
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 25, No. 2, February 2022, pp. 920~930

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v25.i2.pp920-930 920

Journal homepage: http://ijeecs.iaescore.com

A review of optimisation and least-square problem methods on

field programmable gate array-based orthogonal matching

pursuit implementations

Muhammad Muzakkir Mohd Nadzri, Afandi Ahmad
Reconfigurable Computing for Analytics Acceleration (ReCAA) Research Laboratory,

Microelectronics and Nanotechnology Shamsuddin Research Centre (MiNTSRC), Universiti Tun Hussein Onn Malaysia (UTHM),

Malaysia

Article Info ABSTRACT

Article history:

Received Jul 31, 2021

Revised Nov 29, 2021

Accepted Dec 17, 2021

 Orthogonal matching pursuit (OMP) is the most efficient algorithm used for

the reconstruction of compressively sampled data signals in the

implementation of compressive sensing. OMP operates in an iteration-based

nature, which involves optimisation and least-square problem (LSP) as the
main processes. However, optimisation and LSP processes comprise

complex mathematical operations that are computationally demanding, and

software-based implementations are slow, power-consuming, and unfit for

real-time applications. To fill the research gap, we reviewed the optimisation
and LSP techniques implemented on the FPGA platform as the hardware

accelerator. Aspects that contributed to the performance, algorithm, and

methods involved in the implemented works were discussed and compared.

The methods were found to be improved when modified or combined.
However, the best approach still depends on the requirement of the system to

be developed, and this review is significant as a reference.

Keywords:

Compressive sensing

FPGA

Least-square problem

Optimisation

Orthogonal matching pursuit

This is an open access article under the CC BY-SA license.

Corresponding Author:

Afandi Ahmad

Reconfigurable Computing for Analytics Acceleration (ReCAA) Research Laboratory

Microelectronics and Nanotechnology-Shamsuddin Research Centre (MiNTSRC)

Universiti Tun Hussein Onn Malaysia (UTHM), Malaysia

Email: afandia@uthm.edu.my

1. INTRODUCTION

Signal compression conventionally depends on the Shannon sampling theorem [1], [2] to ensure the

accomplishment of signal recovery. In recent years, compressive sensing (CS), as proposed in [3]-[5] has

appeared as a new technique that can sample a signal at a rate lower than the Nyquist rate but still promises a

reliable reconstruction signal. Despite the advantages offered by CS, it currently faces challenges in the

reconstruction part of the signal, as the computation process is complex. Software-based CS is usually

implemented in the graphic processor units (GPUs) and general central processing units (CPUs) of

computers, with the GPU implementation being more efficient than the CPU implementation. However, a

GPU implementation does not allow for the regular flow of data to the host, since it suffers from the

significant issue of inconsistent memory bandwidth between the GPU and the main memory [6], rendering it

incapable of attaining adequate real-time results on the recovered signal [7]. Thus, it is critical to provide a

hardware-based enhancement, for example, using a field-programmable gate array (FPGA), to accelerate the

computation as a solution that links to the analogue sensors to compute signals in real time manner [8].

Among various algorithms, orthogonal matching pursuit (OMP), introduced in [9], is a famous

method implemented on the hardware platform and is an efficient reconstruction algorithm with an excellent

https://creativecommons.org/licenses/by-sa/4.0/
mailto:afandia@uthm.edu.my

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A review of optimisation and least-square problem methods on field … (Muhammad Muzakkir Mohd Nadzri)

921

trade-off between computational complexity and accuracy. OMP, also known as the greedy method, works

by finding the location of the non-zero component of the dictionary and selects the columns of the

measurement matrix which mostly correlate with the measurement vector, a process called optimisation, and

solves the least-square problem (LSP) to find the estimated signal. Optimisation and LSP are two (2) main

problems in the computation process of OMP as the implementation of optimisation is time-consuming, since

it usually requires a large number of matrix multiplications, and solving the LSP involves a complex matrix

inversion. Both play a significant role in OMP iterative processes but significantly affect the cycle period.

The CS equation is y = Θx, where the output compressed signal y is obtained by multiplying k-

sparse (non-zero element) from input signal x and measurement matrix Θ. Input signal x is known as k-

sparse, as it will be sparse in the time domain or other appropriate transform domains after transformation,

such as discrete cosine transform basis, Fourier basis and wavelet basis [10]. To ensure that signal x can be

decompressed or recovered successfully, measurement matrix Θ must obey two (2) criteria, which are

restricted isometry property (RIP) and incoherence aspect [11], [12].

To reconstruct signal x from compressed signal y, an underdetermined linear equation must be

resolved, and one (1) of the famous and reliable methods is using OMP, where its full procedure is given in

Algorithm 1 and its flow is demonstrated in Figure 1(a). As shown in Algorithm 1, the procedure begins with

the initialisation of iteration counter i, active set 𝛬0, and residual 𝑅0 initialise as 𝑦, where the provided input

values are measurement matrix 𝛩, compressed signal 𝑦 and k iterations. The second step is the optimisation

operation, which is finding the most correlated column by computing the inner product of the current residual

value from each iteration with the measurement matrix to be added to the active set. Next, in each iteration,

the active set will be updated with the current index set of non-zero elements. After that, based on the current

active set, the LSP method is used to find �̂� as the approximation of the original signal. In the last step, the

residual vector is updated and the process is repeated for k number of iterations. After a few cycles, by

including the processes of optimisation and LSP, the estimation of �̂� as the approximated value of the

original signal x will be recovered.

Algorithm 1. OMP Algorithm
1- Initialise i = 0; index set 𝛬0 = {∅};
residual 𝑅0 = 𝑦

2- Find index 𝜆𝑖 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗=1…𝑁 |⟨𝑅𝑖−1,𝛩𝑗⟩|

3- Update 𝛬𝑖 = 𝛬𝑖−1 ∪ {𝜆𝑖 } and 𝛩𝛬𝑖 = 𝛩𝛬𝑖−1 𝛩𝜆𝑖

4- Solve LSP: �̂�𝑖 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑥 ‖𝑦 − 𝛩𝛬𝑖 𝑥‖
5- Update residual 𝑅𝑖 = 𝑦 − 𝛩𝛬𝑖 �̂�𝑖

6- Counter i= i+1 and repeat step 2 if i < k

7- Result of the final estimation of �̂�

There are various OMP methods on the FPGA platform used in previous works in the last five (5)

years [6], [13]-[21]. However, there are limited reviews on OMP methods, especially in terms of techniques

and the performance of the FPGA with emphasis discussion on the implementation of optimisation and LSP.

Most reviews broadly discussed the CS reconstruction approach [22], [23] and did not focus on OMP and

FPGA implementations. To fill this research gap, the present review focused on the methods of optimisation

and least-square problem used in FPGA-based OMP reconstruction algorithm implementations. This paper

would benefit researchers by comparing each method, analysing and assessing the most suitable methods to

be implemented and improved upon.

This review is also significant, since CS has been implemented in various research areas and

applications, such as compressive imaging [24]-[26], biomedical applications [27], [28], pattern recognition

[29], [30], sound processing [31]-[34], video processing [35], [36], and microelectronics applications [37],

[38], and its most well-known implementation is in the field of communication systems, such as wireless

networks and antenna [39]-[47]. It has been shown that this field is growing and has a wide opportunity for

exploration using this technique of compression. The enhancement in terms of computation process,

especially in terms of hardware, is really significant to accommodate the demand of real-time applications for

reduced latency, time consumption, memory storage, and power consumption.

The remaining sections of this paper are organised as follows. A review of FPGA-based OMP

implementations is discussed and explained in section 2. Several flow charts focusing on optimisation and

LSP processes in current methods of OMP implementation are depicted and important parameters are also

compared. OMP’s optimisation and LSP strategies are described in sections 3 and 4, respectively. Lastly, the

conclusion is outlined in section 5.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 2, February 2022: 920-930

922

2. FPGA-BASED OMP IMPLEMENTATIONS

In this section, a discussion on previous works on the implementation of FPGA-based OMP is

presented. The main objective in this section is to review implementation strategies that emphasise

optimisation and LSP. In [6], the architecture proposed was divided into four (4) computing blocks: K-point

inner product and comparator unit (K-IPCU), Cholesky inversion unit (CIU), residual computation unit

(XCU), and reconstructed signal computation unit (RCU). In these four (4) blocks, all input data, as well as

intermediate matrices and vectors, were stored in the memory elements. The optimisation process was

enhanced by the K-IPCU block with the ability of parallel pipeline inner product computation and

comparison in each cycle. Modified Cholesky decomposition combined with the Newton-Raphson method

was used to solve the complexity of matrix inversion for the LSP. The proposed architecture design was able

to optimise both area and time executions by reusing the hardware of matrix-vector multiplication for other

components of the algorithm and exploiting the parallelism inside each dependent operation.

The improved OMP method to solve the crucial optimisation process using partial Fourier

dictionary, which is commonly used in radar imaging, was proposed in [13]. Fast fourier transform (FFT)

was used to optimise correlation, and the conjugate gradient (CG) method was used to solve the large-scale

least-square issue. The suggested method was based on the partial Fourier basis, also known as the modulated

Fourier basis, which is less complex and has been reported as efficient when implemented on the hardware

platform. Most importantly, by utilising fast transformation, it was feasible to compute the highest correlation

in the optimisation process in real time. Moreover, the matrix may be preconstructed, and so only one (1)

vector from the dictionary matrix had to be stored. In the normal implementation of OMP, the LSP process is

executed in each iteration. The Gram-Schmidt orthogonalisation method was utilised, and hence the process

became efficient, as the LSP process was only executed once. The LSP implementation also utilised the CG

iteration method to figure out the sparse solution.

The idea of the algorithmic transformation method, known as matrix inversion bypass (MIB), was

discussed in [14]. MIB enhances the implementation process of optimisation and LSP by parallelising the

process. By manipulating the results from the previous iteration, it decouples the computation of intermediate

signal estimates and is able to bypass the matrix inversion operation. Both optimisation and LSP are

indirectly improved from the implementation of MIB.

The optimisation process of OMP is improved by the implementation of the particle-in-cell (PIC)

method, as explained in [15]. PIC is a method that can select two (2) relevant indices from the measurement

matrix in each cycle to improve the OMP algorithm, hence resulting in decreased number of iterations by

nearly half the number of cycles. It also reduces the chance of missing the true index and of choosing an

incorrect one, as compared with traditional OMP methods. In terms of LSP implementation, common Moore

pseudoinverse was used by solving using the modified Cholesky decomposition method. Instead of utilising

the Newton-Raphson method to solve the division operation, as in [6], the Goldschmidt algorithm was used.

The Goldschmidt approach may be employed because of the parallel action in the matrix inversion unit,

which varies from the Newton iterative methods in the serial procedure.

The partitioned inversion method based on the incremental computation technique for a better OMP

was proposed in [16]. While solving the LSP in the OMP algorithm, the suggested partitioned inversion,

which used the inversion result from the previous iteration, reduced the complexity of the matrix inversion

operation at every loop cycle. By re-utilising the computation results obtained in the previous OMP iteration,

three (3) properties of the input matrix, known as conjugate symmetry, positive definiteness, and overlapped

regions, for the inversion in each OMP iteration were utilised, hence reducing computation complexity. In

addition, multiple measurement vectors (MMVs) were applied to the OMP algorithm to improve the sparse

signal recovery compared with the single measurement vector, and this is called simultaneous OMP (SOMP).

Improvements were made for optimisation by focusing on hardware implementation [17]. The

optimiser unit was primarily composed of three (3) computational components: fixed-point multiplier unit,

adder tree, and maximum index selection. These components were organised in parallel and utilised at

several stages of the OMP process. An alternative Cholesky decomposition, or modified Cholesky, was

chosen to solve the LSP with the Goldschmidt method to solve the division operation, instead of using

Newton-Raphson.

Quick response (QR) factorisation was preferred over other methods [18]. QR factorisation is

recommended when the measurement matrix is unstructured and dense, despite the fact that it has a higher

computational complexity than other approaches. In the QR and matrix inversion blocks, a dedicated divider

was utilised to conduct the division operation and to discover the reciprocal. To eliminate LSP recurrence in

each iteration, the modified Gram-Schmidt algorithm was used. A single matrix multiplication unit (MMU)

was proposed to execute all operations in order to break the nature of the OMP, which is dependent on the

preceding stage. For correlation optimisation, the suggested MMU supported two (2) types of

multiplications: vector-vector multiplication and scalar-vector multiplication.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A review of optimisation and least-square problem methods on field … (Muhammad Muzakkir Mohd Nadzri)

923

Square-root-free QR decomposition was introduced in [19]. The proposed algorithm adopted an

incremental quick response decomposition (QRD), and hence it was further optimised by eliminating the

square-root operation to ease hardware implementation. The suggested design, which avoided the

complicated square root unit, consisted mostly of some basic computing units, in which the computing

process was broken down into numerous simple operations that may be mapped to the appropriate hardware

for pipelining to optimise OMP implementation.

A new architecture of a low-power fast OMP (LPF‐OMP) algorithm was presented in [20]. The

LPF-OMP can avoid the computation of pseudoinverse to save time and storage requirement to store the

pseudoinverse matrix. The proposed algorithm used a partial evaluation of incremental QR decomposition

using the modified Gram-Schmidt algorithm. To minimise reconstruction time, the correlation phase of the

traditional OMP method was changed to search over a varied number of columns in subsequent iterations.

The OMP implementation used Gram-Schmidt orthogonalisation to enhance the signal residuals’

update process so that the signal recovery only had to execute the least-square solution once, resulting in a

significant reduction in the number of matrix operations in hardware implementation [21]. At the final step,

the LSP was solved using Cholesky factorisation. The research work also focused on FPGA designs using

hardware description language (HDL) and high-level synthesis (HLS), as HLS is a new design that is based

on the C/C++ trend, which can reduce the time-to-market of design implementation.

As the summarisation of this section, the flow charts of the methods implemented are depicted in

Figure 1, and important parameters comprising FPGA performance, signal recovery, and the optimisation and

LSP methods used are tabulated in Table 1 (see Appendix). Figure 1 shows the flow charts of the OMP

implementation processes in the previous works. From the methods implemented, six (6) flow charts have

been summarised. In the flow charts, the dark-coloured boxes represent the methods approached to enhance

the computation in the optimisation and LSP processes. Figure 1(a) shows the flow chart of the normal OMP

implementation, while the other five (5) show the flow charts of the improved OMP processes.

In Figure 1(b), the flow chart shows that the optimisation process was enhanced by using K-IPCU, PIC, and

parallel hardware optimisation, while the LSP process used the combination of modified Cholesky + Newton

Raphson, Cholesky + Goldschmidt, and Cholesky decomposition + Goldschmidt. In Figure 1(c), the

optimisation process used FFT, Single MMU, and parallel hardware optimisation, but the flow in the LSP

process was different, as the Gram-Schmidt method was applied to execute the LSP process just once after

the iterations were completed.

Next, in Figure 1(d) and Figure 1(e), both the optimisation and LSP processes were replaced with

the MIB and partition inversion methods, as these methods can bypass the inversion operation. Lastly, the

flow chart in Figure 1(f) is almost similar to that in Figure 1(c) but the difference is the implementation of the

Gram-Schmidt method. The Gram-Schmidt method in Figure 1(f) is a modified version that can avoid the

pseudoinverse implementation. All flow charts show that a lot of methods were used to enhance the

implementation processes of optimisation and LSP. Each method aimed to reduce the complexity of

computation by avoiding some operations in the repetitive OMP iterations. The flow charts will benefit

researchers in comparing and analysing each method.

In Table 1 (see Appendix), several FPGA performances are tabulated. The FPGA as the hardware

accelerator using several main components of the hardware unit, such as the multiplexer, adder tree,

reciprocal, memory, and registers, was explored to increase the parallelism capabilities in the implementation

of optimisation and LSP. Parallelism capabilities were proposed, which utilised, reused, or shared the

computing hardware components’ resources between the various tasks and stages in the OMP reconstruction

algorithm [48]-[50]. The process of parallelising various tasks in the OMP implementation will minimise

implementation time and the performance for signal reconstruction can be better.

Nevertheless, the performance of parallel architectures designs still requires intensive exploration

regarding output quality versus output performance of the reconstructed signal in the implementation of the

OMP. There are a lot more of recent OMP implementation strategies, such as those presented in [51], which

were only simulated using the MATLAB software but not on the hardware platform. Implementation in terms

of hardware to accelerate the process of the new strategies will benefit the overall implementation in order to

have an efficient real-time system.

There was also a discussion in [21] concerning the design implementation of the FPGA either using

hardware description languages (HDLs), such as Verilog and very-high-speed integrated circuit (VHSIC)

hardware description language (VHDL), or using high-level synthesis (HLS). HLS uses the behaviour of the

C/C++ description of a system to automatically generate the HDL design description instead of using the

original HDL implementation to design the architecture. HSL eases the process and increases design

productivity but it may affect in terms of time and usage of area.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 2, February 2022: 920-930

924

(a)

(b)

(c)

(d) (e) (f)

Figure 1. Flow charts of methods for (a) Normal OMP, (b) Improved OMP in [6], [15], [17], (c) Improved OMP

in [13], [18], [19], [21], (d) Improved OMP in [14], (e) Improved OMP in [16], and (f) Improved OMP in [20]

3. OPTIMISATION STRATEGIES

As stated in Algorithm 1, the optimisation equation of 𝑎𝑟𝑔 𝑚𝑎𝑥𝑗=1…𝑁 |⟨𝑅𝑖−1,𝛩𝑗⟩| is an important

operation in the OMP algorithm to find the most correlated column of measurement matrix 𝛩 with residual

vector 𝑅. This process is called inner product computation (IPC) or matrix-vector multiplication. For a large-

scale measurement matrix, the correlation process is time-consuming because it involves a large number of

matrix multiplications.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A review of optimisation and least-square problem methods on field … (Muhammad Muzakkir Mohd Nadzri)

925

There are several approaches to solve the optimisation problem in terms of computation, such as

using Fourier basis, parallel correlation indices, and MIB, but most available studies in the literature usually

solved the optimisation problem by utilising FPGA hardware parallelism capabilities using mainly three (3)

computing parts: multiplier unit, addition mechanism, and index selection. A multiplier unit is a component

used as the multiplier computation in the optimisation process. Finding the most correlated column usually

involves a massive multiplication operation, depending on the size of the sampling matrix (row and column),

and hence is reflected by the number of multiplier units. The multiplier unit is commonly designed to suit the

various stages of the OMP algorithm, which also involves vector-vector multiplication. Parallelism

capabilities of the FPGA include pipelining each of the multiplier method performed to keep timing and

latency low. This approach indirectly enhances the efficiency of OMP implementation.

The result from the multiplier operation next must be added to obtain the matrix-vector

multiplication result. An FPGA addition mechanism, such as the efficient architecture of the adder tree, is

usually proposed. Because adders are also needed in several stages of OMP implementation, various

architecture designs of the adder tree, depending on the number of adders, are pipelined to increase the

performance. The final goal of the optimisation process is to find the most correlated column index with the

residual. In each cycle, after the multiplier and adder operations, two (2) unit of register and multiplier are

used to store and compare the values using the comparator, and hence the maximum value is obtained by

repeating this process. Instead of enhancing optimisation computation using hardware, approaches in terms

of improving algorithm computation will also boost the optimisation process, as depicted in Table 2. Both

software and hardware enhancements can be utilised to enhance the performance of OMP.

Table 2. Optimisation solutions based on algorithm computation
Reference Algorithm Features

[13] Partial Fourier Basis

(Fast Fourier Transform)
 Less complexity in hardware

 Fast-transform

 Only one (1) vector to store from dictionary matrix
[14] Matrix Inversion Bypass (MIB) Decouples the computation of intermediate signal estimates

 Bypasses matrix inversion

[15] Parallel correlation indices Can select the two (2) relevant indices from the measurement matrix

in each iteration

 Reduce almost half of the number of iterations

4. LSP STRATEGIES

The LSP is one (1) of the important operations to reconstruct the original signal from the

compressed signal. In the implementation of the OMP algorithm, the LSP is solved in each iteration with a

complex mathematical operation, which increases the latency of the OMP implementation. Figure 2 shows

the block diagram of the common LSP operation.

Figure 2. Methods to solve LSP

The LSP block diagram, as shown in Figure 2, involves several arithmetic operations and is

commonly solved using the Moore-Penrose pseudoinverse method. Moore-Penrose pseudoinverse [52],

expressed by 𝐴+ = (𝐴𝑇𝐴)−1𝐴𝑇, where 𝐴+ is the pseudoinverse of Moore-Penrose, involves the operation of

matrix inversion and requires the division operation. The naive implementation of matrix inversion requires

high computational effort. To make the implementation more efficient, various methods, such as coordinate

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 2, February 2022: 920-930

926

rotation digital computer (CORDIC), Newton-Raphson, Cholesky factorisation, and QR decomposition, have

been presented and the common methods are summarised in Figure 2.

Figure 2 shows two (2) types of linear system solution methods. The first is direct methods, where

the solution is computed through lower/upper triangular decomposition and by solving the triangular system.

The second is the iterative method, where the solution is approximated by performing iterations from an

initial vector. Direct methods are more suitable for small systems compared with iterative methods, which are

suited for solving larger-scale problems. The conjugate gradient (CG) method is a well-studied iterative

method that has been shown to be highly efficient in software simulations and resilient at solving large sparse

linear systems.

From the review, in the last five (5) years, the common approach implemented in the FPGA to solve

the Moore-Penrose pseudoinverse is by using direct methods, as these promise better results. The only

iterative method, which is the conjugate gradient method, was implemented in [13], as the proposed work

focused on applications with larger data. Some methods were modified, such as modified Cholesky, as the

modification makes the system not require the square-root operation. Also, some implementations utilised the

method of Gram-Schmidt orthogonalisation, as it can make the process of high computation of the LSP be

executed only once instead of in each iteration. Some other methods have also been implemented, such as

MIB, which can bypass the matrix inversion, partitioned indices, which can divide the input matrix, and

square-root-free QR decomposition, which can evade the square-root process.

In terms of the division operation, instead of using the Newton-Raphson method, as in [6], the

Goldschmidt algorithm has also been implemented. The Goldschmidt algorithm was employed due to the

parallel operation in the matrix inversion unit, which was different from the Newton iterative method with its

serial process. One of the main characteristics of the Goldschmidt algorithm, unlike the Newton-Raphson

algorithm, is that the multiplications are independent. This property makes the Goldschmidt algorithm

suitable for hardware implementation. Parallel computing can double the computational speed of division and

iterative operations.

The overall comparison of the methods is summarised in Table 3, and the important operations

involved, which are division, square root, LSP executed once, and avoid pseudoinverse, are tabulated. It

shows that several methods have been introduced to reduce the computations of the LSP operation by

avoiding several mathematical operations. Such as the division, square root, and the pseudoinverse

operations, hence executing the LSP just executed once instead of in each iteration.

Table 3. Comparison of operations involved in each method

LSP Method
Division

operation

Square

root

LSP executed

once

Avoid

pseudoinverse

Modified Cholesky decomposition + Newton-Raphson Yes No No No

Gram-Schmidt orthogonalisation + Conjugate Gradient (CG) Yes Yes Yes No

Matrix Inversion Bypass (MIB) No No No No

Modified Cholesky decomposition + Goldschmidt Yes No No No

Partitioned inversion Yes Yes No No

Cholesky decomposition + Goldschmidt Yes Yes No No

Gram-Schmidt orthogonalisation + QR decomposition Yes Yes Yes No

Gram-Schmidt orthogonalisation + Square-root-free QR decomposition Yes No Yes No

Modified Gram-Schmidt (Avoid pseudoinverse) + QR decomposition Yes Yes No Yes

Gram-Schmidt orthogonalisation + Cholesky decomposition Yes Yes Yes No

5. CONCLUSION

In the implementation of the OMP algorithm, optimisation and LSP have been given much attention

as major problems and as a research gap to be improved, especially for real-time implementations. In this

paper, FPGA-based implementations of OMP were reviewed and various approaches were discussed. Several

comparisons in terms of FPGA performance, reconstruction time, and features for each method were done to

assist readers. The combination of methods, such as Gram-Schmidt orthogonalisation combined with

Cholesky decomposition, and the modification of methods to avoid certain operations, such as to avoid the

square-root operation, will enhance OMP performance. However, in certain cases, the method selected still

depends on the application, for example, one that requires large-scale input data. Last but not least, this paper

will benefit researchers in assessing the most suitable method to be selected and improved upon.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A review of optimisation and least-square problem methods on field … (Muhammad Muzakkir Mohd Nadzri)

927

APPENDIX

Table 1. FPGA-based OMP implementations
Reference [6] [13] [14] [15] [16] [17]

Year 2015 2016 2016 2017 2018 2018 2018

Setup

FPGA platform Xilinx

Virtex-6

XC6VLX240

T-1FF1156

Xilinx Virtex-7

XC7VX690T

Xilinx Virtex-7

XC7VX690T

Xilinx

Kintex-7

XC7K325T-

FBG900

Xilinx Virtex6

XC6VSX475T-

1ff1156

Xilinx Kintex

UltraScale

Xilinx

Virtex-5

XC5VSX50T

Software HLS,

MATLAB

Simulink +

Xilinx

system

generator

(XSG)

Verilog HDL,

Xilinx ISE 14.3

Verilog HDL,

Xilinx ISE 14.3

HDL

HLS,

SynthesisedHDL

HLS,

SynthesisedHDL

Verilog HDL,

Xilinx ISE

14.1

Size (N, M, k) 1,024, 256,

36

32, 128, 5 512, 2,048, 12 512,

configurable,

configurable

1,024, 256,

36

128, 32, 5 128, 32, 5

Data format (bit) 18-bit data

precision

Single precision

& fixed-point

(complex

Data)

Single precision

& fixed-point

(complex

Data)

Floating

point: 32

bits

32-bit data

precision

16 and 32-bit

fixed-point

(complex data)

18, 24 and 32-

bit data

precision

FPGA Performance

Max frequency

(MHz)

119.96 165 165 87 135.4 250 118

Registers N/A 193,053 193,053 N/A N/A N/A N/A

Occupied slices 6208 282,332 282,332 92k 7,860 N/A 3,693

DSP cores 589 1,745 1,745 93 1,544 2,032 43

Block RAM 576 573 573 128 342 307 42

Dynamic power 3,233 mW N/A N/A N/A 4,370 mW N/A 319 mW

Recovery Performance

Reconstruction

time (µs)

340 18.3 391.8 250

for 36

iterations

170 27 7.75

Recovery signal-

to-noise-ratio

(RSNR)

N/A N/A N/A N/A 31.04 dB N/A N/A

Methods

Optimisation

K-point inner

product

comparator

unit

Partial Fourier

Basis (Fast

Fourier

Transform)

Partial Fourier

Basis (Fast

Fourier

Transform)

Matrix

Inversion

Bypass

(MIB)

Parallel

correlation

indices (PIC)

Multiple

measurement

vectors (MMV)

Parallel

Hardware

Optimisation

LSP Modified

Cholesky

decomposition

+

Newton-

Raphson

Gram-Schmidt

orthogonalisation

+

Conjugate

Gradient (CG)

Gram-Schmidt

orthogonalisation

+

Conjugate

Gradient (CG)

Matrix

Inversion

Bypass

(MIB)

Modified

Cholesky

decomposition

+

Goldschmidt

Partitioned

inversion

Cholesky

decomposition

+

Goldschmidt

Table 1. FPGA-based OMP implementations (cont.)
Reference [18] [19] [20] [21]

Year 2019 2019 2019 2020 2020 2021 2021

Setup

FPGA platform Xilinx

Virtex-6

xc6vlx240t

Xilinx

Artix-7

XC&A100t

Xilinx

Kintex-7

FPGA

Xilinx

Virtex-6

xc6vsx240t

Xilinx Virtex-6

xc6vsx240t

Xilinx Zync

UltraScale

Xilinx Zync

UltraScale

Software HDL HDL HDL HDL HDL HLS HLS

Size (N, M, k) 1024, 256, 36 1024, 80, 16 1024, 256, 36 1024, 256,

36

1024, 256, 64 1024, 256, 12 1024, 256, 36

Data format

(bit)

18-bit data

precision

18-bit data

precision

18-bit data

precision

10-bit data

precision

10-bit data precision Floating: 32 bit Floating: 32

bits

FPGA Performance

Max frequency

(MHz)

133.33 210 210 131.5 131.5 113 113

Registers N/A N/A N/A N/A N/A N/A N/A

Occupied slices 10,902 4,828 28,443 8,525 9,392 453k 440k

DSP cores 386 152 523 410 410 1.7k 1.7k

Block RAM 430 166 386 431 459 518 521

Dynamic power

(mW)

2357 609 3,233 1,819 1,843 518 521

Recovery Performance

Reconstruction

time (µs)

327

139.32 238 76.43 153.52 150.3 423

Recovery signal-

to-noise-ratio

(RSNR)

N/A N/A 28.55 dB N/A N/A N/A N/A

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 2, February 2022: 920-930

928

Table 1. FPGA-based OMP implementations (cont.)
Reference [18] [19] [20] [21]

Year 2019 2019 2019 2020 2020 2021 2021

Methods
Optimisation

Single matrix

multiplication

unit

Single matrix

multiplication

unit

Parallel

Hardware

Optimisation

Multiple column

search

correlation

Multiple

column search

correlation

Parallel

Hardware

Optimisation

Parallel

Hardware

Optimisation

LSP Gram-Schmidt

orthogonalisation

+

QRD

Gram-Schmidt

orthogonalisation

+

QRD

Gram-Schmidt

orthogonalisation

+

Square-root-

free QRD

Modified Gram-

Schmidt (Avoid

pseudo-inverse)

+

QRD

Modified

Gram-Schmidt

(Avoid

pseudo-

inverse)

+

QRD

Gram-Schmidt

orthogonalisation

+

Cholesky

decomposition

Gram-Schmidt

orthogonalisation

+

Cholesky

decomposition

ACKNOWLEDGEMENTS

This research was supported by Universiti Tun Hussein Onn Malaysia (UTHM) through GPPS (Vot

H534). Communication of this research is made possible through monetary assistance by Universiti Tun

Hussein Onn Malaysia and the UTHM Publisher’s Office via Publication Fund E15216.

REFERENCES
[1] M. Fardad, S. M. Sayedi, and E. Yazdian, “A low-complexity hardware for deterministic compressive sensing reconstruction,”

IEEE Trans. Circuits Syst. I Regul. Pap., vol. 65, no. 10, pp. 3349-3361, Oct. 2018, doi: 10.1109/TCSI.2018.2803627.

[2] H. Mamaghanian, N. Khaled, D. Atienza, and P. Vandergheynst, “Design and exploration of low-power analog to information

conversion based on compressed sensing,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 2, no. 3, pp. 493-501, Sep. 2012, doi:

10.1109/JETCAS.2012.2220253.

[3] E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete

frequency information,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006, doi: 10.1109/TIT.2005.862083.

[4] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006, doi:

10.1109/TIT.2006.871582.

[5] E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?,” IEEE Trans.

Inf. Theory, vol. 52, no. 12, pp. 5406-5425, Dec. 2006, doi: 10.1109/TIT.2006.885507.

[6] H. Rabah, A. Amira, B. K. Mohanty, S. Almaadeed, and P. K. Meher, “FPGA implementation of orthogonal matching pursuit for

compressive sensing reconstruction,” IEEE Trans. Very Large Scale Integr. Syst., vol. 23, no. 10, pp. 2209-2220, Oct. 2015, doi:

10.1109/TVLSI.2014.2358716.

[7] T. R. Braun, “An evaluation of GPU acceleration for sparse reconstruction,” Signal Process. Sens. Fusion, Target Recognit. XIX,

vol. 7697, 2010, doi: 10.1117/12.849536.

[8] S. Liu, N. Lyu, and H. Wang, “The implementation of the improved OMP for AIC reconstruction based on parallel index

selection,” IEEE Trans. Very Large Scale Integr. Syst., vol. 26, no. 2, pp. 319-328, Feb. 2018, doi:

10.1109/TVLSI.2017.2765677.

[9] J. A. Tropp and A. C. Gilbert, “Signal recovery from random measurements via orthogonal matching pursuit,” IEEE Trans. Inf.

Theory, vol. 53, no. 12, pp. 4655-4666, Dec. 2007, doi: 10.1109/TIT.2007.909108.

[10] V. Jagannatha, G. Jyothi, and M. Z. Kurian, “FPGA implementation of IEEE 802 . 15 . 3c Transceiver,” Int. J. Adv. Res. Electr.

Electron. Instrum. Eng., vol. 2, no. 6, pp. 2448-2451, Jun. 2013.

[11] E. Candès and J. Romberg, “Sparsity and incoherence in compressive sampling,” Inverse Probl., vol. 23, no. 3, pp. 969-985, Apr.

2007, doi: 10.1088/0266-5611/23/3/008.

[12] E. J. Candès, “The restricted isometry property and its implications for compressed sensing,” Comptes Rendus Math., vol. 346,

no. 9-10, pp. 589-592, Apr. 2008, doi: 10.1016/j.crma.2008.03.014.

[13] Y. Quan, Y. Li, X. Gao, and M. Xing, “FPGA implementation of real-time compressive sensing with partial fourier dictionary,”

Int. J. Antennas Propag., vol. 2016, pp. 1-12, 2016, doi: 10.1155/2016/1671687.

[14] G. Huang and L. Wang, “An FPGA-based architecture for high-speed compressed signal reconstruction,” ACM Trans. Embed.

Comput. Syst., vol. 16, no. 3, 2017, doi: 10.1145/3056481.

[15] S. Liu, N. Lyu, and H. Wang, “The implementation of the improved OMP for AIC reconstruction based on parallel index

selection,” IEEE Trans. Very Large Scale Integr. Syst., vol. 26, no. 2, pp. 319-328, Feb. 2018, doi:

10.1109/TVLSI.2017.2765677.

[16] S. Kim et al., “Reduced computational complexity orthogonal matching pursuit using a novel partitioned inversion technique for

compressive sensing,” Electronics, vol. 7, no. 9, pp. 1-10, Sep. 2018, doi: 10.3390/electronics7090206.

[17] Ö. Polat and S. K. Kayhan, “High-speed FPGA implementation of orthogonal matching pursuit for compressive sensing signal

reconstruction,” Comput. Electr. Eng., vol. 71, no. July, pp. 173-190, Oct. 2018, doi: 10.1016/j.compeleceng.2018.07.017.

[18] S. Roy, D. P. Acharya, and A. K. Sahoo, “Low-Complexity Architecture of Orthogonal Matching Pursuit Based on QR
Decomposition,” IEEE Trans. Very Large Scale Integr. Syst., vol. 27, no. 7, pp. 1623-1632, Jul. 2019, doi:

10.1109/TVLSI.2019.2909754.

[19] X. Ge, F. Yang, H. Zhu, X. Zeng, and D. Zhou, “An efficient FPGA implementation of orthogonal matching pursuit with square-

root-free QR decomposition,” IEEE Trans. Very Large Scale Integr. Syst., vol. 27, no. 3, pp. 611-623, Mar. 2019, doi:

10.1109/TVLSI.2018.2879884.

[20] S. Roy, D. P. Acharya, and A. K. Sahoo, “Fast OMP algorithm and its FPGA implementation for compressed sensing‐based

sparse signal acquisition systems,” IET Circuits, Devices Syst., vol. 15, no. 6, pp. 511-521, Sep. 2021, doi: 10.1049/cds2.12047.

[21] J. Li, P. Chow, Y. Peng, and T. Jiang, “FPGA implementation of an improved OMP for compressive sensing reconstruction,”

IEEE Trans. Very Large Scale Integr. Syst., vol. 29, no. 2, pp. 259-272, Feb. 2021, doi: 10.1109/TVLSI.2020.3030906.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

A review of optimisation and least-square problem methods on field … (Muhammad Muzakkir Mohd Nadzri)

929

[22] Z. Wang, S. Huang, S. Wang, S. Zhuang, Q. Wang, and W. Zhao, “Compressed sensing method for health monitoring of pipelines

based on guided wave inspection,” IEEE Trans. Instrum. Meas., vol. 69, no. 7, pp. 4722-4731, Jul. 2020, doi:

10.1109/TIM.2019.2951891.

[23] M. Rani, S. B. Dhok, and R. B. Deshmukh, “A systematic review of compressive sensing: concepts, implementations and

applications,” IEEE Access, vol. 6, pp. 4875-4894, Jan. 2018, doi: 10.1109/ACCESS.2018.2793851.

[24] T. Arildsen, C. S. Oxvig, P. S. Pedersen, J. Ostergaard, and T. Larsen, “Reconstruction algorithms in undersampled AFM

imaging,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 1, pp. 31-46, Feb. 2016, doi: 10.1109/JSTSP.2015.2500363.

[25] S. Vijay Kartik, R. E. Carrillo, J.-P. Thiran, and Y. Wiaux, “A Fourier dimensionality reduction model for big data interferometric

imaging,” Mon. Not. R. Astron. Soc., vol. 468, no. 2, pp. 2382-2400, Mar. 2017, doi: 10.1093/mnras/stx531.

[26] R. Palmeri, M. T. Bevacqua, L. Di Donato, L. Crocco, and T. Isernia, “Microwave imaging of non-weak targets in stratified

media via virtual experiments and compressive sensing,” in 2017 11th European Conference on Antennas and Propagation

(EUCAP), Mar. 2015, vol. 14, no. 1, pp. 1035-1038, doi: 10.23919/EuCAP.2017.7928490.

[27] A. Amir and O. Zuk, “Bacterial community reconstruction using compressed sensing,” J. Comput. Biol., vol. 18, no. 11, pp. 1723-

1741, Nov. 2011, doi: 10.1089/cmb.2011.0189.

[28] K.-K. Poh and P. Marziliano, “Compressive sampling of EEG signals with finite rate of innovation,” EURASIP J. Adv. Signal

Process., vol. 183105, pp. 1-12, Mar. 2010, doi: 10.1155/2010/183105.

[29] A. K. Bhateja, S. Sharma, S. Chaudhury, and N. Agrawal, “Iris recognition based on sparse representation and k-nearest subspace

with genetic algorithm,” Pattern Recognit. Lett., vol. 73, pp. 13-18, Apr. 2016, doi: 10.1016/j.patrec.2015.12.009.

[30] S. Sivapalan, R. K. Rana, D. Chen, S. Sridharan, S. Denmon, and C. Fookes, “Compressive sensing for gait recognition,” in 2011

International Conference on Digital Image Computing: Techniques and Applications, Dec. 2011, pp. 567-571. doi:

10.1109/DICTA.2011.101.

[31] Z. Lei, K. Yang, R. Duan, and P. Xiao, “Localization of low-frequency coherent sound sources with compressive beamforming-

based passive synthetic aperture,” J. Acoust. Soc. Am., vol. 137, no. 4, pp. EL255-EL260, Apr. 2015, doi: 10.1121/1.4915003.

[32] P. Harris, R. Philip, S. Robinson, and L. Wang, “Monitoring anthropogenic ocean sound from shipping using an acoustic sensor

network and a compressive sensing approach,” Sensors, vol. 16, no. 3, p. 415, Mar. 2016, doi: 10.3390/s16030415.

[33] H. You, Z. Ma, W. Li, and J. Zhu, “A speech enhancement method based on multi-task bayesian compressive sensing,” IEICE

Trans. Inf. Syst., vol. E100.D, no. 3, pp. 556-563, Mar. 2017, doi: 10.1587/transinf.2016EDP7350.

[34] A. Omara, A. Hefnawy, and A. Zekry, “On sparse compression complexity of speech signals,” Indones. J. Electr. Eng. Comput.

Sci., vol. 1, no. 2, pp. 329-341, Feb. 2016, doi: 10.11591/ijeecs.v1.i2.pp329-340.

[35] M. P. Edgar, M.-J. Sun, G. M. Gibson, G. C. Spalding, D. B. Phillips, and M. J. Padgett, “Real-time 3D video utilizing a

compressed sensing time-of-flight single-pixel camera,” Opt. Trapp. Opt. Micromanipulation XIII, vol. 9922, pp. 1-8, Sep. 2016,

doi: 10.1117/12.2239113.

[36] A. Veeraraghavan, D. Reddy, and R. Raskar, “Coded strobing photography: compressive sensing of high speed periodic videos,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 4, pp. 671-686, Apr. 2011, doi: 10.1109/TPAMI.2010.87.

[37] C. Liao, J. Tao, X. Zeng, Y. Su, D. Zhou, and X. Li, “Efficient spatial variation modeling of nanoscale integrated circuits via

hidden markov tree,” IEEE Trans. Comput. Des. Integr. Circuits Syst., vol. 35, no. 6, pp. 971-984, Jun. 2016, doi:

10.1109/TCAD.2015.2481868.

[38] H. Huang, H. Yu, C. Zhuo, and F. Ren, “A compressive-sensing based testing vehicle for 3D TSV pre-bond and post-bond testing

data,” in Proceedings of the 2016 on International Symposium on Physical Design, Apr. 2016, pp. 19-25, doi:

10.1145/2872334.2872351.

[39] S. K. Sharma, E. Lagunas, S. Chatzinotas, and B. Ottersten, “Application of compressive sensing in cognitive radio

communications: a survey,” IEEE Commun. Surv. Tutorials, vol. 18, no. 3, pp. 1838-1860, 2016, doi:

10.1109/COMST.2016.2524443.

[40] Y. Liu, H. Ruan, L. Wang, and A. Nehorai, “The random frequency diverse array: a new antenna structure for uncoupled

direction-range indication in active sensing,” IEEE J. Sel. Top. Signal Process., vol. 11, no. 2, pp. 295-308, Mar. 2017, doi:

10.1109/JSTSP.2016.2627183.

[41] F. Aderohunmu, D. Brunelli, J. Deng, and M. Purvis, “A data acquisition protocol for a reactive wireless sensor network

monitoring application,” Sensors, vol. 15, no. 5, pp. 10221-10254, Apr. 2015, doi: 10.3390/s150510221.

[42] W. Wang, S. Wang, J. Yang, and H. Liu, “Under-sampling of PPM-UWB communication signals based on CS and AIC,”

Circuits, Syst. Signal Process., vol. 34, no. 11, pp. 3595-3609, Nov. 2015, doi: 10.1007/s00034-015-0026-4.

[43] E. Ashraf, A. A. M. Khalaf, and S. M. Hassan, “Real time FPGA implemnation of SAR radar reconstruction system based on

adaptive OMP compressive sensing,” Indones. J. Electr. Eng. Comput. Sci., vol. 20, no. 1, p. 185, Oct. 2020, doi:

10.11591/ijeecs.v20.i1.pp185-196.

[44] A. Wang, F. Lin, Z. Jin, and W. Xu, “A configurable energy-efficient compressed sensing architecture with its application on

body sensor networks,” IEEE Trans. Ind. Informatics, vol. 12, no. 1, pp. 15-27, Feb. 2016, doi: 10.1109/TII.2015.2482946.

[45] R. W. Heath, N. Gonzalez-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for

millimeter wave MIMO systems,” IEEE J. Sel. Top. Signal Process., vol. 10, no. 3, pp. 436-453, Apr. 2016, doi:

10.1109/JSTSP.2016.2523924.

[46] J.-C. Shen, J. Zhang, E. Alsusa, and K. B. Letaief, “Compressed CSI acquisition in FDD massive MIMO: how much training is

needed?,” IEEE Trans. Wirel. Commun., vol. 15, no. 6, pp. 4145-4156, Jun. 2016, doi: 10.1109/TWC.2016.2535310.

[47] M. E. Eltayeb, T. Y. Al-Naffouri, and H. R. Bahrami, “Compressive sensing for feedback reduction in MIMO broadcast

channels,” IEEE Trans. Commun., vol. 62, no. 9, pp. 3209-3222, Sep. 2014, doi: 10.1109/TCOMM.2014.2347964.

[48] A. Septimus and R. Steinberg, “Compressive sampling hardware reconstruction,” in Proceedings of 2010 IEEE International

Symposium on Circuits and Systems, May 2010, pp. 3316-3319, doi: 10.1109/ISCAS.2010.5537976.

[49] L. Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin, “High-speed compressed sensing reconstruction on FPGA using OMP

and AMP,” in 2012 19th IEEE International Conference on Electronics, Circuits, and Systems (ICECS 2012), Dec. 2012, no. 1,

pp. 53-56, doi: 10.1109/ICECS.2012.6463559.

[50] P. Blache, H. Rabah, and A. Amira, “High level prototyping and FPGA implementation of the orthogonal matching pursuit

algorithm,” in 2012 11th International Conference on Information Science, Signal Processing and their Applications (ISSPA), Jul.

2012, pp. 1336-1340, doi: 10.1109/ISSPA.2012.6310501.

[51] H. Zhu, W. Chen, and Y. Wu, “Efficient implementations for orthogonal matching pursuit,” Electron., vol. 9, no. 9, pp. 1-23,

2020, doi: 10.3390/electronics9091507.

[52] G. H. Golub and L. C. Van, Matrix Computation, 4th editio. The Johns Hopkins University Press Baltimore, 2013.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 25, No. 2, February 2022: 920-930

930

BIOGRAPHIES OF AUTHORS

Muhammad Muzakkir Mohd Nadzri received his B.Eng. and M.Eng. in

Electronic and Electrical Engineering from Universiti Tun Hussein Onn Malaysia (UTHM) in

2015 and 2018, respectively. He has worked as a research assistant at Reconfigurable
Computing for Analytics Acceleration (ReCAA) Research Laboratory, Microelectronics and

Nanotechnology-Shamsuddin Research Centre (MiNTSRC), UTHM. Currently, he is a PhD

candidate in the field Electrical Engineering at UTHM with his dissertation titled “Efficient

Reconfigurable Architectures of Compressive Sensing for Wireless Guided Wave Pipelines
Inspection”. His research interests include pipeline inspection, compressive sensing, and

reconfigurable computing. He can be contacted at email: muzakkirnadzri@gmail.com.

Afandi Ahmad is an associate professor under the Faculty of Electrical and

Electronic Engineering as well as the head of Reconfigurable Computing for Analytics
Acceleration (ReCAA) Research Laboratory, Microelectronics and Nanotechnology-

Shamsuddin Research Centre (MiNTSRC), UTHM. He received his Ph.D. in Electronic and

Computer Engineering at Brunel University, London, UK, in 2010. He has been awarded a

number of grants and has published papers in various journals during his career to date. He is a
member of IEEE and IET. His research interests include embedded systems, reconfigurable

computing, image processing, and medical applications. He can be contacted at email:

afandia@uthm.edu.my.

https://orcid.org/0000-0003-4086-7584
https://orcid.org/0000-0002-6189-682X

