The growth of
biological sequence databases makes the sequence alignment computation increase
significantly [1].

The complexity of sequence alignment is O (LN), where L is the length of each
sequence and N is the number of sequences [4]. The longer and the more sequences to be
aligned the longer it’s computational time. The optimal time of sequence alignment is
increased exponentially with increaseing of the number and length of sequences [5].

Methods or tools are needed to obtain optimal computational process. Previous study
to optimize the computational sequence alignment used a dynamic programming algorithm
with complexity of O (mn) by Zhou and Chen [6]. Other studies used a linear space algorithm
for pairwise sequence alignment with the complexity of O (n) [7, 8]. Others used parallel
computing with MPI [9] and GPU-CUDA [1, 3]. Parallel computing used to propose new
clssification algorithm [12] and simulate properties of polymer chain [13] in other case of
computational problem.

In this research, parallel computing is utilized on clusters of computers known as
Distributed Memory. This research tries to improve a previous work conducted by Sunarto
which used star algorithms in parallel environment using MPI [9]. The previous research had
limitation in scalability. In this research, we proposed a scallable distributed computing of DNA

TELKOMNIKA ISSN: 2302-4046

Accelerating Computation of DNA Multiple Sequence Alignment in… (Ramdan Satra)

8279

Multiple Sequence Alignment. The new approach could handle more number of sequences
and was also easily extended by increasing the number of resources used to compute multiple
sequence alignment.

2. Research Method
2.1. Research Data

In this research, we used the sequence of Glycine-max-chromosome-9-BBI obtained
from NCBI (National Center for Biotechnology Information) [10]. Detailed research data is
shown in Table 1.

Table 1. Research data
Gene Name Length (bp) Number
Glycine-max-chromosome-9-BBI 811-850 64

2.2. Multiple Sequence Alignment (MSA) with Star Algorithm

Algorithms for MSA are actually developed based on probabilistic or heuristic
approaches such as the Star method and the Progressive method [3]. This research used the
Star method by improving and extending theprevious research conducted by Sunarto AA et al.
In the Star alignment algorithm, there are 3 stages, including (i) calculating pairwise alignment
scores from all possible sequence pairs, (ii) selecting a Star sequence which has the best
alignment score, and (iii) aligning the Star sequence with other sequences [3, 9]. The illustration
of multiple sequence alignment using the Star algorithm can be described as follows:

For example, supposed we have DNA sequence data as follows:
Seq 1 = ATGG
Seq 2 = ATGC
Seq 3 = ATCC
Seq 4 = AGCG
The first stage is calculating pairwise similarity scores from all possible sequences

pairs. This stage has O() complexity where n is number of sequences. This stage begins by
calculating the number of sequence pairs using Equation (1):

(n-1) + (n-2) + …. + 1 or n(n-1)/2 (1)

Where n is number of sequences.
The next step is creating identity matrix containing the sequences, symbolized by Kn.

Figure 1 shows the identity matrix.

 Seq 1 Seq 2 Seq 3 Seq 4
Seq 1 K1 K2 K3
Seq 2 K1 K4 K5
Seq 3 K2 K4 K6
Seq 4 K3 K5 K6

Figure 1. Pairwise sequence identity matrix

The results of the determination of DNA pairwise sequence are:

K1 = Seq 1 (ATGG) and Seq 2 (ATGC)
K2 = Seq 1 (ATGG) and Seq 3 (ATCC)
K3 = Seq 1 (ATGG) and Seq 4 (AGCG)
K4 = Seq 2 (ATGC) and Seq 3 (ATCC)
K5 = Seq 2 (ATGC) and Seq 4 (AGCG)
K6 = Seq 3 (ATCC) and Seq 4 (AGCG)

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8278 – 8285

8280

Each pair of sequences above is aligned using Needleman Wunsch algorithm. This
algorithm uses dynamic programming approach to find global similarity of sequences.
Needleman Wunsch algorithm consists of matrix initialization, filling the value of each cell matrix
and tracing back. Similarity score of pairwise sequence is calculated using Equation (1) below:

, ,

 ,

,

0

 (1)

Where:
 m is the row and n is the collumn.
 A is a matrix of values for each cell is expressed as (A[m,n])
 S is the score of each cell is expressed as (S[m,n]), match score = 5 and unmatch

score = -3
 W expressed as gap alignment with value = - 4

The calculation results of similarity scores for all pairs of sequences are shown in Figure 2.

0 Seq 1 Seq 2 Seq 3 Seq 4
Seq 1 0 12 4 7
Seq 2 12 0 12 7
Seq 3 4 12 0 4
Seq 4 7 7 4 0

Figure 2. Sequence alignment similarity scores

The second stage of star algorithm is selecting a Star sequence. A Star sequence was

selected by comparing the sequence alignment similiartity scores of all sequences. A sequence
with the best similarity score was chosen as a Star sequence. Next, the Star sequence was
updated by aligning it to the other sequences. The complexity of this stage is O(n), where n is
the number of sequences. Illustration of this stage is shown in Figure 3.

0 Seq 1 Seq 2 Seq 3 Seq 4
Accumulated

Similarity Scores
Seq 1 0 12 4 7 23

* Seq 2 12 0 12 7 31
Seq 3 4 12 0 4 20
Seq 4 7 7 4 0 18

Star Sequence = Sequence 2 (A T G C)

Seq 2
Seq 1
Seq 3
Seq 4

New Star Sequence = Sequence 2 (A T G C –)

Figure 3. Selecting a Star sequence

Realignment for the updated Star sequence

TELKOMNIKA ISSN: 2302-4046

Accelerating Computation of DNA Multiple Sequence Alignment in… (Ramdan Satra)

8281

The third stage of star algorithm is realignment. This stage is realigning the Star
sequence to others sequences by using dynamic programming technique. Complexity is O(n),
where n is the amount of sequences. IIlustration for realignment is shown in Figure 4.

Seq 2 (A T G C -)
Seq 1 (A T G G)
Seq 3 (A T C C)
Seq 4 (A G C G)

A T G C –
A T G – G
A T – C C
A – G C G

Figure 4. Realignment

2.3 Parallelization MSA with Message Passsing Interfaces (MPI)

In this research, we used Foster’s Methodology for implementing parallel programming.
This methodology consists of partitioning, communication, agglomeration and mapping stage
[8]. Parallelization was conducted for computing pairwise similarity scores. The calculation
began by dividing the sequence pairs into multiple processes (threads) symbolized by K1, K2
... Kn. In the case when the amount of computers is equal to the amount of processes, each
process will be allocated to each computer. If Pk is a computer for k = 1,2,...n this allocation
can be defined as P1 = K1, P2 = K2 ... Pn = Kn. Unfortunately the number of sequence pairs is
often larger than the number of computers. Sequence pairs which has not been allocated yet
must wait until the previous process has been completed. Allocation of processes (threads)
when the number of sequence pairs are more than the number of computers or when Kn > Pn
can be described in Figure 5.

K1

P1

K2 K3

P3P2

K4

P1

Wait.. K5

P2

K6

P3

Kn

Pn

T1 Done T2 Start

Merger Process (T1) Merger Process (T2) (Tn)

Figure 5. The distribution of processes when the number of sequence pairs are more than the

number of computers or Kn > Pn

Illustration of data distribution of DNA sequence with MPI can be seen in Figure 6. In
this research, comunication of MPI used point to point communication with a blocking send and
receives operations. Parallelization scheme for MSA is to assign a computer as the data divider
and other computers as data processors. A data divider called rank 0 distributed sequence
pairs using MPI_Send() to other computer as data processors (Figure 7). Data processors
which were symbolized by the rank 1...n received sequence pairs using MPI_Recv() (Figure 8).
Next, each data processors conducted pairwise sequence alignment to compute pairwise
similarity scores in parallel. The calculation results of each data processor were transmitted to
data divider (rank 0) by using MPI_Send(). Data divider with rank 0 received the similarity
scores using MPI_Recv() command and completing the MSA process by selecting a Star
sequence and realigning all sequence to the Star sequence

The results of the sequence alignment

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8278 – 8285

8282

Figure 6. Illustration the distribution of sequence data with MPI

//MPI initialization
MPI_Init(&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);//Computer initialization
MPI_Comm_size (MPI_COMM_WORLD, &p_size);//Initialize the number of computers

If rank == 0 {
 c = ((js*js)-js)/2; // Calculate the many pairwise sequences
 p_bts = p_size-1; // Limit Number of Computers
 p=1; // Limit Number of computers for processing data (other than rank 0)
 for (i=1; i<=js-1; i++){
 for (j=i+1; j<=js; j++){
 us1 = i-1; // Initialization the order of sending data sequence
 us2 = j-1; // Initialization the order of sending data sequence
 MPI_Send (&c, 1, MPI_INT, p, 1, MPI_COMM_WORLD);
 MPI_Send (&SIZE, 1, MPI_INT, p, 3, MPI_COMM_WORLD);
 MPI_Send (&p_bts, 1, MPI_INT, p, 5, MPI_COMM_WORLD);
 MPI_Send (&us1, 1, MPI_INT, p, 6, MPI_COMM_WORLD);
 MPI_Send (&us2, 1, MPI_INT, p, 7, MPI_COMM_WORLD);
 MPI_Send (s[us1], SIZE+1, MPI_CHAR, p, 8, MPI_COMM_WORLD);
 MPI_Send (s[us2], SIZE+1, MPI_CHAR, p, 9, MPI_COMM_WORLD);
 p++;
if (p>p_bts){p=1;} // Looping sequence data sending besides to rank 0
 }
 }
} // Tutup rank 0

Figure 7. Source code data divider

If rank <> 0 {
 MPI_Recv(&c, 1, MPI_INT, 0, 1, MPI_COMM_WORLD, &status);
 MPI_Recv(&SIZE, 1, MPI_INT, 0, 3, MPI_COMM_WORLD, &status);
 MPI_Recv(&p_bts, 1, MPI_INT, 0, 5, MPI_COMM_WORLD, &status);
 p=1;
 for (h=0; h<=c-1; h++){
 if (rank==p){
 MPI_Recv(&us1, 1, MPI_INT, 0, 6, MPI_COMM_WORLD, &status);
 MPI_Recv(&us2, 1, MPI_INT, 0, 7, MPI_COMM_WORLD, &status);
 MPI_Recv(s[us1], SIZE+1, MPI_CHAR, 0, 8, MPI_COMM_WORLD, &status);
 MPI_Recv(s[us2], SIZE+1, MPI_CHAR, 0, 9, MPI_COMM_WORLD, &status);
 }
} //end rank <> 0

Figure 8. Source code data processors

Dividers
data

Processing
of data

TELKOMNIKA ISSN: 2302-4046

Accelerating Computation of DNA Multiple Sequence Alignment in… (Ramdan Satra)

8283

3. Results and Analysis
This research used 5 computers with spesification Intel Core CPU i3-3220@3.30GHz

with 4 CPU cores, 8 GB of RAM memory. A whole genome data with FASTA format of Glycine-
max-chromosome-9-BBI was divided randomly into some numbers of sequences such as 3, 4,
8, 12, 14, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60 and 64 sequence. Testing evaluation
was conducted in 3, 4 and 5 computers.

3.1. Results

The evaluation results was described in Figure 9-11. Figure 9 showed the performance
of our proposed method in term of execution time.

Figure 9. the execution time in various number of sequences

The result of sequence alignment computation showed that the parallel computation

time was faster than the sequential computation time. Figure 9 showed the difference in
computation time of data FASTA Glycine-max-chromosome-9-BBI with the length of 811-850
basepair. Using 3, 4 and 8 sequences the computational time was only slightly different.
However, with the incresing of the number of sequences the computational time was
significantly different.

3.2. Analysis

The performance analysis or evaluation of this proposed method was conducted by
calculating speedup [11]. Speedup can be obtained by using Equation (2).

Speedup (2)

Description:
Ts = Sequential execution time
Tp = Parallel execution time

The results of the parallel computing with 3, 4 and 5 PC (Personal Computer) showed

that increasing of the number of computers (PCs) affected the parallel execution time. Parallel
computational speedup increased as the number of computers was increased. Plot of parallel
computing speedup for 3, 4 and 5 PCs were shown in Figure 10.

0.00

5.00

10.00

15.00

20.00

3 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

ti
m
e
(s
ec
o
n
d
)

number of Sequence

Sequential time (1 PC) / sec (Ts) Parallel time (3 PC) /sec (Tp1)

Parallel time (4 PC) /sec (Tp2) Parallel time (5 PC) /sec (Tp3)

 ISSN: 2302-4046

 TELKOMNIKA Vol. 12, No. 12, December 2014 : 8278 – 8285

8284

Figure 10. The speedup of parallel computing in various number of sequences

The other metric for showing the parallel performance is efficiency. Increasing the

number of processors decreased the value of efficiency, and conversely an increase in the size
of data will increase the efficiency [14]. The constant efficiency value indicates that the
performance of a parallel system is scalable to the size of the data. Scalable parallel systems
means the system is able to maintain performance with increasing number of processors [14] to
process the data in a certain size. Efficiency is calculated using Equation (4). The results of
efficiency calcucaltion in this study can be seen in Figure 11.

Ef iciency
 (4)

Limitation efficiency value is 1 / p < efficiency <1

Description:
S (n) = Speedup of parallel computing
p = Many processors

Figure 11. Efficiency of parallel computing in various number of sequences

Figure 11 showed that the use of 3, 4 and 5 processor were scalable in processing data

with the length of 811-850 basepair and the number of sequence of 32-64. This efficiency will
increase when the size and the length of sequence increased with increasing of the number of
processor.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

3 4 8 1216 2024283236404448 52566064

R
at
io
 T
s/
Tp

number of sequence

Speedup 3 PC

Speedup 4 PC

Speedup 5 PC

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

3 4 8 1216202428323640444852566064

V
al
u
e
Ef
fi
ci
e
n
cy

number of sequences

Efficiency 3 PC

Efficiency 4 PC

Efficiency 5 PC

TELKOMNIKA ISSN: 2302-4046

Accelerating Computation of DNA Multiple Sequence Alignment in… (Ramdan Satra)

8285

4. Conclusion
Parallel computing using MPI is recommended for MSA. This study show that the speed

up of using MPI in distributed environment for conducting MSA was incresed by increasing the
size and the number of DNA sequences aligned. The trend of efficiency was almost constant
when using 56 of sequences or more. This tendency indicated that this method was scalable to
the size of data.

Future research can be conducted by using the larger size of data sequence and
increase the number of processors to improve the speedup and efficiency of parallel computing
for MSA. In this research, pairwise sequence alignment was conducted in sequential
computation. In future, we could conduct hybrid computing by conducting the paiwise sequence
alignment in parallel using MPI and CUDA GPU to increase speed up significatly.

.

Acknowledgements
The authors would like to thank Indonesia Ministry of Agriculture for funding this

research through the KKP3N 2014 program.

References
[1] Liu Y, Schmidt B, Maskell DL. MSA-CUDA. Multiple Sequence Alignment on Graphics Processing

Units with CUDA. IEEE International Conference on Application-specific Systems, Architectures and
Processors. 2009: 121-128.

[2] Junior SAC. Sequence Alignment Algorithms. Department of Computer Science School of Physical
Sciences & Engineering Kingís College London. 2003.

[3] Sujiwo MAP, Kusuma WA. Multiple Sequence Alignment with Star Method in Graphical Processing
Unit using CUDA. International Seminar on Science (ISS). Bogor. 2013: 359-363.

[4] Lloyd GS. 2010. Parallel Multiple Sequence Alignment: An Overview.
[5] Edgar RC, Batzoglou S. Multiple sequence alignment. Current opinion in structural biology. 2006;

16(3): 368-373.
[6] Zhou Zm, Chen Z-w. Dynamic Programming for Protein Sequence Alignment. International Journal of

Bio-Science and Bio-Technology. 2013; 5(2): 141-150.
[7] Myers EW, Miller W. Optimal alignments in linear space. Oxford Univ Pres. 1988: 1-13.
[8] Sandes EFO, de Melo ACMA. Smith-Waterman Alignment of Huge Sequences with GPU in Linear

Space. IEEE International Parallel & Distributed Processing Symposium. 2011: 1199-1211.
[9] Sunarto AA, Kusuma WA, Sukoco H. Paralelisme Of Star Alignment. IEEE International Conference

on Instrumentation, Comunications, Information Technologi, and Biomedical Engineering. 2013: 167-
171.

[10] Zhou L, Wang H, Wang W. Parallel Implementation of Classification Algorithms Based on Cloud
Computing Environment. TELKOMNIKA Indonesian Journal of Electrical Engineering. 2012; 10(5):
1087-1092.

[11] Li H, Gong B, Gao HB, Qian CJ. Parallel Computing Properties of Tail Copolymer Chain.
TELKOMNIKA. 2013; 11(8): 4344-4350.

[12] “NCBI Home Page,”[Online]. Available: http://www.ncbi.nlm.nih.gov/
[13] Quinn MJ. Parallel Programing in C with MPI and OpenMP. McGraw-Hill Companies, Inc. 2003.
[14] Maria A Kartawidjaja. Analisis Kinerja Perkalian Matriks Paralel Menggunakan Metrik Isoefisiensi.

TESLA. 2008; 10(2): 51-54.

