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Abstract 
With the development of embedded systems and the mobile internet, embedded systems are 

equipped with more and more memory capacity. Memory reliability becomes a focus to us. Though parity 
checking has been applied in embedded systems, it only can detect errors, but cannot correct them. 
Therefore, researching better data protection becomes an important topic for the development of 
embedded systems. In developing a new algorithm and applying it to embedded systems, transplanting 
good data protection technology used in HPCs are possible solutions. Of these two options, the former 
requires a long development time, while the latter may be easier to realize and apply, saving time and 
money. In the HPC field, there are many data protection technologies such as ECC, chipkill, lockstep and 
so on. Taking the features of the embedded systems into consideration, ECC may be the best technology 
for transplantation to the embedded system. There are two reasons. First, because of the system’s 
portability, it is hard to support 4 DIMMs. There is no possibility that chipkill or lockstep can be applied in 
the embedded system.  Secondly, ECC is more general and can support all series of SDRAM, either 4-bit 
or 8-bit. Hence this paper focuses on ECC application on embedded systems. ECC is an advanced 
technology for memory error detection and correction, which is used to support high reliability of 
computers. It is widely used in sever memory while it can detect 2-bit error and correct 1-bit error. This 
paper introduces the ECC algorithm, and then discusses the more general correction coding mathematics, 
realizing it by programming with VHDL. After finishing these parts, a debug experiment is executed on the 
Altera Stratix IV family FPGA. Finally, the paper analyzes the simulation results and gives some 
suggestions for improving the performance of ECC controllers. 
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1. Introduction 
Memory is an electronic storage device, and all electronic storage devices have the 

potential to incorrectly return information different from what was originally stored. Some 
technologies are more likely than others to do this. DRAM memory, because of its nature, is 
likely to return occasional memory errors. As an important part of the computer, memory errors 
can cause some unexpected results [1]. With the increase of the use of DRAM memory in 
modern servers and PCs, memory RAS features are encountered more and more by enterprise 
and common users [2]. 

There are two kinds of errors that can typically occur in a memory system. The first is 
called a repeatable or hard error which is caused by defects within the DRAM package among 
other things. It cannot be corrected. The second is called a transient or soft error which is mainly 
caused by charged particles from naturally occurring background radiation or cosmic rays. It can 
be technologically detected and corrected. Parity checking, as a basic form of error detection, 
has been adopted in modern PCs. It only can detect 1-bit errors but cannot correct them. This 
error detection may satisfy PC RAS demands, but it is far from satisfying the demands of server 
RAS. In modern servers, ECC memory provides a good level of reliability and has become the 
standard technology today on almost every server. 

This thesis first introduces the ECC algorithm, then based on the ECC algorithm, 
shows a design for an ECC controller, which can be used for memory systems or some ECC 
related applications, and concludes with a validation of the algorithm on the Altera Stratix IV 
family FPGA [3-5]. 
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2.  ECC Encoding Algorithm        
ECC coding is an SEC-DED (Single-bit Error Correction, Double-bit Error Detection) 

coding which is for obtaining higher reliability. The origin of ECC coding is Hamming coding, 
which was first proposed by Hamming in 1950. 

Hamming code is a code that permits correcting single bit errors. He assumes that the 
data to be transmitted consists of a certain number of information bits u, and he adds to these a 
number of check bits p such that if a block is received that has at most a bit error, then p can 
identify the error bit position (either the error occurred in the block of information bits or in the 
block of the check bits, it can be identified). Specially, in Hamming code p is interpreted as an 
integer which is 0 if there is no error, and otherwise is 1-origin index of the bit that is in error. Let 
k be the number of information bits and m the number of check bits. Because the m check bits 
must check not only the information bits but also themselves, the value of p must be interpreted 
as an integer, ranging from 0 to m+k, which has m+k+1 distinct values. Because m bits can 
distinguish 2m cases, we must have: 

 
Error! Reference source not found.;                                     (1) 
 
This is known as the Hamming rule. It applies to any single bit error correcting (SEC) 

binary FEC (Forward Error Correcting, just a method that permit the receiver to correct a 
transmission error without asking the sender for more information about it or for a 
retransmission) block code in which all of the transmitted bits must be checked. According to 
Hamming rule, we can calculate that the number of check bits for 64-bit information bits is 7. 
Based on these added check bits, ECC coding adds another bit for parity check of all bits. 
Consequently, to a 64-bit information block, ECC coding needs 8 bit check block. The following 
are the steps to generate a check block p: 

1) Calculate the number of check bits according to the Hamming rule; 
2) Put the check bits in the power of 2 positions, and put the information bits in the 

other positions [6];  
3) Calculate the check bits the SEC needs. The method is as follows: 
a) Let the least significant bit of p be p0.  The value of p0 is the parity check result of 

the bits in the positions 1,3,5,7….(in binary, the least significant of these positions number is 1); 
b) Let the next from the least significant bit of p be p1. The value of p1 is the parity 

check result of the bits in the positions 2,3,6,7,10,11….(in binary, the next from the least 
significant of the position number is 1); 

c) Similarly, let the third from least significant bit of p be p2. The value of p2 is made an 
even parity check on those positions that have a 1 in their third from least significant position 
number, namely positions 4, 5, 6, 7, 12, 13, 14, 15, 20, … 

d) Continuing, calculate the other check bits in the same way; 
4) Finally, add a parity check bit, the value of which is the parity check result of the 

information bits u and the check bits p. 
Table 1 is the check table for 64-bit data ECC encoding. 

 
 

Table 1. 64-bit Data ECC Encoding 
111 110 101 100 011 010 001 000 

1000 D63 D62 D61 D60 D59 D58 D57 CB7 
0111 D56 D55 D54 D53 D52 D51 D50 D49 
0110 D48 D47 D46 D45 D44 D43 D42 D41 
0101 D40 D39 D38 D37 D36 D35 D34 D33 
0100 D32 D31 D30 D29 D28 D27 D25 CB6 
0011 D25 D24 D23 D22 D21 D20 D19 D18 
0010 D17 D16 D15 D14 D13 D12 D11 CB5 
0001 D10 D9 D8 D7 D6 D5 D4 CB4 
0000 D3 D2 D1 CB3 D0 CB2 CB1 No error 

 
 
From table 1, we can calculate each check bit (CB1～CB7), for example, 
CB1=D0⊕D1⊕D3⊕D4⊕D6⊕D8⊕D10⊕D11⊕D13⊕D15⊕D17⊕D19⊕D21⊕D23

⊕D25⊕D26⊕D28⊕⊕D30⊕D32⊕D34⊕D36⊕D38⊕D40⊕D42⊕D44⊕D46⊕D48⊕D50⊕D
52⊕D54⊕D56⊕D57⊕D59⊕D61⊕D63；  
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After calculating CB1～ ～CB7 out, we do an overall parity check for D0 D63 and 
CB1～CB7, and the result is CB8. 

 
2.1. ECC Decoding and Correcting Algorithm 

As mentioned above, ECC encoding applies an SEC-DED code. So the receiver can 
detect errors by the check bit. Table 2 demonstrates how the receiver detects errors.As 
indicated in Table 2, if there are no errors, the overall parity (the parity of the entire n-bit 
received code word) will be even and the syndrome of the (n-1)-bit SEC portion of the block will 
be 0. If there is one-bit error, then the overall parity of the received block will be odd. If the error 
occurred in the overall parity bit, then the syndrome will be 0. If the error occurred in some other 
bit, then the syndrome will be nonzero and it will indicate which bit is in error. If there is a two-bit 
error, then the overall parity of the received block will be even. If one of the two errors is in the 
overall parity bit, then the other is in the SEC portion of the block. In this case the syndrome will 
be nonzero (and will indicate the bit in the SEC portion that is in error). If the errors are both in 
the SEC portion of the block, then the syndrome will also be nonzero, although the problem is 
hard to explain this two bits location [7-10]. 

 
 

Table 2. Receiver Conclusion of Error Detection 
Possibility 

Receiver Conclusion 
Errors Overall Parity Syndrome 
0 even 0 No error 

1 odd 
=0 Overall parity bit is in error 
≠0 Syndrome indicates the error 

2 even ≠0 Double error, cannot be corrected 

 
 
If there is one-bit error, the correction will be executed when the error is detected. The 

syndrome will indicate the error location. The syndrome is calculated as follows. After the 
receiver receives the data, it will calculate the check bits again by the ECC encoding algorithm, 
if the calculated result is r, then do XOR operation with the check block p and the result r, and 
the result is syndrome [11]. 
 
2.2. More General Considerations of Error Correction. 

In the last two sections, the ECC algorithm based on Hamming coding was discussed. 
This section will take levels of error correction and detection capability greater than SEC-DED 
into consideration. 

The central concept in the theory of ECC is that of Hamming Distance, which is 
appropriate to call this a distance function because it satisfies the definition of a distance 
function used in linear algebra:s  
 

 

 

 
 
Here d(x, y) denotes the Hamming distance between code word x and y, which for 

brevity we will call simply the distance between x and y. 
Based on the above concept, we will now turn this question around and ask, “For a 

given code length n and minimum distance d, how many code words are possible?”  
For minimum distance 1, suppose the code words according to the following forum: 

 
A (n, 1) =2n  
 
For minimum distance 2, we know from the single parity bit example that but A (n, 2) 

cannot exceed   for the following reason. Suppose there is a code of length n and minimum 
distance 2 that has more than code words. Delete any one column from the code words. This 
produces a code of length   and minimum distance at least 1 (deleting a column can reduce the 
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minimum distance by at most 1), and of size exceeding. Thus it has contradicting equation (6). 
Hence 
 

A(n-2)=2n-1    
 
What about the distance 3? That is an unsolved problem, in the sense that no formula 

or reasonably easy means of calculating it is known. Of course many specific values of are 
known, and some bounds are known, but the exact value is unknown in most cases. When 
equality holds in Equation (1), it represents the solution to this problem for the case d=3. Let 
Equation (1) be rewritten: 
 

  
 
Here k is the number of information bits, so is the number of code words. Hence we 

have: 
 

 
 
Similarly, for the distance n=7, and so on. An interesting relation is that for , 

 

 
 
This is known as the sphere-packing bound, which can achieve a higher level of error 

correction and detection capability than SEC-DED [12].  
 
 
3. ECC Controller Design 

Based on the research of ECC the error detection and correction algorithm, with the 
top-down and modular design methodology, an ECC controller has been designed. Figure 1 is 
the block diagram of a 64-bit ECC controller and its application in the memory system. 
 

 
 

Figure 1. ECC Controller Block Diagram and its Application 
 
 

From the Figure 1, we can see, the ECC controller consists of an ECC encoder, ECC 
control logic and ECC decoder and corrector. The ECC encoder is in charge of encoding the 
information data with check bits, while the ECC decoder and corrector is in charge of decoding 
the received block and doing error detection and correction. If a two-bit error detected and 
uncorrectable, the ECC control logic will send an interrupt to the upper user logic, which 
indicates that an uncorrectable error occurred. ECC control logic consists of many registers 
which can be divided into three types as follows: 
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Configuration Register (CR), which is used for recording the threshold of the occurring 
1-bit or 2-bit errors. Once over the threshold, the control logic will send an interrupt. 

Status Register (SR), which is used for recording the type of error which occurred, error 
location and ECC syndrome. 

Counter, used for recording the number of 1-bit and 2-bit errors. 
After the design of ECC controller architecture, each module will be realized by 

programming with the VHDL language [13-15]. 
 
 
4. FPGA Validation 

Validation and simulation is an important step in the EDA design. The purpose of 
validation is to ensure the design accuracy. After finishing the ECC controller design, a FPGA 
validation has been executed on the Altera Straix family FGPA. According to the Altera EDA 
design solution, two development kits (Quartus II 10.1 and ModelSim 6.6c) have been chosen 
for this validation. At first, a project was created in the Quartus II 10.1, then source files were 
added to the project and a  full compilation made. Figure 2 is the full compilation result [16]. 
Figures 3 and 4 show the analysis & synthesis result and the fitter result individually. 
 
 

 
 

Figure 2. ECC Controller Full Compilation Result 
 
 

 
 

Figure 3. Analysis & Synthesis Compilation Result 
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After finishing a full compilation, an RTL simulation is executed in the ModelSim 6.6c. 
The purpose of the RTL simulation is to find some unstrained trace in the design. Before an RTL 
simulation, you should design a test bench, using a PCB equipped with your device. Here, the 
device is just the ECC controller. In addition, a test bench should contain some signal stimulator 
to drive the circuit to work, which is also designed by VHDL programming [17]. 

The ECC controller RTL simulation consists of an encoder RTL simulation and decoder 
RTL simulation. To a memory system, the ECC encoder will work if a processor executes a 
write memory command. Figure 5 is the simulation result of ECC encoding. 
 
 

 
 

Figure 4. Fitter Compilation Results 
 
 

In Figure 3, dn is the input data while dq is the output data, and cb is the check bits 
calculated by the ECC encoder. Seeing from Figure 5, we can find the value of dq is the same 
as dn. In a memory system, the ECC decoder and corrector will work if  a processor reads data 
from the memory. Due to memory errors occurring randomly, to better observe the decoder and 
corrector RTL simulation; some errors were injected into the signal stimulator. Table 3 and table 
4 are the VHDL source codes of error injection [18].  

Table 3 and 4 individually used a state machine to stimulate the decoder and corrector 
function. From the source codes, we know the stimulator contained all types of 1-bit and 2-bit 
errors. After importing the test bench and source files to the Modelsim and doing an RTL 
simulation, the result is shown as the Figure 6 
 
 

 
 

Figure 5. ECC Encoding Simulation Result 
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Table 3. Errors Injected to the Information Bits 
data:process 
begin 
  wait for 40 ns; 
   Dp<=X"0000000000000001";  --inject single bit error, Dp(0) flip 
  wait for 40 ns; 
  Dp<=X"FFFFFFFFFFFFFFEF";  --inject single bit error, Dp(4) flip 
  wait for 40 ns; 
  Dp<=X"AAAAAAAAAAAAAAAF"; --inject double bit error, both occurred at the data bits. Dp(0),Dp(2) both flip 
  wait for 40 ns; 
  Dp<=X"CCCCCCCCCCCCCCCD";--inject double bit error; one occurred at the data bit, the other occurred at the 
check bit. Dp(0), cb(0) both flip. 
  wait for 40 ns; 
  Dp<=X"F0F0F0F0F0F0F0F0";  --inject double bit error, both occurred at the check bits, cb(1), cb(2) both flip 
  wait for 40 ns; 
  Dp<=X"FFFF0000FFFF0000";  --inject single bit error, cb(3) flip 
  wait for 40 ns; 
  Dp<=X"FFFFFFFF00000000"; -- no error 
end process; 

 
 

Table 4. Errors Injected to the Check Bits 

check_bit: process 
begin 
--inject single bit error,Dp(0) flip 
  wait for 40 ns; 
   cb<=X"08";  
--inject single bit error,Dp(4) flip 
  wait for  40 ns; 
  cb<=X"EF";  
--inject double bit error; both occurred at the data bits. Dp(0), Dp(2) both flip 
  wait for 40 ns; 
  cb<=X"58";  
--inject double bit error, one occurred at the data bit, the other occurred at the check --bit. Dp(0),cb(0) both flip 
  wait for 40 ns; 
  cb<=X"30";   
--inject double bit error, both occurred at the check bits,cb(1),cb(2) both flip 
  wait for 40 ns; 
   cb<=X"0A";   
--inject single bit error, cb(3) flip 
  wait for 40 ns; 
   cb<=X"E6";  
-- no error 
  wait for 40 ns; 
  cb<=X"CE";  
end process; 

 
 

 
 

Figure 6. ECC Decoder and Corrector RTL Simulation Result 
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From Figure 6 we see, all data is decoded to 64-bit original data. All 1-bit errors are 
corrected, in addition, when it occurred, the single_bit_error register is incremented by 1 
automatically. When 2-bit errors occurred, the decoder cannot decode the right data, so the 
state of output data (dn) is high impedance, which is shown in the period from 131744ps to 
210144ps, because 2-bit error occurred 3 times in the period, the double_bit_error count to 
“0x03” as shown in Figure 6. 

In the Figure 6, each signal definition is shown in the Table 5. 
 
 

Table 5. Signal Definition of ECC Decoder and Corrector 
Symbol Type Definition 

en Input Enable the decoder and corrector 
dp Input information bits of input data，64bit 
cb Input check bits of input data，8bit 
dn Output output data，64bit 
single_bit_error Output 1-bit error register, the threshold of which is 3F 
double_bit_error Output 2-bit error register, the threshold of which is 1F 
se_over Output interrupt when over the threshold of 1-bit error 
de_over Output interrupt when over the threshold of 2-bit error 

 
 
5. Improvement Suggestions 

From the FPGA validation results of the ECC controller design in this thesis, for better 
performance, two suggestions are given as follows: 

The ECC controller was only validated in 64-bit mode in this thesis, for some application 
needing support for 128-bit or more, the timing is preliminary and not validated. Therefore, a 
validation of a 128-bit or more mode ECC controller should be executed after this thesis. 

On the flexibility aspect, dynamic reconfigurable architecture may be a good choice for 
designing an ECC controller which supports 128-bit or more mode. This is an area for 
improvement. 

The ECC controller only can correct 1-bit errors, for some applications which need 
higher reliability, the ECC controller is inadequate. Therefore, a new data protection technology 
maybe a good choice for solving such problems. How to design a new data protection 
technology supporting multiply bits correction will be the next job after this thesis. 
 
 
6. Conclusion 

ECC coding is important for ensuring data reliability. On the aspect of ECC coding 
algorithm research, this thesis realized a 64-bit ECC controller by VHDL programming and its 
validation on the Altera Stratix IV Family FPGA. The controller can apply to a memory controller 
and some other ECC related applications perfectly because it is smart and easy to transplant in 
an EDA application. 
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