
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 24, No. 3, December 2021, pp. 1596~1603

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v24.i3.pp1596-1603 1596

Journal homepage: http://ijeecs.iaescore.com

Deadlock detection in distributed system

Kshirod Kumar Rout1, Debani Prasad Mishra2, Surender Reddy Salkuti3
1,2Department of Electrical Engineering, IIIT Bhubaneswar, Odisha, India

3Department of Railroad and Electrical Engineering, Woosong University, Daejeon, Republic of Korea

Article Info ABSTRACT

Article history:

Received Jun 12, 2021

Revised Sep 25, 2021

Accepted Oct 6, 2021

 In highly automated devices, deadlock is a case that occurs when no system

can permit its event which may give irrelevant economic losses. A process

can request or release resources that are either available or are on hold by

others. If a process requesting a resource is not available at any time, then

that process enters into the waiting state. But if a waiting state is not

converted into its present state, it enters more than two processes are having

an indefinite waiting state. The proposed algorithm gives an efficient way for

deadlock detection. For the implementation of this work, C++ and python as

the basic programming language are used. It gives an idea about how

resources are allocated, and how few processes result in deadlock.

Keywords:

Deadlock

Preemption

Request available

Wait-for-graph

This is an open access article under the CC BY-SA license.

Corresponding Author:

Surender Reddy Salkuti

Department of Railroad and Electrical Engineering, Woosong University

17-2, Jayang-Dong, Dong-Gu, Daejeon-34606, Republic of Korea

Email: surender@wsu.ac.kr

1. INTRODUCTION

Deadlocks are one of the vital issues in concurrent programming [1]. It happens when some tasks are

locked forever because their requests for resources will never be satisfied. To preserve concurrency, we must

get deadlocks under control [2], [3]. Taking into consideration two trains approaching each other on the same

one and only track, none of both trains can move forward when they are in front of each other. In the same

way, the situation occurs in an OS. Deadlock occurs when there are greater than or equal to two processes

holding some resources and waiting for resources held by other processes. Through the example, deadlock can

be well explained. Resource 1 is held by process 1 and this process is waiting for resource 2 which is held by

process 2, and process 2 is, in turn, waiting for resource 1 [4], [5].

There are various types of deadlocks. Resource deadlock is the kind of deadlock that occurs when 2

programs are having a common resource and stop each other from using that resource which ultimately leads to

the termination of the two programs. Another type is Communication deadlock which is a kind of deadlock

that occurs when process 1 is trying to send a message to process 2 which is trying to send a message to

process 3 which in turn sends a message to A. The Necessary circumstances for a deadlock can be mutual

exclusion, hold and wait, no preemption, and circular wait [6], [7]. A mutual exclusion means that only a

single process can work at one time [8], [9]. ‘Hold and wait’ means that the process while holding multiple

resources, can request more resources from other processes which are holding those resources. No

preemption means that unless the process releases the resource, it cannot be taken from a process [10], [11].

A bunch of processes waiting in a circular form is referred to as the circular wait. According to an example,

resource 2 is allocated to process 1 which is requesting for resource 1 [10], [11]. In the same way, resource 1

is allocated to process 2 which is requesting for resource 2. This produces a circular wait loop and leads to a

https://creativecommons.org/licenses/by-sa/4.0/

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Deadlock detection in distributed system (Kshirod Kumar Rout)

1597

deadlock. The operating system (OS) considers resources or processes to recover the system from deadlocks.

In resources, on preempting the resource we will capture one among the resources from the owner of the

resource (process) and [10] provides it to the opposite process with the expectation that it will complete the

execution and will release this resource sooner. For rollback to a safe state, to enter into the deadlock state,

the OS passes through multiple stages. The OS can roll back the system to its earlier safe state. Thus,

checkpointing is done by the OS at every stage. While in process, two basic concepts are involved. For

killing a process, the big issue is to decide which process shall be terminated [11], [12]. The OS kills a

process that has done the smallest quantity of labor till now. While killing all processes will cause

inefficiency within the system because all the processes will execute again from starting [12].

According to the literature survey, various algorithms in distributed deadlock detection have been

suggested. Based on how wait-for-graph data is conserved and the search for cycles is performed, detection

of deadlock algorithm is categorized into 3 categories as centralized control, distributed control, and

hierarchical control. Distributed computing is a study in computer science that deals with multiple systems by

sharing data and resources among themselves [13], [14]. According to the Ho-Ramamoorthy algorithm

(centralized algorithm), He represented algorithms in two ways known as two-phase and one-phase

algorithms. These algorithms keep all the collected status reports and store them into particular tables for the

control site to have a consonant view of the system. The two-phase algorithm is a type in the centralized

approach of deadlock detection. A status table that contains the status of all processes is initiated at each

particular site. The status includes resources in waiting for state or resources which are locked [15]. First, the

status table from all sites is requested by the central controlling site. From the received information, a state

graph is constructed. Then it searches for cycles [16], [17]. If no cycle exists, we can say deadlock is not there

in the system. Otherwise, the control site demands status tables from the other sites and forms a state graph

based on common undertakings. But the system is declared in a deadlock state on detecting the same cycle

again. The one-phase algorithm is a type in the centralized approach of deadlock detection. Two status tables

given as resource status and process tables are maintained by every site [16]. The resource table keeps the

transaction details that have been locked or are in a waiting state for resources stored by other sites. The

record of resources that are locked by or waited for by the transactions at the specific site is maintained by the

Process status table [16]-[18]. Both the status tables from all other sites are requested by the central

controlling site [17], [18]. From the received information, a state graph is constructed. Then it searches for

cycles. If no cycle exists, we can say deadlock is not detected there in the system. Otherwise, the system is

deadlocked. But, talking about the advantages and disadvantages, this algorithm is easy to implement and

simple to understand. However, it takes longer response time and delays, over clogging of connecting links

and bigger communication overheads over the control sites.

According to the Chandy-Misra-Haas edge chasing algorithm (distributed algorithm) [19], the

blocked process uses a special message called as ‘probe’. The Algorithm uses a probe message to detect the

presence of cycles. The probe is a three variables (i,j,k) data termed as triplet [20]. Pi is the blocked process

site, Pj is the process that is sending the message, Pk is the process to which the message was sent [21].

The blocked process site receives the probe message, keeping the requested resources and forwarding the rest

to the next process. If the received probe is the same as the original probe that the blocked process site has

sent, the deadlock exists, otherwise, Deadlock doesn’t exist [22]. It is beneficial. Here, it can be started by

any site. Deadlock detection can begin anytime if a process is in an indefinite wait state. Information about

state graph can be circulated by any means like probe, string, or graph [23]. But sometimes in transaction-wait-

for (TWF) graph-based algorithms, sometimes unnecessary message transfer happens giving rise to duplication

of deadlocks detection jobs. In probe-based algorithms, overhead is low. It is easy to implement [24].

According to Menasce-Muntz’s algorithm (Hierarchical algorithm) [25], sites are organized in a tree

structure. The bottom-level controllers manage the wait-for-graph (WFG) known as leaf. This leaf allocates

the resources. The rest called as non-leaf nodes that detect deadlock [26]. These nodes act in a process of

inheritance where they can detect the deadlocks only in their children's leaf controllers [27]. Here each parent

node maintains a global WFG, which is a union of WFG’s of its children. Whenever a change happens in the

graph, it is propagated to its parent node [28]. Before that, the non-leaf controllers are maintained with updated

WFG from time to time. The root controller termed as parent applies respective alterations in its TWF graph,

looks for the cycles if any exists to detect deadlocks. This approach can provide efficient deadlock detection

as it coincides with resource access patterns to the cluster of sites. It reduces the communication cost and

dependence on central sites. But if deadlocks are over several clusters, it is more complicated to implement

which will be inefficient. But probability for such a situation is less as all the computations are step by step

increasing its productivity and reliability [29], [30].

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 3, December 2021: 1596 - 1603

1598

2. RESEARCH METHOD

The proposed algorithm for the detection of deadlock is explained in detail below. Here C++ and

python are used as the programming language.

− Step 1: We have simulated software that is used to detect the deadlock in an office environment. The

operator of the software is a resource administrator and checks for the availability of resources based on the

resources available at the current time.

− Step 2: There are multiple instances of resources available in the office and there are 4 employees in the

office using the resources.

− Step 3: They are requesting the use of resources at any given time which the administrator knows and

enters as input to the software.

− Step 4: The software at that time randomly distributes the resources, i.e., the resources on hold by

employees based on the total number of resources available. We have used rand() to randomly distribute

the resources among the employees.

− Step 5: After that, we calculate the resources available and take the resources requested by users as input

and check for the possibility of assigning the resources by taking counters if the resources requested by a

particular person is less, i.e., the number of printers, scanners, tape drive, fax then the counter value is

increased till 4. If the counter value turns out to be 4 then resources are assigned to the person and the

total resources available at that time are added upon by the person’s resources in the available matrix. If

the counter does not go up to 4 in any case then deadlock is detected.

− Step 6: Now coming to different matrices we have used:

a) fraction[]: It is used for randomly storing the number of resources allocated at any time.

b) request[]: It is used for storing the resources requested by users at any time.

c) srand[]: It is used for generating a seed at a particular time otherwise if we use rand() in C++ directly

then it will always return the same random numbers after executing multiple times. So by using

srand() we will be generating random numbers.

d) available[]: It is used to check for the resources available by subtracting the total number of resources

available with the total number of resources on hold.

3. RESULTS AND DISCUSSION

In this section, it is explained the results of the research and at the same time is given a

comprehensive discussion. Results are presented in figures, graphs, tables. According to the below examples,

a case study is taken as the problem statement to check deadlock if exists. Here, a scenario of a corporate

office is taken into consideration. The employees use the systems such as printers, fax machines, scanners,

and drivers for data transmission and other works. These devices are occupied or hold by the users. Here,

four employees are considered as the users who utilize the above-said devices as resources. Various cases are

explained below where deadlock may or may not occur.

3.1. When the system will be in a deadlock

Table 1 shows the idea of a deadlock state. Here a real-life scenario of an office is taken where four

employees are working in a firm. There exist a few systems and devices which are used by them. But due to

certain issues, the devices are not properly utilized among all the employees. The resources requirement are

more than the availability. And thus due to that some devices are used by some employees for indefinite

duration causing the condition of deadlock.

Figure 1 depicts the different resources held by the various employees i.e Kumar, Harsh, Vipul, and

Ramesh. Here scanner and driver systems are already on hold and therefore no more systems are available

which can be used by other employees. The resource requirements are still not satisfied, and thus the

employees have to wait for others to complete their tasks. Due to this, a deadlock occurs in the system.

According to this example, Table 2 shows the idea of a deadlock state. There also exist few system

and devices which are used by employees. But due to certain issues, the devices are not properly used among

all the employees. The resources requirement are more than the availability. And some resources are held by

other employees and thus due to that some systems are used by some employees for indefinite duration

causing the condition of deadlock.

Figure 2 depicts the different resources held by the various employees. This is also a deadlock state

as the scanner system already on hold which is no more available. This can’t be used by other employees for

usage. But the resource requirement is still not over by the employees. Therefore, others have to wait to use

this function which may lead to an indefinite time duration. Hence it causes a cycle and thus deadlock occurs.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Deadlock detection in distributed system (Kshirod Kumar Rout)

1599

Table 1. Deadlock state when resources are on hold and not available
 Employees Printer Fax Scanner Driver

Input

Available Resources Kumar Harsh Vipul Ramesh 3 4 2 1
5 6 1 2

4 5 2 2

2 2 3 3
6 7 5 4

Output

Resource on hold by employees Kumar Harsh Vipul Ramesh 1 2 4 0
1 1 0 2

2 0 1 2

1 1 0 0

Total Resource on hold 2 4 5 4

Total Resource available 1 3 0 0
Resource required by employees Kumar Harsh Vipul Ramesh 3 4 2 1

5 6 1 2

4 5 2 5
5 5 3 5

The system is in Deadlock

Figure 1. Resource on hold plot

Table 2. Deadlock states when the requirement is not satisfied and resources are not available
 Employees Printer Fax Scanner Driver

Input

Available Resources Kumar Harsh Vipul Ramesh 2 3 1 1
3 2 1 4

4 2 2 1

2 3 2 1
4 4 4 4

Output

 0 0 0 0
 2 1 1 1

 1 1 1 0

 0 1 2 1
Resource on hold by employees Kumar Harsh Vipul Ramesh

Total Resource on hold 3 3 4 2

Total Resource available 1 1 0 2
Resource required by employees Kumar Harsh Vipul Ramesh 2 3 1 4

 3 2 1 4

 4 2 2 1
 2 3 2 1

The system is in Deadlock

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 3, December 2021: 1596 - 1603

1600

Figure 2. Resource on hold plot

3.1. When the system will not be in a deadlock state

Table 3 shows the different resource allocations to various employees as per the requirements. As all

the employees have used the resources and none of them have to wait for others for a longer duration.

The available resources are more than the requirement. Thus, this system is not in a deadlock state.

Table 3. Case study for not a deadlock state
 Employees Printer Fax Scanner Driver

Input

Available Resources Kumar Harsh Vipul Ramesh 1 1 2 0
1 1 1 1

1 0 1 0

0 1 0 0
5 5 4 4

Output

Resource on hold by employees Kumar Harsh Vipul Ramesh 1 1 0 2
0 1 2 1

2 1 0 0

1 0 2 0
Total Resource on hold 4 3 4 3

Total Resource available 1 2 0 1

Resource required by employees Kumar Harsh Vipul Ramesh 1 1 2 0
1 1 1 1

1 0 1 0

0 1 0 0

The system is not in Deadlock

Figure 3 depicts the resources held by the various employees as per the requirements. The resource

requirements by the employees are satisfied at last. The requirement by the employees is less than. Thus, this

system is not deadlocked.

Table 4 presents a scenario of no deadlock state as available resources are distributed efficiently as

requirements are fulfilled now. And at least one device is not on hold, so that rest can be swapped among

themselves. This will not create any cycle and thus no deadlock exists.

Figure 4 shows the different resources held by the various employees as per the requirements. At

last, the resource requirements by the employees are satisfied, as all the employees have used the resources

and allocations are well distributed. Here, none of them have to wait for others for a longer duration at the

end. Thus, this system is also not in a deadlock state.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Deadlock detection in distributed system (Kshirod Kumar Rout)

1601

Figure 3. Resource on hold plot

Table 4. Example showing no deadlock condition
 Employees Printer Fax Scanner Driver

Input

Available Resources Kumar Harsh Vipul Ramesh 1 3 2 1

3 0 1 1
0 2 1 0

0 0 2 0

6 7 5 4
Output

Resource on hold by

employees

Kumar Harsh Vipul Ramesh 2 1 1 2

0 2 1 0
0 0 1 0

2 3 1 0

Total Resource on hold 4 6 4 2
Total Resource available 2 1 1 2

Resource required by employees Kumar Harsh Vipul Ramesh 1 3 2 1

3 0 1 1
0 2 1 0

0 0 2 0

The system is not in Deadlock

Figure 4. Resource on hold plot

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 24, No. 3, December 2021: 1596 - 1603

1602

4. CONCLUSION

The proposed deadlock detection mechanism worked perfectly fine for different sections of a

distributed system. The performance of the proposed technique was measured in terms of time, space, the

number of messages received/sent. The proposed algorithm gave an efficient way for deadlock detection.

The work implemented has used C++ and python as the basic programming language. This software was

simulated to detect the deadlock in an office environment. At one particular time, the resources were

distributed randomly, i.e., the resources were on hold by employees based on the total number of resources

available and if any employee was in a waiting state for the resources, the scenario is termed as in deadlock.

It gave an idea about how resources were allocated, and how few processes resulted in a deadlock state.

In the future scope, as the number of employees is hard-coded, we can make it dynamic later.

The types of resources can be made dynamic in an office scenario (types of resources hard-coded) based on

the new resources brought into the company. However, it can be made universal by applying this software in

rental stores such as clothing rental stores. A better user interface (UI) can be build by making it more

graphical rather than terminal-based. We can improve the space complexity by using recursive functions. A

better representation like live statistics can be integrated with UI.

ACKNOWLEDGEMENTS

This research work was funded by “Woosong University’s Academic Research Funding-2021”.

REFERENCES
[1] M. Singhal, “Deadlock detection in distributed systems,” in Computer, vol. 22, no. 11, pp. 37-48, Nov. 1989, doi:

10.1109/2.43525.

[2] S. Lee, “Fast, centralized detection and resolution of distributed deadlocks in the generalized model,” in IEEE

Transactions on Software Engineering, vol. 30, no. 9, pp. 561-573, Sept. 2004, doi: 10.1109/TSE.2004.51.

[3] S. Lee, “Efficient generalized deadlock detection and resolution in distributed systems,” Proceedings 21st

International Conference on Distributed Computing Systems, 2001, pp. 47-54, doi: 10.1109/ICDSC.2001.918932.

[4] S. Lee and J. L. Kim, “Performance analysis of distributed deadlock detection algorithms,” in IEEE Transactions

on Knowledge and Data Engineering, vol. 13, no. 4, pp. 623-636, July-Aug. 2001, doi: 10.1109/69.940736.

[5] S. Selvaraj and R. Ramasamy, “An Efficient Detection and Resolution of Generalized Deadlocks in Distributed

Systems,” International Journal of Computer Applications, vol. 19, no. 1, 2010, doi: 10.5120/412-610.

[6] Y. Cai and W. K. Chan, “MagicFuzzer: Scalable deadlock detection for large-scale applications,” 2012 34th

International Conference on Software Engineering (ICSE), 2012, pp. 606-616, doi: 10.1109/ICSE.2012.6227156.

[7] Z. Li and M. Zhao, “On Controllability of Dependent Siphons for Deadlock Prevention in Generalized Petri Nets,”

in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 38, no. 2, pp. 369-

384, March 2008, doi: 10.1109/TSMCA.2007.914741.

[8] Z. Li and M. Zhou, “Elementary siphons of Petri nets and their application to deadlock prevention in flexible

manufacturing systems,” in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans,

vol. 34, no. 1, pp. 38-51, Jan. 2004, doi: 10.1109/TSMCA.2003.820576.

[9] F. Henskens and M. G. Ashton, “Graph-based Optimistic Transaction Management”, Journal of Object Technology,

vol. 6, no. 6 pp. 131-148, 2007, doi: 10.5381/jot.2007.6.6.a4.

[10] B. M. M. Alom, F. A. Henskens and M. R. Hannaford, “Optimization of Detected Deadlock Views of Distributed

Database,” 2010 International Conference on Data Storage and Data Engineering, 2010, pp. 44-48, doi:

10.1109/DSDE.2010.41.

[11] Z. Li and M. Zhou, “Two-Stage Method for Synthesizing Liveness-Enforcing Supervisors for Flexible

Manufacturing Systems Using Petri Nets,” in IEEE Transactions on Industrial Informatics, vol. 2, no. 4, pp. 313-

325, Nov. 2006, doi: 10.1109/TII.2006.885185.

[12] K. Chakma, A. Jamatia, and T. Debbarma, “An Analysis and Improvement of Probe-Based Algorithm for

Distributed Deadlock Detection,” Lecture Notes on Software Engineering, vol. 3, no. 4, pp. 285-287, 2015, doi:

10.7763/LNSE.2015.V3.205.

[13] F. Mohanty, S. Rup, B. Dash, B. Majhi, and M. N. S. Swamy, “Mammogram classification using contourlet features

with forest optimization-based feature selection approach,” Multimedia Tools and Applications, vol. 78, pp. 12805–

12834, 2018, doi: 10.1007/s11042-018-5804-0.

[14] W. B. Daszczuk, “Communication and Resource Deadlock Analysis using IMDS Formalism and Petri Nets,” The

Computer Journal, vol. 60, no. 5, pp. 729–750, 2017, doi: 10.1093/comjnl/bxw099.

[15] D. Y. Chao and Z. Li, “Structural conditions of systems of simple sequential processes with resources nets without

weakly dependent siphons,” IET Control Theory and Applications, vol. 3, no. 4, pp. 391-403, 2009, doi:

10.1049/iet-cta.2007.0470.

[16] G. Liu, Z. Li, C. Zhong, “New controllability condition for siphons in a class of generalized Petrinets,” IET Control

Theory and Applications, vol. 4, no. 5, pp. 854-864, 2010, doi: 10.1049/iet-cta.2009.0264.

https://doi.org/10.5120/412-610
https://doi.org/10.5381/jot.2007.6.6.a4
https://doi.org/10.1007/s11042-018-5804-0
https://doi.org/10.1093/comjnl/bxw099
https://doi.org/10.1049/iet-cta.2007.0470
https://doi.org/10.1049/iet-cta.2009.0264

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Deadlock detection in distributed system (Kshirod Kumar Rout)

1603

[17] S. D. Kalita, M. Kalita, and S. Sarmah, “A Survey on Distributed Deadlock Detection Algorithm and its

performance Evolution,” International Journal of Innovative Science, Engineering Technology, vol. 2, no. 4, pp.

615-620, Apr. 2015.

[18] R. Cordone, L. Ferrarini, and L. Piroddi, “Enumeration algorithms for minimal siphons in Petri nets based on place

constraints,” in IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, vol. 35, no.

6, pp. 844-854, Nov. 2005, doi: 10.1109/TSMCA.2005.853504.

[19] D. H. Ahn, D. C. Arnold, B. R. de Supinski, G. L. Lee, B. P. Miller, and M. Schulz, “Overcoming Scalability

Challenges for Tool Daemon Launching,” 2008 37th International Conference on Parallel Processing, 2008, pp.

578-585, doi: 10.1109/ICPP.2008.63.

[20] K. M. Chandy, J. Misra, and L. M. Haas, “Distributed Deadlock Detection,” ACM Transactions on Computer

Systems, vol. 1, no. 2, pp. 144-156, 1983, doi: 10.1145/357360.357365.

[21] Y-S. Huang, Y-L. Pan, and P-J. Su, “Transition-Based Deadlock Detection and Recovery Policy for FMSs Using

Graph Technique,” ACM Transactions on Embedded Computing Systems, vol. 12, no. 1, pp. 1-13, 2013, doi:

10.1145/2406336.2406347.

[22] D. Warneke and O. Kao, “Exploiting Dynamic Resource Allocation for Efficient Parallel Data Processing in the

Cloud,” in IEEE Transactions on Parallel and Distributed Systems, vol. 22, no. 6, pp. 985-997, June 2011, doi:

10.1109/TPDS.2011.65.

[23] F. Vernadat, B. Berthomieu, F. Vernadat, and B. Berthomieu, “Time Petri Nets Analysis with TINA,” Third

International Conference on the Quantitative Evaluation of Systems - (QEST'06), 2006, pp. 123-124, doi:

10.1109/QEST.2006.56.

[24] S. Srinivasan and R. Rajaram, “A decentralized deadlock detection and resolution algorithm for generalized model

in distributed systems,” Distributed and Parallel Databases, vol. 29, pp. 261–276, 2011, doi: 10.1007/s10619-011-

7078-7.

[25] P. Sapra, S. Kumar, and R. K. Rathy, “Deadlock Detection and Recovery in Distributed Databases,” International

Journal of Computer Applications, vol. 73, no. 1, pp. 32-36, 2013, doi: 10.5120/12708-9509.

[26] H. Wu, W-N. Chin, and J. Jaffar, “An efficient distributed deadlock avoidance algorithm for the AND model,” in

IEEE Transactions on Software Engineering, vol. 28, no. 1, pp. 18-29, Jan. 2002, doi: 10.1109/32.979987.

[27] N. Farajzadeh, M. Hashemzadeh, M. Mousakhani, and A. T. Haghighat, “An Efficient Generalized Deadlock

Detection and Resolution Algorithm in Distributed Systems,” The Fifth International Conference on Computer and

Information Technology (CIT'05), 2005, pp. 303-309, doi: 10.1109/CIT.2005.69.

[28] W. Lu, Y. Yang, L. Wang, W. Xing, and X. Che, “A Novel Concurrent Generalized Dead- lock Detection Algorithm

in Distributed Systems,” International Conference on Algorithms and Architectures for Parallel Processing, pp.

479-493, Feb. 2015, doi: 10.1007/978-3-319-27122-4_33.

[29] Z. Li and A. Wang, “A Petri Net Based Deadlock Prevention Approach for Flexible Manufacturing Systems,” Acta

Automatica Sinica, vol. 29, no. 5, pp.733-740, 2003.

[30] B. M. M. Alom, F. A. Henskens, and M. R. Hannaford, “Deadlock Detection Views of Distributed Database,” 2009

Sixth International Conference on Information Technology: New Generations, 2009, pp. 730-737, doi:

10.1109/ITNG.2009.220.

https://doi.org/10.1145/357360.357365
https://doi.org/10.1145/2406336.2406347
https://doi.org/10.1007/s10619-011-7078-7
https://doi.org/10.1007/s10619-011-7078-7
https://doi.org/10.5120/12708-9509

