
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 25, No. 2, February 2022, pp. 920~930 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v25.i2.pp920-930      920  

 

Journal homepage: http://ijeecs.iaescore.com 

A review of optimisation and least-square problem methods on 

field programmable gate array-based orthogonal matching 

pursuit implementations  
 

 

Muhammad Muzakkir Mohd Nadzri, Afandi Ahmad 
Reconfigurable Computing for Analytics Acceleration (ReCAA) Research Laboratory,  

Microelectronics and Nanotechnology Shamsuddin Research Centre (MiNTSRC), Universiti Tun Hussein Onn Malaysia (UTHM), 

Malaysia 

 

 

Article Info  ABSTRACT 

Article history: 

Received Jul 31, 2021 

Revised Nov 29, 2021 

Accepted Dec 17, 2021 

 

 Orthogonal matching pursuit (OMP) is the most efficient algorithm used for 

the reconstruction of compressively sampled data signals in the 

implementation of compressive sensing. OMP operates in an iteration-based 

nature, which involves optimisation and least-square problem (LSP) as the 
main processes. However, optimisation and LSP processes comprise 

complex mathematical operations that are computationally demanding, and 

software-based implementations are slow, power-consuming, and unfit for 

real-time applications. To fill the research gap, we reviewed the optimisation 
and LSP techniques implemented on the FPGA platform as the hardware 

accelerator. Aspects that contributed to the performance, algorithm, and 

methods involved in the implemented works were discussed and compared. 

The methods were found to be improved when modified or combined. 
However, the best approach still depends on the requirement of the system to 

be developed, and this review is significant as a reference.  
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1. INTRODUCTION 

Signal compression conventionally depends on the Shannon sampling theorem [1], [2] to ensure the 

accomplishment of signal recovery. In recent years, compressive sensing (CS), as proposed in [3]-[5] has 

appeared as a new technique that can sample a signal at a rate lower than the Nyquist rate but still promises a 

reliable reconstruction signal. Despite the advantages offered by CS, it currently faces challenges in the 

reconstruction part of the signal, as the computation process is complex. Software-based CS is usually 

implemented in the graphic processor units (GPUs) and general central processing units (CPUs) of 

computers, with the GPU implementation being more efficient than the CPU implementation. However, a 

GPU implementation does not allow for the regular flow of data to the host, since it suffers from the 

significant issue of inconsistent memory bandwidth between the GPU and the main memory [6], rendering it 

incapable of attaining adequate real-time results on the recovered signal [7]. Thus, it is critical to provide a 

hardware-based enhancement, for example, using a field-programmable gate array (FPGA), to accelerate the 

computation as a solution that links to the analogue sensors to compute signals in real time manner [8]. 

Among various algorithms, orthogonal matching pursuit (OMP), introduced in [9], is a famous 

method implemented on the hardware platform and is an efficient reconstruction algorithm with an excellent 

https://creativecommons.org/licenses/by-sa/4.0/
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trade-off between computational complexity and accuracy. OMP, also known as the greedy method, works 

by finding the location of the non-zero component of the dictionary and selects the columns of the 

measurement matrix which mostly correlate with the measurement vector, a process called optimisation, and 

solves the least-square problem (LSP) to find the estimated signal. Optimisation and LSP are two (2) main 

problems in the computation process of OMP as the implementation of optimisation is time-consuming, since 

it usually requires a large number of matrix multiplications, and solving the LSP involves a complex matrix 

inversion. Both play a significant role in OMP iterative processes but significantly affect the cycle period.  

The CS equation is y = Θx, where the output compressed signal y is obtained by multiplying k-

sparse (non-zero element) from input signal x and measurement matrix Θ. Input signal x is known as k-

sparse, as it will be sparse in the time domain or other appropriate transform domains after transformation, 

such as discrete cosine transform basis, Fourier basis and wavelet basis [10]. To ensure that signal x can be 

decompressed or recovered successfully, measurement matrix Θ must obey two (2) criteria, which are 

restricted isometry property (RIP) and incoherence aspect [11], [12].  

To reconstruct signal x from compressed signal y, an underdetermined linear equation must be 

resolved, and one (1) of the famous and reliable methods is using OMP, where its full procedure is given in 

Algorithm 1 and its flow is demonstrated in Figure 1(a). As shown in Algorithm 1, the procedure begins with 

the initialisation of iteration counter i, active set 𝛬0, and residual 𝑅0 initialise as 𝑦, where the provided input 

values are measurement matrix 𝛩, compressed signal 𝑦 and k iterations. The second step is the optimisation 

operation, which is finding the most correlated column by computing the inner product of the current residual 

value from each iteration with the measurement matrix to be added to the active set. Next, in each iteration, 

the active set will be updated with the current index set of non-zero elements. After that, based on the current 

active set, the LSP method is used to find �̂� as the approximation of the original signal. In the last step, the 

residual vector is updated and the process is repeated for k number of iterations. After a few cycles, by 

including the processes of optimisation and LSP, the estimation of �̂� as the approximated value of the 

original signal x will be recovered.  

 

Algorithm 1. OMP Algorithm 
1- Initialise i = 0; index set 𝛬0 = {∅}; 
residual 𝑅0 = 𝑦 

2- Find index 𝜆𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗=1…𝑁 |⟨𝑅𝑖−1,𝛩𝑗⟩| 

3- Update 𝛬𝑖 =  𝛬𝑖−1 ∪ {𝜆𝑖 } and 𝛩𝛬𝑖 =  𝛩𝛬𝑖−1 𝛩𝜆𝑖   

4- Solve LSP: �̂�𝑖 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑥 ‖𝑦 −  𝛩𝛬𝑖 𝑥‖ 
5- Update residual 𝑅𝑖 = 𝑦 −  𝛩𝛬𝑖 �̂�𝑖 

6- Counter i= i+1 and repeat step 2 if i < k 

7- Result of the final estimation of �̂� 

 

There are various OMP methods on the FPGA platform used in previous works in the last five (5) 

years [6], [13]-[21]. However, there are limited reviews on OMP methods, especially in terms of techniques 

and the performance of the FPGA with emphasis discussion on the implementation of optimisation and LSP. 

Most reviews broadly discussed the CS reconstruction approach [22], [23] and did not focus on OMP and 

FPGA implementations. To fill this research gap, the present review focused on the methods of optimisation 

and least-square problem used in FPGA-based OMP reconstruction algorithm implementations. This paper 

would benefit researchers by comparing each method, analysing and assessing the most suitable methods to 

be implemented and improved upon. 

This review is also significant, since CS has been implemented in various research areas and 

applications, such as compressive imaging [24]-[26], biomedical applications [27], [28], pattern recognition 

[29], [30], sound processing [31]-[34], video processing [35], [36], and microelectronics applications [37], 

[38], and its most well-known implementation is in the field of communication systems, such as wireless 

networks and antenna [39]-[47]. It has been shown that this field is growing and has a wide opportunity for 

exploration using this technique of compression. The enhancement in terms of computation process, 

especially in terms of hardware, is really significant to accommodate the demand of real-time applications for 

reduced latency, time consumption, memory storage, and power consumption. 

The remaining sections of this paper are organised as follows. A review of FPGA-based OMP 

implementations is discussed and explained in section 2. Several flow charts focusing on optimisation and 

LSP processes in current methods of OMP implementation are depicted and important parameters are also 

compared. OMP’s optimisation and LSP strategies are described in sections 3 and 4, respectively. Lastly, the 

conclusion is outlined in section 5.  
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2. FPGA-BASED OMP IMPLEMENTATIONS 

In this section, a discussion on previous works on the implementation of FPGA-based OMP is 

presented. The main objective in this section is to review implementation strategies that emphasise 

optimisation and LSP. In [6], the architecture proposed was divided into four (4) computing blocks: K-point 

inner product and comparator unit (K-IPCU), Cholesky inversion unit (CIU), residual computation unit 

(XCU), and reconstructed signal computation unit (RCU). In these four (4) blocks, all input data, as well as 

intermediate matrices and vectors, were stored in the memory elements. The optimisation process was 

enhanced by the K-IPCU block with the ability of parallel pipeline inner product computation and 

comparison in each cycle. Modified Cholesky decomposition combined with the Newton-Raphson method 

was used to solve the complexity of matrix inversion for the LSP. The proposed architecture design was able 

to optimise both area and time executions by reusing the hardware of matrix-vector multiplication for other 

components of the algorithm and exploiting the parallelism inside each dependent operation. 

The improved OMP method to solve the crucial optimisation process using partial Fourier 

dictionary, which is commonly used in radar imaging, was proposed in [13]. Fast fourier transform (FFT) 

was used to optimise correlation, and the conjugate gradient (CG) method was used to solve the large-scale 

least-square issue. The suggested method was based on the partial Fourier basis, also known as the modulated 

Fourier basis, which is less complex and has been reported as efficient when implemented on the hardware 

platform. Most importantly, by utilising fast transformation, it was feasible to compute the highest correlation 

in the optimisation process in real time. Moreover, the matrix may be preconstructed, and so only one (1) 

vector from the dictionary matrix had to be stored. In the normal implementation of OMP, the LSP process is 

executed in each iteration. The Gram-Schmidt orthogonalisation method was utilised, and hence the process 

became efficient, as the LSP process was only executed once. The LSP implementation also utilised the CG 

iteration method to figure out the sparse solution. 

The idea of the algorithmic transformation method, known as matrix inversion bypass (MIB), was 

discussed in [14]. MIB enhances the implementation process of optimisation and LSP by parallelising the 

process. By manipulating the results from the previous iteration, it decouples the computation of intermediate 

signal estimates and is able to bypass the matrix inversion operation. Both optimisation and LSP are 

indirectly improved from the implementation of MIB. 

The optimisation process of OMP is improved by the implementation of the particle-in-cell (PIC) 

method, as explained in [15]. PIC is a method that can select two (2) relevant indices from the measurement 

matrix in each cycle to improve the OMP algorithm, hence resulting in decreased number of iterations by 

nearly half the number of cycles. It also reduces the chance of missing the true index and of choosing an 

incorrect one, as compared with traditional OMP methods. In terms of LSP implementation, common Moore 

pseudoinverse was used by solving using the modified Cholesky decomposition method. Instead of utilising 

the Newton-Raphson method to solve the division operation, as in [6], the Goldschmidt algorithm was used. 

The Goldschmidt approach may be employed because of the parallel action in the matrix inversion unit, 

which varies from the Newton iterative methods in the serial procedure. 

The partitioned inversion method based on the incremental computation technique for a better OMP 

was proposed in [16]. While solving the LSP in the OMP algorithm, the suggested partitioned inversion, 

which used the inversion result from the previous iteration, reduced the complexity of the matrix inversion 

operation at every loop cycle. By re-utilising the computation results obtained in the previous OMP iteration, 

three (3) properties of the input matrix, known as conjugate symmetry, positive definiteness, and overlapped 

regions, for the inversion in each OMP iteration were utilised, hence reducing computation complexity. In 

addition, multiple measurement vectors (MMVs) were applied to the OMP algorithm to improve the sparse 

signal recovery compared with the single measurement vector, and this is called simultaneous OMP (SOMP). 

Improvements were made for optimisation by focusing on hardware implementation [17]. The 

optimiser unit was primarily composed of three (3) computational components: fixed-point multiplier unit, 

adder tree, and maximum index selection. These components were organised in parallel and utilised at 

several stages of the OMP process. An alternative Cholesky decomposition, or modified Cholesky, was 

chosen to solve the LSP with the Goldschmidt method to solve the division operation, instead of using 

Newton-Raphson.  

Quick response (QR) factorisation was preferred over other methods [18]. QR factorisation is 

recommended when the measurement matrix is unstructured and dense, despite the fact that it has a higher 

computational complexity than other approaches. In the QR and matrix inversion blocks, a dedicated divider 

was utilised to conduct the division operation and to discover the reciprocal. To eliminate LSP recurrence in 

each iteration, the modified Gram-Schmidt algorithm was used. A single matrix multiplication unit (MMU) 

was proposed to execute all operations in order to break the nature of the OMP, which is dependent on the 

preceding stage. For correlation optimisation, the suggested MMU supported two (2) types of 

multiplications: vector-vector multiplication and scalar-vector multiplication. 
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Square-root-free QR decomposition was introduced in [19]. The proposed algorithm adopted an 

incremental quick response decomposition (QRD), and hence it was further optimised by eliminating the 

square-root operation to ease hardware implementation. The suggested design, which avoided the 

complicated square root unit, consisted mostly of some basic computing units, in which the computing 

process was broken down into numerous simple operations that may be mapped to the appropriate hardware 

for pipelining to optimise OMP implementation.  

A new architecture of a low-power fast OMP (LPF‐OMP) algorithm was presented in [20]. The 

LPF-OMP can avoid the computation of pseudoinverse to save time and storage requirement to store the 

pseudoinverse matrix. The proposed algorithm used a partial evaluation of incremental QR decomposition 

using the modified Gram-Schmidt algorithm. To minimise reconstruction time, the correlation phase of the 

traditional OMP method was changed to search over a varied number of columns in subsequent iterations.  

The OMP implementation used Gram-Schmidt orthogonalisation to enhance the signal residuals’ 

update process so that the signal recovery only had to execute the least-square solution once, resulting in a 

significant reduction in the number of matrix operations in hardware implementation [21]. At the final step, 

the LSP was solved using Cholesky factorisation. The research work also focused on FPGA designs using 

hardware description language (HDL) and high-level synthesis (HLS), as HLS is a new design that is based 

on the C/C++ trend, which can reduce the time-to-market of design implementation. 

As the summarisation of this section, the flow charts of the methods implemented are depicted in 

Figure 1, and important parameters comprising FPGA performance, signal recovery, and the optimisation and 

LSP methods used are tabulated in Table 1 (see Appendix). Figure 1 shows the flow charts of the OMP 

implementation processes in the previous works. From the methods implemented, six (6) flow charts have 

been summarised. In the flow charts, the dark-coloured boxes represent the methods approached to enhance 

the computation in the optimisation and LSP processes. Figure 1(a) shows the flow chart of the normal OMP 

implementation, while the other five (5) show the flow charts of the improved OMP processes.  

In Figure 1(b), the flow chart shows that the optimisation process was enhanced by using K-IPCU, PIC, and 

parallel hardware optimisation, while the LSP process used the combination of modified Cholesky + Newton 

Raphson, Cholesky + Goldschmidt, and Cholesky decomposition + Goldschmidt. In Figure 1(c), the 

optimisation process used FFT, Single MMU, and parallel hardware optimisation, but the flow in the LSP 

process was different, as the Gram-Schmidt method was applied to execute the LSP process just once after 

the iterations were completed.  

Next, in Figure 1(d) and Figure 1(e), both the optimisation and LSP processes were replaced with 

the MIB and partition inversion methods, as these methods can bypass the inversion operation. Lastly, the 

flow chart in Figure 1(f) is almost similar to that in Figure 1(c) but the difference is the implementation of the 

Gram-Schmidt method. The Gram-Schmidt method in Figure 1(f) is a modified version that can avoid the 

pseudoinverse implementation. All flow charts show that a lot of methods were used to enhance the 

implementation processes of optimisation and LSP. Each method aimed to reduce the complexity of 

computation by avoiding some operations in the repetitive OMP iterations. The flow charts will benefit 

researchers in comparing and analysing each method. 

In Table 1 (see Appendix), several FPGA performances are tabulated. The FPGA as the hardware 

accelerator using several main components of the hardware unit, such as the multiplexer, adder tree, 

reciprocal, memory, and registers, was explored to increase the parallelism capabilities in the implementation 

of optimisation and LSP. Parallelism capabilities were proposed, which utilised, reused, or shared the 

computing hardware components’ resources between the various tasks and stages in the OMP reconstruction 

algorithm [48]-[50]. The process of parallelising various tasks in the OMP implementation will minimise 

implementation time and the performance for signal reconstruction can be better.  

Nevertheless, the performance of parallel architectures designs still requires intensive exploration 

regarding output quality versus output performance of the reconstructed signal in the implementation of the 

OMP. There are a lot more of recent OMP implementation strategies, such as those presented in [51], which 

were only simulated using the MATLAB software but not on the hardware platform. Implementation in terms 

of hardware to accelerate the process of the new strategies will benefit the overall implementation in order to 

have an efficient real-time system. 

There was also a discussion in [21] concerning the design implementation of the FPGA either using 

hardware description languages (HDLs), such as Verilog and very-high-speed integrated circuit (VHSIC) 

hardware description language (VHDL), or using high-level synthesis (HLS). HLS uses the behaviour of the 

C/C++ description of a system to automatically generate the HDL design description instead of using the 

original HDL implementation to design the architecture. HSL eases the process and increases design 

productivity but it may affect in terms of time and usage of area.  
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Figure 1. Flow charts of methods for (a) Normal OMP, (b) Improved OMP in [6], [15], [17], (c) Improved OMP 

in [13], [18], [19], [21], (d) Improved OMP in [14], (e) Improved OMP in [16], and (f) Improved OMP in [20] 

 

 

3. OPTIMISATION STRATEGIES 

As stated in Algorithm 1, the optimisation equation of 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗=1…𝑁 |⟨𝑅𝑖−1,𝛩𝑗⟩| is an important 

operation in the OMP algorithm to find the most correlated column of measurement matrix 𝛩 with residual 

vector 𝑅. This process is called inner product computation (IPC) or matrix-vector multiplication. For a large-

scale measurement matrix, the correlation process is time-consuming because it involves a large number of 

matrix multiplications.  
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There are several approaches to solve the optimisation problem in terms of computation, such as 

using Fourier basis, parallel correlation indices, and MIB, but most available studies in the literature usually 

solved the optimisation problem by utilising FPGA hardware parallelism capabilities using mainly three (3) 

computing parts: multiplier unit, addition mechanism, and index selection. A multiplier unit is a component 

used as the multiplier computation in the optimisation process. Finding the most correlated column usually 

involves a massive multiplication operation, depending on the size of the sampling matrix (row and column), 

and hence is reflected by the number of multiplier units. The multiplier unit is commonly designed to suit the 

various stages of the OMP algorithm, which also involves vector-vector multiplication. Parallelism 

capabilities of the FPGA include pipelining each of the multiplier method performed to keep timing and 

latency low. This approach indirectly enhances the efficiency of OMP implementation.  

The result from the multiplier operation next must be added to obtain the matrix-vector 

multiplication result. An FPGA addition mechanism, such as the efficient architecture of the adder tree, is 

usually proposed. Because adders are also needed in several stages of OMP implementation, various 

architecture designs of the adder tree, depending on the number of adders, are pipelined to increase the 

performance. The final goal of the optimisation process is to find the most correlated column index with the 

residual. In each cycle, after the multiplier and adder operations, two (2) unit of register and multiplier are 

used to store and compare the values using the comparator, and hence the maximum value is obtained by 

repeating this process. Instead of enhancing optimisation computation using hardware, approaches in terms 

of improving algorithm computation will also boost the optimisation process, as depicted in Table 2. Both 

software and hardware enhancements can be utilised to enhance the performance of OMP. 

 

 

Table 2. Optimisation solutions based on algorithm computation 
Reference Algorithm Features 

[13] Partial Fourier Basis 

(Fast Fourier Transform) 
 Less complexity in hardware 

 Fast-transform 

 Only one (1) vector to store from dictionary matrix 
[14] Matrix Inversion Bypass (MIB)  Decouples the computation of intermediate signal estimates 

 Bypasses matrix inversion 

[15] Parallel correlation indices  Can select the two (2) relevant indices from the measurement matrix 

in each iteration 

 Reduce almost half of the number of iterations 

 

 

4. LSP STRATEGIES 

The LSP is one (1) of the important operations to reconstruct the original signal from the 

compressed signal. In the implementation of the OMP algorithm, the LSP is solved in each iteration with a 

complex mathematical operation, which increases the latency of the OMP implementation. Figure 2 shows 

the block diagram of the common LSP operation. 

 

 

 
 

Figure 2. Methods to solve LSP 

 

 

The LSP block diagram, as shown in Figure 2, involves several arithmetic operations and is 

commonly solved using the Moore-Penrose pseudoinverse method. Moore-Penrose pseudoinverse [52], 

expressed by 𝐴+ = (𝐴𝑇𝐴)−1𝐴𝑇, where 𝐴+ is the pseudoinverse of Moore-Penrose, involves the operation of 

matrix inversion and requires the division operation. The naive implementation of matrix inversion requires 

high computational effort. To make the implementation more efficient, various methods, such as coordinate 
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rotation digital computer (CORDIC), Newton-Raphson, Cholesky factorisation, and QR decomposition, have 

been presented and the common methods are summarised in Figure 2.  

Figure 2 shows two (2) types of linear system solution methods. The first is direct methods, where 

the solution is computed through lower/upper triangular decomposition and by solving the triangular system. 

The second is the iterative method, where the solution is approximated by performing iterations from an 

initial vector. Direct methods are more suitable for small systems compared with iterative methods, which are 

suited for solving larger-scale problems. The conjugate gradient (CG) method is a well-studied iterative 

method that has been shown to be highly efficient in software simulations and resilient at solving large sparse 

linear systems.  

From the review, in the last five (5) years, the common approach implemented in the FPGA to solve 

the Moore-Penrose pseudoinverse is by using direct methods, as these promise better results. The only 

iterative method, which is the conjugate gradient method, was implemented in [13], as the proposed work 

focused on applications with larger data. Some methods were modified, such as modified Cholesky, as the 

modification makes the system not require the square-root operation. Also, some implementations utilised the 

method of Gram-Schmidt orthogonalisation, as it can make the process of high computation of the LSP be 

executed only once instead of in each iteration. Some other methods have also been implemented, such as 

MIB, which can bypass the matrix inversion, partitioned indices, which can divide the input matrix, and 

square-root-free QR decomposition, which can evade the square-root process. 

In terms of the division operation, instead of using the Newton-Raphson method, as in [6], the 

Goldschmidt algorithm has also been implemented. The Goldschmidt algorithm was employed due to the 

parallel operation in the matrix inversion unit, which was different from the Newton iterative method with its 

serial process. One of the main characteristics of the Goldschmidt algorithm, unlike the Newton-Raphson 

algorithm, is that the multiplications are independent. This property makes the Goldschmidt algorithm 

suitable for hardware implementation. Parallel computing can double the computational speed of division and 

iterative operations. 

The overall comparison of the methods is summarised in Table 3, and the important operations 

involved, which are division, square root, LSP executed once, and avoid pseudoinverse, are tabulated. It 

shows that several methods have been introduced to reduce the computations of the LSP operation by 

avoiding several mathematical operations. Such as the division, square root, and the pseudoinverse 

operations, hence executing the LSP just executed once instead of in each iteration. 

 

 

Table 3. Comparison of operations involved in each method 

LSP Method 
Division 

operation 

Square 

root 

LSP executed 

once 

Avoid 

pseudoinverse 

Modified Cholesky decomposition + Newton-Raphson Yes No No No 

Gram-Schmidt orthogonalisation + Conjugate Gradient (CG) Yes Yes Yes No 

Matrix Inversion Bypass (MIB) No No No No 

Modified Cholesky decomposition + Goldschmidt Yes No No No 

Partitioned inversion Yes Yes No No 

Cholesky decomposition + Goldschmidt Yes Yes No No 

Gram-Schmidt orthogonalisation + QR decomposition Yes Yes Yes No 

Gram-Schmidt orthogonalisation + Square-root-free QR decomposition Yes No Yes No 

Modified Gram-Schmidt (Avoid pseudoinverse) + QR decomposition Yes Yes No Yes 

Gram-Schmidt orthogonalisation + Cholesky decomposition Yes Yes Yes No 

 

 

5. CONCLUSION 

In the implementation of the OMP algorithm, optimisation and LSP have been given much attention 

as major problems and as a research gap to be improved, especially for real-time implementations. In this 

paper, FPGA-based implementations of OMP were reviewed and various approaches were discussed. Several 

comparisons in terms of FPGA performance, reconstruction time, and features for each method were done to 

assist readers. The combination of methods, such as Gram-Schmidt orthogonalisation combined with 

Cholesky decomposition, and the modification of methods to avoid certain operations, such as to avoid the 

square-root operation, will enhance OMP performance. However, in certain cases, the method selected still 

depends on the application, for example, one that requires large-scale input data. Last but not least, this paper 

will benefit researchers in assessing the most suitable method to be selected and improved upon. 
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APPENDIX 
 

 

Table 1. FPGA-based OMP implementations 
Reference [6] [13] [14] [15] [16] [17] 

Year 2015 2016 2016 2017 2018 2018 2018 

Setup 

FPGA platform Xilinx 

Virtex-6 

XC6VLX240

T-1FF1156 

Xilinx Virtex-7 

XC7VX690T 

Xilinx Virtex-7 

XC7VX690T 

Xilinx 

Kintex-7 

XC7K325T-

FBG900 

Xilinx Virtex6 

XC6VSX475T-

1ff1156 

Xilinx Kintex 

UltraScale 

Xilinx  

Virtex-5 

XC5VSX50T 

Software HLS, 

MATLAB 

Simulink + 

Xilinx 

system 

generator 

(XSG) 

Verilog HDL, 

Xilinx ISE 14.3 

Verilog HDL, 

Xilinx ISE 14.3 

HDL 

 

HLS, 

SynthesisedHDL 

HLS, 

SynthesisedHDL 

Verilog HDL, 

Xilinx ISE 

14.1 

Size (N, M, k) 1,024, 256, 

36 

32, 128, 5 512, 2,048, 12 512, 

configurable, 

configurable 

1,024, 256, 

36 

128, 32, 5 128, 32, 5 

Data format (bit) 18-bit data 

precision 

 

Single precision 

& fixed-point 

(complex 

Data) 

Single precision 

& fixed-point 

(complex 

Data) 

Floating 

point: 32 

bits 

32-bit data 

precision 

 

16 and 32-bit 

fixed-point 

(complex data) 

18, 24 and 32-

bit data 

precision 

 

FPGA Performance 

Max frequency 

(MHz) 

119.96 165 165 87 135.4 250 118 

Registers N/A 193,053  193,053  N/A N/A N/A N/A 

Occupied slices 6208  282,332  282,332  92k 7,860  N/A 3,693 

DSP cores 589  1,745  1,745  93 1,544 2,032 43 

Block RAM 576 573 573 128 342 307 42 

Dynamic power 3,233 mW N/A N/A N/A 4,370 mW N/A 319 mW 

Recovery Performance 

Reconstruction 

time (µs) 

340 18.3 391.8 250 

for 36 

iterations 

170 27 7.75 

Recovery signal-

to-noise-ratio 

(RSNR) 

N/A N/A N/A N/A 31.04 dB N/A N/A 

Methods 

Optimisation 

 

K-point inner 

product 

comparator 

unit 

Partial Fourier 

Basis (Fast 

Fourier 

Transform) 

Partial Fourier 

Basis (Fast 

Fourier 

Transform) 

Matrix 

Inversion 

Bypass 

(MIB) 

Parallel 

correlation 

indices (PIC) 

Multiple 

measurement 

vectors (MMV) 

Parallel 

Hardware 

Optimisation  

LSP Modified 

Cholesky 

decomposition  

+  

Newton-

Raphson  

Gram-Schmidt 

orthogonalisation 

+ 

Conjugate 

Gradient (CG) 

Gram-Schmidt 

orthogonalisation 

+ 

Conjugate 

Gradient (CG) 

Matrix 

Inversion 

Bypass 

(MIB) 

Modified 

Cholesky 

decomposition 

+ 

Goldschmidt  

Partitioned 

inversion 

 

 

Cholesky 

decomposition 

+ 

Goldschmidt 

 

 

Table 1. FPGA-based OMP implementations (cont.) 
Reference [18] [19] [20] [21] 

Year 2019 2019 2019 2020 2020 2021 2021 

Setup 

FPGA platform Xilinx 

Virtex-6 

xc6vlx240t 

Xilinx 

Artix-7 

XC&A100t 

Xilinx 

Kintex-7 

FPGA 

Xilinx 

Virtex-6 

xc6vsx240t 

Xilinx Virtex-6 

xc6vsx240t 

Xilinx Zync 

UltraScale 

Xilinx Zync 

UltraScale 

Software HDL HDL HDL HDL HDL HLS HLS 

Size (N, M, k) 1024, 256, 36 1024, 80, 16 1024, 256, 36 1024, 256, 

36 

1024, 256, 64 1024, 256, 12 1024, 256, 36 

Data format 

(bit) 

18-bit data 

precision 

18-bit data 

precision 

18-bit data 

precision 

10-bit data 

precision 

10-bit data precision Floating: 32 bit Floating: 32 

bits 

FPGA Performance 

Max frequency 

(MHz) 

133.33 210 210 131.5 131.5 113 113 

Registers N/A N/A N/A N/A N/A N/A N/A 

Occupied slices 10,902 4,828  28,443 8,525 9,392 453k 440k 

DSP cores 386 152  523 410 410 1.7k 1.7k 

Block RAM 430 166  386 431 459 518 521 

Dynamic power 

(mW) 

2357 609 3,233 1,819 1,843 518 521 

Recovery Performance 

Reconstruction 

time (µs) 

327 

 

139.32 238 76.43 153.52 150.3 423 

Recovery signal-

to-noise-ratio 

(RSNR) 

N/A N/A 28.55 dB N/A N/A N/A N/A 
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Table 1. FPGA-based OMP implementations (cont.) 
Reference [18] [19] [20] [21] 

Year 2019 2019 2019 2020 2020 2021 2021 

Methods 
Optimisation 

 

Single matrix 

multiplication 

unit  

Single matrix 

multiplication 

unit  

Parallel 

Hardware 

Optimisation 

Multiple column 

search 

correlation 

Multiple 

column search 

correlation  

Parallel 

Hardware 

Optimisation 

Parallel 

Hardware 

Optimisation 

LSP Gram-Schmidt 

orthogonalisation 

+ 

QRD 

Gram-Schmidt 

orthogonalisation 

+ 

QRD 

Gram-Schmidt 

orthogonalisation 

+ 

Square-root-

free QRD 

 

Modified Gram-

Schmidt (Avoid 

pseudo-inverse) 

+ 

QRD 

Modified 

Gram-Schmidt 

(Avoid 

pseudo-

inverse) 

+ 

QRD 

Gram-Schmidt 

orthogonalisation 

+ 

Cholesky 

decomposition 

Gram-Schmidt 

orthogonalisation 

+ 

Cholesky 

decomposition 
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