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Abstract 
Protein classification is a well established research field concerned with the discovery of 

molecule’s properties through informational techniques. Graph-based kernels provide a nice framework 
combining machine learning techniques with graph theory. In this paper we introduce a novel graph kernel 
method for annotating functional residues in protein structures. A structure is first modeled as a protein 
contact graph, where nodes correspond to residues and edges connect spatially neighboring residues. In 
experiments on classification of graph models of proteins, the method based on Weisfeiler-Lehman 
shortest path kernel with complement graphs outperformed other state-of-art methods.  
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1. Introduction 

Kernel methods are an important method which is widely used in statistical learning 
theory [1]. Kernels help to adapt classification regardless how classification performs. That is to 
say, kernels act like an interface between classification tools and data sets via Support Vector 
Machines [2]. Early studies on kernel methods dealt almost exclusively with vector-based 
descriptions of input data. This procedure, though convenient, does not always effectively 
capture topological relationships inherent to the data; therefore, the power of the learning 
process may be insufficient. Haussler [3] was the first to define a principled way of designing 
kernels on structured objects, the so-called R-convolution kernel. Over recent years, kernels on 
structured objects such as strings and trees, on nodes in graphs and on graphs have been 
defined. Graphs are natural data structures to model such structures, with nodes representing 
objects and edges the relations between them. In this context, one often encounters two 
questions: “How similar are two nodes or edges in a given graph?” and “How similar are two 
graphs to each other?”  

For instance, in protein classification, one might want to predict whether a given protein 
is an enzyme or not. Computational approaches infer protein function by finding proteins with 
similar sequence, structure, or chemical properties. A very successful recent method is to model 
the protein as a graph, and assign similar functions to similar graphs [4]. Generally speaking, 
graph kernels are based on the comparison of graph-substructures via kernels. Several different 
graph kernels have been defined in machine learning which can be categorized into three 
classes: graph kernels based on walks [5] and paths [6], graph kernels based on limited-size 
subgraphs [7, 8], and graph kernels based on subtree patterns [5, 9]. To define a graph kernel, 
some requirements are put forward: the kernel should be measurable on the issue of similarity 
for graph; second, it should be computable in an acceptable time; third, it should be positive 
definite; fourth, it should be applicable widely. However, some of the kernels cannot meet all of 
these requirements. In this paper, we present a new graph kernel that measure similarity based 
on Weisfeiler-Lehman shortest path in undirected graphs, that are computable in polynomial 
time, that are positive semidefinite.  
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2. Basic Knowledge 
2.1. Some Definitions on Graph Theory 

We define a graph G as a triplet ),,( lEV , where V  is the set of vertices, E  is the set 

of undirected edges, and Vl :  is a function that assigns labels from an alphabet   to 

nodes in the graph. The neighborhood )(v  of a node v  is the set of nodes to which v  is 

connected by an edge, that is  Evvvv  ),()( '' . We assume that every graph has n  

nodes, m  edges, and a maximum degree of d . 

The adjacency matrix A  of G  is defined as follows: 
 

  ,
0

,),(1



 


otherwise

Evvif
A

ji
ij

 
 

Where iv  and jv  are nodes in G . Labels can be added on nodes or edges, these labels are 

referred as attributes. 

A walk w  of length 1k  in a graph is a sequence of nodes kvvv ,,, 21   where 

Evv ii  ),( 1  for ki 1 . 

A path p  is a walk without same nodes in the sequence. 

A cycle is a walk with kvv 1 ,a simple cycle does not have any repeated nodes except 

for 1v . 

Suppose ),( EVG is a graph with vertex set V and edge set E . Then, its complement

),( EVG  is a graph with the same vertex set V , but with a different edge set EVVE \ . 

In other words, the complement graph is made up of all the edges missing from the original 
graph. 

 
2.2. Graph Isomorphism 

Graph similarity or isomorphism [10] is the most essential problem for learning tasks like 
clustering and classification on graphs. In graph theory, an isomorphism of graphs G  and H  is 

a bijection between the vertex sets of G  and H : )()(: HVGVf  , such that any two 

vertices u  and v  of G  are adjacent in G  if and only if )(uf  and )(vf  are adjacent in H . 

Graph isomorphism problem is neither known to be polynomial-computable, nor NP-hard [11]. 
 
 

3. The Weisfeiler-Lehman Test of Isomorphism 
Our method uses concepts from the Weisfeiler-Lehman test of isomorphism [12, 13], 

more specifically its 1-dimensional variant. Assume we are given two graphs G  and H  and we 
would like to test whether they are isomorphic. The 1-dim Weisfeiler-Lehman test proceeds in 
iterations, which we index by i  and which comprise the steps given in Algorithm 1. 

The key idea of the algorithm is to augment the node labels by the sorted set of node 
labels of neighboring nodes, and compress these augmented labels into new, short labels. 
These steps are then repeated until the node label sets of G and H differ, or the number of 

iterations reaches n . If the sets are identical after n iterations, it means that either G  and  H  
are isomorphic, or the algorithm has not been able to determine that they are not isomorphic. 
See Figure 1, for an illustration of these steps. 
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Algorithm 1. One iteration of the 1-dim. Weisfeiler-Lehman test of graph isomorphism (1968) 
1.  Multiset-label determination 

a. For , set )()( 0 vlvMi  . 

b. For 0i , assign a multiset-label to each node v  in G  and H which consists of 

the multiset  )()(1 uuuli  . 

2.  Sorting each multiset 

a. Sort elements in )(vM i  in ascending order and concatenate them into a string )(vsi . 

b. Add )(1 vli  as a prefix to )(vsi  and call the resulting string )(vsi .  

3.  Label compression 

a. Sort all of the strings )(vsi  for all v  from G  and H  in ascending order. 

b. Map each string )(vsi  to a new compressed label, using a function *:f  such 

that ))(())(( wsfvsf ii 
 
iff )()( wsvs ii  . 

4.  Relabeling 

a. Set ))(()( vsfvl ii   for all nodes in G  and H . 

 
 

 
 

 

 
 

 

Figure 1. Illustration of the 4 Steps of One Iteration of the Computation of the Weisfeiler-Lehman 
Test of Isomorphism 

 
 
4. The Weisfeiler-Lehman Shortest Path Kernel 

In each iteration i  of the Weisfeiler-Lehman algorithm (see Algorithm 1), we get a new 

labeling )(vli for all nodes . Recall that this labeling is concordant in  and , meaning 

that if nodes in  and H  have identical multiset labels, and only in this case, they will get 
identical new labels. Therefore, we can imagine one iteration of Weisfeiler-Lehman relabeling as 

a function ),,()),,(( 1 ii lEVlEVr  that transforms all graphs in the same manner. Note that r 

depends on the set of graphs that we consider. 
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The image part with relationship ID rId113 was not found in the file.
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4.1. Weisfeiler-Lehman Sequence Graphs 
Define the Weisfeiler-Lehman graph at height i of the graph ),,( lEVG   as the graph 

),,( ii lEVG  . We call the sequence of Weisfeiler-Lehman graphs, 

 
)},,,(,),,,(),,,{(},,,{ 1010 hh lEVlEVlEVGGG   

 

Where GG 0 , the Weisfeiler-Lehman sequence up to height h  of G . 0G
 
is the original 

graph, )( 01 GrG   is the graph resulting from the first relabeling, and so on.  

 
4.2. Weisfeiler-Lehman Kernel with Complement Graphs 

Let  be any kernel for graphs, that we will call the base kernel. Then the Weisfeiler-

Lehman kernel with h  iterations with the base kernel k  is defined as: 
 

).,(),(),(),( 1100 hh
h
WL HGkHGkHGkHGk   

 
If we take the complement graphs into consideration, we will derive the Weisfeiler-

Lehman kernel with complement graphs: 
 

 ),(),(),(),( 110000 HGkHGkHGkHGk h
wl

),,(),(),( 11 hhhh HGkHGkHGk   
 

Where ),,,(),,,,( 1010 hh HHHGGG   are complement graphs of ),,,,( 10 hGGG 
 

).,,,( 10 hHHH   

Let the base kernel k  be any positive semidefinite kernel on graphs. Then the 

corresponding Weisfeiler-Lehman kernel h
WLk  is positive semidefinite. 

 
4.3. Shortest Path and Floyd-Warshall Algorithm 

Given an undirected graph ),( EVG   the shortest path graph [14], ),( 'EVG sp
 , 

which contains the same set of vertices as  and the edge between every pair of vertices is 
labeled with the shortest distance between them in the original graph. The transformation from 

 to 
 
can be performed by any all-pairs shortest path algorithm. Floyd–Warshall algorithm 

(See Algorithm 2) [15] is attractive and effective because it is straightforward and has time 
complexity of . Then, a kernel function was used to calculate the similarity between two 

shortest path graphs according to the following definitions, which were first defined by 
Borgwardt and Kriegel [6]. It is proved to be a positive semidefinite kernel and is computable in 
polynomial time. 

 

Algorithm 2. Floyd–Warshall algorithm (Graph  with nodes and adjacency matrix A ) 

  Floyd(G ) 
for nk to1  

  for ni to1  

for nj to1  

if(cost( ki, )+cost( jk , )<cost( ji, )) 

cost( ji, )=cost( ki, )+cost( jk , ) 

endif 
           endfor 
          endfor 
         endfor 

k

G

G spG

)( 3nO

G n
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Let 1e be the edge connecting vertices 1v  and 1w  on graph G , and 2e be the edge 

connecting nodes 2v  and 2w  on graph H . A walk on an edge includes the edge and its two 

adjacent vertices. A walk kernel walkk is used to compare the walk 1e and 2e as: 

,),(*),(*),(),( 21212121 wwkeekvvkeek nodeedgenodewalk  where
  nodek

 
 is  the  kernel  function  for  

comparing  two  vertices,  and  edgek
  
is a  kernel function for

 
comparing two edges. 

The kernel function for comparing two vertices u  and  v  is a Gaussian kernel [16] over 
their respective feature vectors, 

 

.
2

)()(
exp),(

2

2













 



vfuf

vuk node

 
 
The kernel function for comparing two edges e and f  is a Brownian bridge kernel that 

assigns the highest value to edges with identical weights, and 0 to all edges that differ in weight 
more than a constant c : 

 
).)()(,0max(),( flengthelengthcfek edge        

 
In this paper, we use c = 2. 
 
4.4. Shortest Path Kernel 

Given two shortest path graphs ),( 11 EVG  and the shortest path graph 

kernel: 
 

),,(),( 21

11 22

eekHGk
Ee Ee

walksp  
 


 

 

Where walkk  is a kernel function for comparing two edge walks of length 1. 

Floyd-transformation requires  time. 1E  and contain )( 2nO  edges. The 

computation of the shortest-path graph kernel requires )( 4nO  time. 

 
4.5. Weisfeiler-Lehman Shortest Path Kernel with Complement Graphs 

With the above definitions, we are ready to define Weisfeiler-Lehman shortest path 
kernel with complement graphs as: 

 

.),(),(),(

),(),(),(),(

11

110000

hhsphhspsp

spspsp
h
WL

HGkHGkHGk

HGkHGkHGkHGspk





 
 

For N  graphs, the runtime of WL shortest path kernel will scale as . 

 
 

5. Experiments 
5.1. Experimental Settings 

We compared the performance of the random walk graph kernel [17], the shortest path 
kernel, the WL Shortest Kernel without complement graphs and WL Shortest Kernel with 
complement graphs in terms of classification accuracy of the classification on D&D [18] and 
ENZYMES datasets, where accuracy shows the overall percentage of correct classifications. 
D&D is a dataset of 691 enzymes and 487 non-enzymes. Each protein is represented by a 
graph, in which the nodes are amino acids and two nodes are connected by an edge if they are 
less than 6 Ångstroms apart. The task is to classify the protein structures into enzymes and 

),( 22 EVH

)( 3nO 2E

)( 42nNO
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non-enzymes. ENZYMES is a data set of protein tertiary structures obtained from Borgwardt et 
al(2005), consisting of 600 enzymes from the BRENDA enzyme database(Schomburget al.,  
2004). In this case the task is to correctly assign each enzyme to one of the 6 EC top-level 
classes. Nodes are labeled in the dataset. In terms of D&D, we also analyzed the sensitivity, 
specificity, and Matthews correlation coefficient (MCC)[19] of the classifications in addition to 
accuracy (Table 3), where sensitivity is the percentage of enzymes that have been correctly 
classified as enzymes , specificity indicates the percentage of non-enzymes that have been 
correctly classified, and  MCC shows the overlapping between the predictions and the actual 
distribution.  

Suppose P represents positive instances N negative instances, TP the number of true 
positives, TN the number of true negatives, FP the number of false positives and FN the number 
of false negatives. Then the accuracy, sensitivity, specificity and MCC can be calculated by the 
following formulas, 

 

 
NP

TNTP
accuracy




 , 

 
FNTP

TP

P

TP
ysensitivit


 , 

TNFP

TN

N

TN
yspecificit


 , 

.
))()()(( FNTNFPTNFNTPFPTP

FNFPTNTP
MCC




       

 
We performed 10-fold cross-validation of C-Support Vector Machine Classification using 

LIBSVM [20], using 9 folds for training and the rest one for testing. All parameters of the SVM 
were optimized on the training data set only. To exclude random effects of fold assignments, we 
repeated the whole experiment 10 times. We show average classification accuracies and 
standard deviations in Table 1. Table 2 shows the size of both data set and runtime of the 
methods computing on them. 
 
 
Table 1. The Classification Accuracy(%) and Standard Deviation of each Kernel on Protein Data 

Sets 
Method/Data set D&D ENZYMES 

Random Walk Kernel 70.26(±0.86) 20.14(±0.69) 
Shortest Path Kernel 78.19(±0.26) 42.18(±0.43) 

WL Shortest Path Kernel without complement graphs 81.27(±0.70) 62.47(±0.61) 
WL Shortest Path Kernel with complement graphs 83.64(±0.92) 63.96(±0.84) 

 
 

Table 2. CPU Runtime for Kernel Computation on Protein Classification 
Data set D&D ENZYMES 

Class size 2 6 
Maximum nodes 5478 126 
Average nodes 284.32 32.63 

Number of graphs 1178 600 
Random Walk Kernel 52days 39days 
Shortest Path Kernel 25h 17min22s 38s 

WL Shortest Path Kernel without complement graphs 64days 1min3s 
WL Shortest Path Kernel with complement graphs 71days 2min11s 

 
 

Table 3. Comparison of our Method with others using D&D Data Set 
Method Sensitivity Specificity MCC 

Random Walk Kernel 65.28% 71.35% 0.523 
Shortest Path Kernel 71.32% 79.64% 0.736 

WL Shortest Path Kernel without complement graphs 78.24% 83.77% 0.821 
WL Shortest Path Kernel with complement graphs 81.05% 86.13% 0.836 
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5.2. Results 
In terms of runtime, The shortest path kernel and the WL shortest path kernel were 

competitive to the random walk kernel on smaller graphs (ENZYMES), but on D&D their runtime 
degenerated to more than 25 hours for the shortest path kernel, 64 days for the WL shortest 
path kernel without complement graphs and 71 days for the WL shortest path kernel with 
complement graphs. Using a graph to model the distribution of amino acid residues on the 3D 
structure, our method efficiently captures various structural determinants related to protein 
function. The kernels using WL method performed better than other kernel types. Furthermore, 
the WL shortest path kernel with complement graphs outperforms the other kernels with an 
accuracy of at least 83.64%, and it achieves improvements in accuracy more than 2% over the 
WL shortest path kernel without complement graphs. Meanwhile, considering shortest paths 
instead of walks increases classification accuracy significantly. For the random walk kernel, 
classification is the worst as with an increasing number of tottering walks, classification 
accuracy decreases. Table 3 also shows that our proposed method outperforms other methods. 

 
 

6. Conclusion 
In this paper, We propose a simple yet effective and efficient graph classification 

approach that  is based on topological and label graph attributes. Our main idea is that graphs 
from the same class should have similar attribute values. On the basis of an extensive 
comparison with state-of-the-art graph kernel classifiers, we show that our approach yields 
competitive or better accuracies and has typically much lower computational times. Our 
conclusion is that graph attributes are effective in capturing discriminating structural information 
from different classes. Our new kernels based on Weisfeiler-Lehman test of isomorphism open 
the door to applications of graph kernels on large graphs in bioinformatics, for instance, protein 
function prediction via detailed graph models of protein structure on the amino acid level, or on 
gene networks for phenotype prediction. A challenging question for further studies will be to 
consider kernels on graphs with continuous or high-dimensional node labels and their efficient 
computation. 
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