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 Air quality (mainly PM2.5) forecasting plays an important role in the early 

detection and control of air pollution. In recent times, numerous deep 

learning-based models have been proposed to forecast air quality more 

accurately. The success of these deep learning models heavily depends on the 

two key factors viz. proper representation of the input data and preservation 

of temporal order of the input data during the feature’s extraction phase. Here 

we propose a hybrid deep neural network (HDNN) framework to forecast the 

PM2.5 by integrating two popular deep learning architectures, viz. 

Convolutional neural network (CNN) and bidirectional long short-term 

memory (BDLSTM) network. Here we build a 3D input tensor so that CNN 

can extract the trends and spatial features more accurately within the input 

window. Here we also introduce a linking layer between CNN and BDLSTM 

to maintain the temporal ordering of feature vectors. In the end, our proposed 

HDNN framework is compared with the state-of-the-art models, and we 

show that HDNN outruns other models in terms of prediction accuracy. 
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1. INTRODUCTION  

Air pollution is one of the serious issues during this urbanization era, and PM2.5 is one of the most 

important pollutants that influence air pollution. Long-time exposer in the environment with a high 

concentration of PM2.5 causes serious public health issues, which include asthma, chronic bronchitis, and 

heart disease. So, the forecasting of PM2.5 has a severe impact on our living environment and also the 

physical health of human beings. Air quality depends on various factors, these factors are very much dynamic 

and complex in nature. These factors vary over time. Thus, air quality data is time-series data. Time-series 

data is a progression of data points recorded in time requests. Time series information may be univariate or 

multivariate. In multivariate time-series (MTS) information, a bunch of variables moves in time order. Since 

the air quality data are collected from various sensors over fixed time intervals, so air quality forecasting is a 

multivariate time-series forecasting (MTSF) problem. 

In the last decade, machine learning achieves great success in time-series prediction, only because of 

the availability of massive data samples and significant improvement of computing power. Some of the 

popular machine learning algorithms are support vector machines (SVM), Naive Bayes, k-means, and 

random forest. All of these machine learning algorithms suffer from the following challenges viz. 1. long 

design time 2. domain expert’s knowledge is required for feature designing. Recently, deep learning methods 

https://creativecommons.org/licenses/by-sa/4.0/
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have become a popular tool for multivariate time series data processing [1]-[4]. It is a subset of machine 

learning methods, and its objective is to learn the model parameters from the representation of the data. Deep 

neural networks (DNNs) are the backbone for the implementation of deep learning architecture. A neural 

network with more than one hidden layer is called a DNN, where the output of a layer turns into the input of 

the subsequent layer. Due to this layered architecture, the DNNs become a popular feature learning tool for 

extracting features from the historical dataset. In recent times, the two most popular deep learning techniques 

are convolutional neural network (CNN) [5] and recurrent neural network (RNN) [6], [7]. These networks 

have received interest in different application areas, like computer vision, natural language processing, and 

time series forecasting. Long short-term memory (LSTM) [8], [9] recurrent neural networks are the modified 

version of the RNNs, that overcomes some of the shortfalls of the RNNs. CNN [10], [11] has produced a 

great deal of success in image recognition, and image classification. Whereas, LSTM achieves enormous 

success in machine translation, natural language processing, and speech recognition. In contrast with the 

MTS data, CNNs are popular for their feature learning capabilities within an input window but are not useful 

for exploring the temporal features. On the other hand, LSTMs are outstanding to model the long-term 

dependencies and temporal features extraction from univariate time series data, but not suitable for extracting 

the complex and spatial features from multivariate time-series data. In the last few years, different  

models [12]-[18] is proposed by combining two or more deep learning architectures for MTSF problems, and 

these models have shown excellent results. Du et al. [15] proposed a hybrid deep learning model for air 

health monitoring. This model is constructed by combining 1D-CNNs and bidirectional LSTMs. The authors 

show that the combined model produced better results compared to the shallow deep learning and machine 

learning models. The transferred bi-directional long short-term memory (TL-BLSTM) model is proposed  

in [19] predict the air quality. Here the author used the bidirectional LSTM to extract the temporal 

dependencies of PM2.5 and use transfer learning to transfer the knowledge from the smaller temporal 

window to the larger temporal window. But these hybrid deep learning models do not concentrate on the 

proper representation of the input data and do not maintain the proper temporal ordering of the extracted 

features by the first phase of the models. 

So deviating from the recent research work, here we propose a hybrid deep neural network (HDNN) 

framework by combining two most popular deep learning architectures such as convolutional neural network 

(CNN) and bidirectional long short-term memory (BDLSTM) recurrent neural network for air quality 

forecasting. In this framework, we propose a 3D tensor formation scheme to convert the multivariate time-

series data to image like 3D data as input of the CNN module. We also introduce a linking layer between the 

CNN module and the LSTM module to maintain the temporal order of the features extracted by the CNN 

module. The rest of the paper is organized as follows: In section 2, we describe the research methodology. 

The experimental process is presented in section 3. Section 4 includes discussion about the detailed results 

achieved, and the conclusion is drawn in section 5. 
 

 

2. RESEARCH METHODOLOGY 

2.1.  Dataset description and correlation analysis 

In this work, we use the air pollutant and the meteorology datasets of Sydney, Australia and Delhi, 

India. The detail description of the datasets is represented in the Table 1. In this study, we consider the 

PM2.5 as our target output to predict the air quality, and other air pollutants and meteorological data are 

treated as the input of the model. To reduce the number of input parameters without degrading the overall 

impact on the target output, here the correlation analysis is conducted on the input dataset using the Pearson’s 

correlation coefficient . We remove one of the parameters from a pair of the parameter, which are highly 

correlated. 
 
 

Table 1. Dataset description 
Location Pollutants Meteorological Factors Periods No. of 

rows 

Frequency 

Sydney CO, NO, NO2, SO2 

OZONE, PM10. PM2.5 

Temperature, Wind Direction 

Humidity, Wind Speed 

01.01.2018 24:00 Hours - 

31.12.2019 23:00 Hours 

17403 Hour 

Delhi CO, NO, NO2, SO2 
OZONE, PM10. PM2.5 

Temperature, Wind Direction Wind 
Speed, Humidity, Pressure 

01.01.2015 03:00 Hours - 
24.04.2017 23:00 Hours 

20277 Hour 

 

 

2.2.  Data preprocessing 

Since the air pollution data is collected from different air pollution sensors, so there is a possibility 

of missing and noisy data [20]. The performance of any deep learning models heavily depends on the quality 

of the input data. So, to produce high-quality data from it, data preprocessing is an important part of any deep 
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learning algorithm. In this experiment, we replace every missing value by the mean value of just before and 

after the missing value. In the next step, we normalize the reduced dataset by min-max normalization 

technique. The data normalization [21] is an important step of data preprocessing because the time-series data 

can vary over a large range and also produce a good quality of data from it, the data must be scale-down to a 

certain range. 

 

2.3.  Input tensor formation 

In this section, we represent the input tensor formation scheme. CNN achieves a great deal of 

success in image classification, and image recognition. Image data is different from the time-series data. 

Hence, to feed the time-series data into the CNN model we apply the image-like tensor formation scheme to 

encode the multidimensional time-series data. Each red-green-blue (RGB) image consists of three 2D arrays 

of pixels, which means each RGB image can be represented as a 3D tensor of the dimension ℎ × 𝑤 × 3, here 

3 represent the depth of the tensor. By applying this encoding method, we transform our multivariate time-

series data into 3D tensor, where the number of sensors represents the depth of the tensor.  

The input tensor formation scheme consists of two-phase as depicted in Figure 1. It represents the 

tensor formation technique for four sensors (input) signals (a, b, c and d) where the length of the sliding 

window 𝑆𝑊1 = 3. In the first phase, we construct a tensor of the dimension 3 × 1 × 1 from every single 

sensor signal within the sliding window and then such four 3D tensors of that sliding window are 

concatenated in the direction of 𝑧 axis to form a 3D tensor of the dimension 3 × 1 × 4, as depicted in the 

Figure 1 (a). In this way, we construct a series of 3D tensors by striding the sliding window with the striding 

length 𝑆𝐿1 (1 > 𝑆𝐿1 ≤ 𝑆𝑊1) from the multivariate time-series dataset. In the next phase, all three 

consecutive 3D tensors of the sliding window (𝑆𝑊2 = 3) are concatenated to the direction of 𝑥 axis to form 

an input tensor of the size 3 × 3 × 4, as depicted in the Figure 1 (b). In such a way, we construct a series of 

3D input tensors by striding the sliding window with the striding length 𝑆𝐿2, where 1 < 𝑆𝐿2 ≤ 𝑆𝑊2. 

 

 

 
(a) 

 

 
(b) 

 

Figure 1. Input tensor formation: (a) phase one and (b) phase two 

 

 

2.4.  Forecasting model construction 

Here we describe our proposed forecasting model (HDNN). Figure 2 represents the overall 

architecture of the HDNN forecasting model. This forecasting model is constructed by two popular deep 

learning architectures-CNN and LSTM. Here our HDNN forecasting model is divided into four modules-

CNN Module, linking module, LSTM Module, and fully connected module. 
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Figure 2. Network architecture of proposed HDNN model 
 

 

2.4.1.  CNN module 

CNN is a deep learning architecture that is specially designed to process image data. CNNs are 

widely used in the area of image recognition, image classifications, and object detection. As recent research 

work [22], [23] shows that the deep learning model with the combination of CNN and LSTM architectures 

produces more accurate results for MTSF problems compared to the shallow deep learning models. Thus the 

extracted higher-order features by CNN construct helps the outer level LSTM construct in our proposed work 

for more accurate prediction.  

In the proposed model, the CNN module is consists of stacking of two CNN layers where the output 

of one CNN layer is considered as the input of the next CNN layer as shown in Figure 2. Each CNN layer 

performs three different operations on the input data-convolutional, ReLU [24], and pooling. The inputs of 

the CNN module are the 3D input tensors of the normalized multivariate time-series data as illustrated in 

section 2.3. The operations of the CNN layer are presented in Figure 3. Here, 𝑋is the 3D input tensor of size 

6 × 6 with depth 3and 𝑊 is the feature detector of size 3 × 3 with 𝑚𝑘 = 4 channels (filters). The 

convolution operation with a stride length of 1 will generation 4 feature maps of the dimension 4 × 4. Then 

the non-linear activation functions ReLU is applied on the feature map. The formula of the ReLU is as 

follows: 

 

𝑓(𝑧) = {
𝑧, 𝑖𝑓 𝑧 > 0
0, 𝑖𝑓 𝑧 ≤ 0

 (1) 

 

After that, we carry out the max-pooling operation to pool the maximum over each interval as its 

output. If the max-pooling size is 2 × 2 then it, reduced to each feature matrix of sized 2 × 2 as shown in 

Figure 3. In this way, the first CNN layer compressed the input feature matrix𝑋. This compressed output of 

the first CNN layer is the local feature vectors of 𝑋. These local feature vectors are then fed as the input of 

the second CNN layer, and in this way, the second CNN layer generates the higher-order feature vectors. 
 

 

 
 

Figure 3. Operation of CNN layer 
 

 

2.4.2.  Linking of CNN module with LSTM module 

The output of the CNN module is the feature vectors, expressed as 𝐹𝑖 where 𝑖 = 1,2, . . .˙ , 𝑚𝑘 and 

each feature vector has the length $L$, so we have 𝐹𝑖 = {𝐹𝑖,1, 𝐹𝑖,2, . . . .˙ , 𝐹𝑖,𝐿}. Here each feature vector is the 

higher-order feature of the original multivariate time-series dataset along the time axis. Analogous to the 

benchmark CNN, where the flattening layer is used to flatten the feature vectors as shown in Figure 4 (a), 
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here we introduced a linking module. In this module, we redistributed the components of the feature vectors 

along the time axis as shown in Figure 4 (b). These regenerated feature vectors are represented in a more 

relevant time order compared to the flattening layer of benchmark CNN. These newly generated feature 

vectors are used as the input of the LSTM module. 

 

 

 
(a) 

 

 
(b) 

 

Figure 4. These figures are; (a) Flattening layer and (b) linking module 
 

 

2.4.3.  LSTM module 

In this LSTM module, we create two layers of bidirectional LSTMs (BDLSTMs) and each 

BDLSTM layer can be unrolled to L number of BDLSTM units along the time axis as presented in Figure 2. 

Conventional LSTM network can only process in the forward direction and as a result, it can miss some of 

the useful information during the extraction of the temporal features. But the BDLSTM network can process 

in both the forward and backward direction, so it is efficient to extract the temporal features compared to the 

conventional LSTM network. This is the reason why we choose the BDLSTM [25], [26] over LSTM. Due to 

this bidirectional property, each BDLSTM unit accumulates the feature information from both sides of the 

multivariate time-series data within its time frame. In this way, each unit extracts temporal features. 

 

2.4.4.  Fully connected module 

It is the last module of our proposed model. This module consists of two layers–a dropout layer and 

a dense layer. The dropout layer randomly selects some of the nodes and dropout them. This is a 

regularization technique that is used to dela with the overfitting problem. The next layer of this module is the 

dense layer. This layer connects the output vectors from all the BDLSTM units of the second BDLSTM layer 

to a single node. Finally, the output of this layer is the forecasted result of our proposed work. 

 

 

3. EXPERIMENT 

3.1.   Experimental setup 

In this work, all the experiments are conducted in Python programming language with Keras as the 

deep learning library. Here we forecast the next hour PM2.5 based on the previous 8 hours pollutants 

concentration (CO, NO2, and SO2) and the meteorological factors (temperature, wind direction, humidity, and 

wind speed). We have used 70% of the data for training purposes, 15% of data for the validation purpose, and 

we test the performance of the model by the remaining 15% of data. In the input tensor formation scheme, for 

the first phase, we set the length of the sliding window 𝑆𝑊1 = 5, and striding-length of the sliding window 

𝑆𝐿1 = 1. In the second phase, we set the length of the sliding window 𝑆𝑊2 = 4, and striding-length 𝑆𝐿2 = 2. 

Therefore, the dimension of the constructed 3D input tensors becomes 5 × 4 × 7. 

The selection of the hyperparameter plays a crucial role in the performance of any deep learning 

model. After the fine-tuning of our forecasting model, we set the hyperparameters are as follows: 

For the first CNN layer, the number of filters 𝑚1 = 16, the filter size is 4, striding length 𝑠1 = 1, and the 

window size of the max-pooling is 2. For the second CNN layer, the number of filters 𝑚2 = 12, the filter size is 

3, striding length 𝑠2 = 1, and the window size of the max-pooling is 2. For the first BDLSTM layer, the number 

of neurons is 64. and in the second layer, number of neurons is 32. The training batch size is 16, the model’s 

optimizer is stochastic optimization (Adam), and the number of iteration is 100. The dropout regularization 
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technique is used to reduce the overfitting problem of the model. After the fine-tuning of our model, we set the 

dropout rate to 0.6, and this dropout layer is added before the final dense layer of the fully connected module. 
 

3.2.  Evaluation 

To analyze the performance of the model, here we consider three performance matrics, viz. Root 

mean squared error (RMSE), mean absolute percentage error (MAPE), and symmetric mean absolute 

percentage error (SMAPE). These errors are calculated using the following formula. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑜𝑡 − 𝑜�̂�)2𝑛

𝑡=1  (2) 

 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑ (|𝑜𝑡 − 𝑜�̂�|)𝑛

𝑡=1 × 100 (3) 

 

𝑆𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑜𝑡−𝑜�̂�|

(|𝑜𝑡+𝑜�̂�|) 2⁄
𝑛
𝑡=1  (4) 

 

Where 𝑜𝑡 is actual value and 𝑜�̂� is the predicted value at time-stamp t. 

In this study, we compare the performance of our proposed HDNN with the four popular shallow 

models and three states-of-the-art hybrid deep learning models. The shallow models are SVR, Auto 

Regressive Integrated Moving Average (ARIMA), CNN, and BDLSTM, and the hybrids models are 

DAQFF[15] and TL-BLSTM[19]. The parameters of each of the models are shown in Table 2. 

 

 

Table 2. Parameters of different models 
Model Parameters Input 

SVR kernel=rbf, C=100, gamma=0.1 PM2.5 Time-series 
ARIMA p=8, d=1, q=1 PM2.5 Time-series 

CNN filters=64, kernel=3 × 3, MaxPooling= 2 × 2 Multivariate Time-series 

BDLSTM 2 layers of BDLSTM, Layer1: 80 Neurons, Layer2: 32 Neurons Multivariate Time-series 
DAQFF [15] 2 layers of 1D-CNN and two layers of LSTM Multivariate Time-series 

TL-BLSTM [19] 3 layers of BDLSTM Multivariate Time-series 

 

 

4. RESULT AND DISCUSSION 

In Figures 5 and 6, we graphically represent (zoomed for 500 hours) the predicted PM2.5 

concentration for the both the testing datasets. From these figures, it is quite clear that the HDNN 

successfully predicts the fluctuation of PM2.5 concentration and produces a stable performance. The results 

of the comparative analysis are presented in Tables 3 and 4. From these tables, we can observe that the 

shallow machine learning models SVR and ARIMA produces almost the same result, whereas the shallow 

deep learning models BDLSTM and CNN produces better performance compared to the shallow machine 

learning models in terms of RMSE and MAPE. On the other hand, testing errors of all the hybrid deep 

learning models are significantly low compared to the shallow deep learning models. From these tables, we 

can also see that our proposed framework HDNN yields the lowest testing errors compared to all other 

models. The results confirm that HDNN not only captures the features of local trends and also the long term 

temporal dependencies from the historical dataset pollutant concentrations and meteorological factors. 

 

 

 
 

Figure 5. Forecasting results of PM2.5 concentration of Sydney 
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Figure 6. Forecasting results of PM2.5 concentration of Delhi 

 

 

Table 3. The performance comparison of different models for Sydney dataset 
Model SVR ARIMA BDLSTM CNN DAQFF TL-BLSTM HDNN 

RMSE 21.7531 20.1904 14.2091 15.3711 11.0753 11.3574 9.3042 

MAPE 35.7816 34.0873 28.2431 29.6108 19.3281 19.4384 17.8551 
SMAPE 0.30125 0.2653 0.1810 0.1875 0.1426 0.1397 0.1173 

 

 

Table 4. The performance comparison of different models for Delhi dataset 
Model SVR ARIMA BDLSTM CNN DAQFF TL-BLSTM HDNN 

RMSE 32.1920 31.0847 26.9921 28.3008 24.3520 24.1083 23.8171 
MAPE 18.5490 15.1008 13.2871 13.9812 8.0931 8.1159 7.0846 

SMAPE 0.3829 0.2546 0.2409 0.2571 0.1509 0.1532 0.1481 

 

 

5. CONCLUSION 

Air quality forecasting is of utmost importance for the early detection of air pollution. In this study, 

to predict the air quality more accurately, we propose a hybrid deep learning framework. In this framework, 

we introduce an innovative 3D input tensor formation technique to convert the time-series data to a 3D image 

like data for feeding it to the CNN module. Here we also introduce a linking layer between the CNN module 

and the LSTM module. The experimental results show that the proposed framework outshined other state-of-

the-art models in terms of different testing errors. The proposed framework also provides stable performance, 

especially in the periods of wave peak and wave valley. So, it can be concluded that the proper input data 

representation plays a vital role in the performance of any deep learning models. Therefore, this framework 

will help the administrative authority for controlling the air pollution well in advance and able to warn the 

citizen. Here the framework has applied for only the single-time-step ahead prediction. The performance of 

the framework has not been analyzed for the multi-time-step ahead prediction. In the future, we will like to 

apply our model for multi-time-step ahead prediction. 
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