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 The dynamic composition of components is an emerging concept that aims to 
allow a new application to be constructed based on a user’s request. Three 

main ingredients must be used to achieve the dynamic composition of 
components: goal, scenario, and context-awareness. These three ingredients 
must be completed by artificial intelligence (AI) techniques that help process 
discovery and storage. This paper presents framework architecture for the 
dynamic composition of components that can extract expressed goals, deduce 
implicit ones using AI. The goal will be combined with pertinent contextual 
data, to compose the relevant components that meet the real requirements of 
the user. The core element of our proposed architecture is the composer 
component that (i) negotiate user goal, (ii) load the associated scenarios and 

choose the most suitable one based on user goal and profile, (iii) get binding 
information of scenario’s actions, (iv) compose the loaded actions, and (v) 
store the new component as a tree of actions enabled by contextual or process 
constraint. In our e-learning proven of concept, we consider five 
components: composer component, reader component, formatter component, 
matcher component, and executor component. These five components 
stipulate that a course is the combination of existing/scrapped chapters that 
have been adapted to a user profile in terms of language, level of difficulty, 

and prerequisite. The founding result shows that AI is not only an element 
that enhances system performance in terms of timing response but a crucial 
ingredient that guides the dynamic composition of components.  
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1. INTRODUCTION 

One of the ultimate targets of software development is the optimal reuse of services, components 

and APIs. To achieve this goal, two proven concepts have been adopted by both academia and industry, 

namely component-based development engineering (CBDE) and service-oriented architecture (SOA). CBDE 

allows us to break down a system into components that encapsulate a set of services. Each component 
provides an interface that displays the services provided by this component. CBDE changes our vision of 

reuse, and represents a paradigm shift from reuse of a single service to a set of semantically linked services. 

SOA solves the problem of interoperability, allowing services to communicate regardless of the details of 

their implementation. However, several questions remain, such as which components are to be composed, 

which enhancements can be applied to the composition process that are appropriate for the user’s profile, and 

how the explicit and implicit goals of the user can be detected. The semantic part of our approach is related to 

https://creativecommons.org/licenses/by-sa/4.0/
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the user’s goals, which cannot be clearly understood outside of the user’s context. By using the concept of 

context awareness, the system can frame and complete the understanding of the real goals of the end user, 

and this can affect system requests, propositions and their formats. In order to achieve the dynamic 

composition of components, each goal must be associated with a set of scenarios and depending to user 

constraints, scenario process and contextual data; thus a particular scenario will be adopted. Artificial 

intelligence is a critical ingredient that interferes in the hall composition process: (i) goal negotiation; (ii) 

process proposal; and (iii) composition plan storage and proposal. 

In total, four aspects must be considered in order to achieve dynamic composition of components: 
context awareness, the user’s goal, goal’s scenarios and artificial intelligence. In practice, SOA and CBDE 

work together to give a universal environment for component construction (CBDE) and component 

communication (SOA). 

In the literature many investigations and surveys were involved about dynamic composition of 

components, starting with WANG et al. [1] who discuses the decomposition of a service to a set of Web 

Services and using semantic similarity we could compose. In [2] Chang et al. present a design of a dynamic 

composition handler on enterprise service bus and analyzes different types of service compositions to clarity 

what dynamic composition really holds in service-oriented computing. At his turn Fortuna et al. in [3] 

proposes a framework for dynamic composition of communication services that is well suited for facilitating 

research and prototyping on real experimental infrastructures of remotely configurable embedded devices. 

Elahraf et al. in [4] present an integrated approach that facilitates the dynamic composition of an executable 

response process. The proposed approach employs ontology-based reasoning to determine the default actions 
and resource requirements for the given incident and to identify relevant response organizations based on 

their jurisdictional and mutual aid agreement rules.  

Several architectures and frameworks [5]-[10] have been constructed to modilise dynamic 

composition, Ibrahim et al. in [11] propose a meta middleware solution to support the dynamic composition 

and they propose a process of four steps: translation, generation, evaluation and building. Translation 

involves transforming the request into a message that is comprehensible to the system, while in the 

generation stage, the system attempts to generate one or more composition plans. Based on these plans, the 

evaluator chooses the most suitable plan based on the user context. Finally, the builder executes the selected 

plan and generates the associated composite.Translation involves transforming the request into a message 

that is comprehensible to the system, while in the generation on the other hand, recent research used case-

based reasoning (CBR) efficiently in dynamic (or semi- dynamic) web service composition.CBR is one of the 
preferred problem-solving strategies and machine learning techniques in complex and dynamically changing 

situations [12]. It consists of four basic steps: (i) find similar case (Remind), (ii) adapt the solution to the 

specific problem (Adapt), (iii) verify that this solution works or is reasonable (Evaluate), and (iv) save this 

new case/solution pair for future use (Store). Case-based reasoning is a problem solving paradigm that in 

many respects is fundamentally different from other major AI approaches [13], [14]. In CBR, the primary 

knowledge source is a memory of stored cases (case base) recording specific prior episodes. The processes 

involved in CBR can be described by: A new problem is matched against cases in the case base and one or 

more similar cases are retrieved.  

Briefly, if we have done a deep study of this works, we conclude that several problems are 

associated with these architectures/frameworks: (i) the composition of components is presented as a 

sequential, single-step operation that takes in the context and user goal, produces a composition plan and 
executes it; (ii) the context and goal are generally misused or used interchangeably; (iii) there is an absence 

of a clear strategy to store composition plan that enables plan proposal; (iv) there is an absence of a 

mechanism that can empower the reasoning capability of the system in terms of goal negotiation, process 

discovery and proposal. 

Thus, in our turn, this paper aims to present a smart dynamic composition of components 

architecture based on user goal and context, involving machine learning algorithms to frame goal negotiation 

and to perform process proposal. Moreover, we suggest a meta-model of composition plan in order to 

efficiently store and propose the composition result. 

 

 

2. RESEARCH METHOD 

Four aspects must be considered in order to achieve dynamic composition of components: context 
awareness, the user’s goal, the goal’s scenario, artificial intelligence, and SOA/CBDE. A motivating scenario 

is given to understand the dynamic composition of components and how the four aspects could enhance the 

composition logic. 
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2.1.   Background concepts 

2.1.1. Context awareness approach 

Context awareness is an important concept that is used to improve the user experience and to deliver 

a high-quality product that perfectly matches the user’s goals. A logical definition was given by Dey et al. 

[15], who clarified the term ‘context’ as follows: “any information collected to define the status of an entity. 

An entity is a person, object or environment that is considered relevant to the interaction between an 

application and a user, including the user and the applications themselves”. In their work, these authors 

illustrated the context based on what is relevant to the interaction between the user and the application [16]. 

The meta-modeling of context and its categorization in order to describe the inner structure of 

contextual data, can be very helpful in managing contextual data in a more accurate way. A lower level of 
contextual adaptation is the addition of fragments of code, which enable the extension of contextual 

adaptations by directly hard-core new ones [17]. A context awareness approach can also be used for the 

adoption of architecture-level techniques such as middleware or component-based architectures. It can also 

be implemented with proper constructions at the level of the programming language. Context-oriented 

programming (COP) is a new paradigm for the implementation of this type of software, and is especially 

applicable in the field of mobile and pervasive computing [18]. The concept of COP is used to tackle the 

development of contextual systems at the language level, by adding ad hoc language abstractions to handle 

the modeling of adaptations and their activation in a dynamic way [19].  

 

2.1.2. Goal and scenario fragment 

A goal is determined as “something that some stakeholder hopes to achieve in the future” [20]. It is 
presented as a clause containing a main verb and several parameters, where each parameter plays a different 

role with respect to the verb. Each parameter also has a semantic function, providing answers to the various 

different questions that can be related to this verb: who, what, when, how much and how. In order to answer 

the abstract question of what the goal consists of, several works have proposed a meta-model approach. A 

meta-model makes it possible to represent the intentions of the user and the objectives of the services. In this 

model, a goal is expressed by a verb, a target and one or more parameters, which can be categorized as 

‘direction’, ‘ways’, ‘time’, ‘beneficiary’, ‘quality’, ‘quantity’ and ‘location’. The verb and target are 

mandatory, while the parameters are optional. In general, any sentence can be expressed in the formalism of 

the target, making it possible to represent both the needs of the user and the objective that the intentional 

services can achieve [21]. 

A scenario is defined as “a possible behavior limited to a set of desired interactions between several 

agents” [22], and is composed of one or more actions, each of which is an interaction between one agent and 
another. A distinction is made between normal and exceptional scenarios: the former leads to achievement of 

the associated objective, while the latter fails to achieve the objective [23]. The normal scenario achieves the 

desired goal, while the exceptional one ends without reaching it. The actions can be categorized into two 

types: atomic and flux. An atomic action is an interaction between two agents that affect an object. An agent 

and an object may take part in several different interactions. A flow of actions is used to define the 

scheduling between interactions in a scenario, and is composed of several actions. The action’s flows are 

classified into four types: sequence, competition, repetition or constrain [23]. 

The goal of the user can help us to determine which components must be composed in order to 

satisfy this goal. The main objective of understanding the expressed goal of the user is to transform this goal 

into a concrete composition plan, and then to produce a workflow for composing components to match the 

final goal. However, a full understanding of the user’s aspirations cannot be achieved without considering 
context awareness, since two users with the same expressed objective maybe have differently depending on 

the parameters of the context, such as non-expressed information, profession, age, gender, culture, 

knowledge and preferences. Context awareness is therefore a critical paradigm that complements and can 

redirect the user’s goal [24]. 

 

2.2.   Soa and cbde  

SOA is a set of standardized functions that allow developers to achieve their aims using the 

capabilities they have, regardless of the environment in which they are located, and these capabilities can be 

organized or combined for maximum business benefit [25]. Through the use of an SOA, a service can be 

described and discovered, and can communicate with other services, regardless of heterogeneities in 

implementation. In many ways, the terminology used in relation to services is much the same as that used to 

define component-based development; however, certain specific terms are used to define elements within 
web services. The service provider publishes the web service to a discovery agency. A potential service 

consumer searches for a service from the discovery agency, acquires the URL of the required service, obtains 

the WSDL file, builds the client, and uses the service provided [26]. 
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CBDE is another paradigm that uses SOA. By composing existing or customized components, a 

software system can be assembled as rapidly and cost-effectively as an automobile is assembled by 

composing machine parts [27], while SOA focuses on transforming the process implementation into a 

technological-independent solution. From the perspective of the composition of components, SOA/SCBDE 

provides a universal platform for creating, composing and deploying components and exposing components 

service using different SOA implementations.  

 

2.3.   Layered architecture for dynamic composition of component 

2.3.1. High level architecture design 

Our architecture is based on five layers as shown in Figure 1, a graphical user interface (GUI), a 

context manager (CM), a goal manager (GM), a scenario-context manager (SCM), and a composition 

manager (CoM). 

a) GUI layer: The interaction end-user/system is a critical part of the composition process (the translation 

aspect), as it helps the end user to understand the ambiguities of the system and to adapt different 

requests to the user context. To express the needs of the end user, the literature distinguishes between 

internal and external specification languages. In our proposed scheme, we express the user goal using a 

GUI composed of four parts: a business GUI, a contextual GUI, a component registration GUI and a 

programming GUI. The business GUI is responsible for grouping components by domain area, and 

enables a component search based on the goal keyword. The main task of the contextual GUI is to 

display the user’s context attributes, i.e. the contextual attributes that are required by a specific 
component and the contextual values that will be sent during the composition process. The component 

registration GUI is used to improve our system by registering/altering components, their interfaces, the 

scenarios, and their associated contexts. The programming GUI is a business helper that performs basic 

programming actions, such as the repetition of a business action (a simplified graphical loop) and 

testing the result of the execution of a process (graphical if).  

b) CM layer: While the GUI layer handles the contextual parameters to be input to the composition 

process, the mission of the CM layer is to generate these parameters by collecting contextual data and 

analyzing them in respect to the user back-ground and culture [28]. Contextual data exist everywhere, 

for example in the user profile, external sensors, historical events and the compositions of similar users. 

There are two types of contextual data: CRUD contextual data and deduced contextual data. The former 

represents data that have been directly received from the environment, such as the user profile, 
hardware and weather, while the latter requires more processing and system intelligence to extract them, 

and can be used to enhance the composition process. 

c) GM layer: This layer involves composing the sub-goals in order to meet the final goal of the end user. 

The overall goal may be superficial, incomplete or even wrong, and the GM layer intervenes to guide 

the end user based on (i) user similarities, and (ii) a goal or component that has been registered by a 

domain expert, in order to help other users to conceive and correct their initial goals. 

d) SCM layer: The goal must be adapted to the specificity of each user. The SCM layer takes the user goal 

as input and looks up the associated scenario in order to enhance the scenario process by contextual 

parameters.  

e) CoM layer: After constructing the composed goal and enhancing the global scenario using contextual 

parameters, the system must compose the associated software component in order to meet the user 
constraint. The component registration step assumes that an expert user associate component facade, 

goal and context parameters. The task of this layer is to construct and store the new component. 

Our architecture is based on constructing/negotiating the goal with a user-friendly demarche (GUI), 

which enables a simple, white-box intervention by the end user in the composition process. The constructed 

goal is also associated with a global scenario that can be decorated and enhanced by contextual parameters. 

Finally, the new component that performs the requested goal is constructed and stored.  

 

2.3.2. Low level architecture components and process 

A domain expert is a user with both domain and technical knowledge which allows him to perform 

the environment preparation by (i) setting goals for a specific domain, (ii) building scenario process and 

defining associated bag of words to facilitate its discovery, (iii) empowering each scenario with contextual 

data to take environment change into account, and (iv) linking each scenario process with a set of component 
facades that represent the concrete implementation of the process. From an end-user point of view, the 

composition process is made up of four steps: (i) each scenario/goal is associated with a bag of words that 

facilitate it search, (ii) once the scenario/goal is founded, either associated scenarios are proposed using AI 

techniques or a predefined goal is selected, (iii) the user request an abstract composition plan based on 

selected scenarios therefore the system must perform a concrete composition by selecting the most suitable 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Dynamic composition components based on machine learning: architecture… (Younes Zouani) 

1139 

façade’s services using reinforcement learning (iv) finally, the system load components associated with the 

selected scenarios, perform dynamic composition of components and register the composition as a decision 

tree. This decision tree will be used later in a random forest algorithm in order to propose a goal in step (iii) 

of the process. 

The inner structure of our proposed architecture is based on four modules as shown in Figure 2, (i) 

Component Module to describe the component structure and semantic, (ii) Goal Module which is an action 

performed by an actor, (iii) Scenario Module that holds a bag of words to facilitate it discovery and finally 

(iv) Composition Module.  

 

 

 
 

Figure 1. The meta-model of the composition of components framework 

 

 

a) Component module 

The Component module is used to present a component inner structure. In fact, a component is 

defined by three main elements: provided interface, required interface and binding information. Provided 

interface sum-up services that are provided by the component, whereas the required interface holds reference 

of external services consumed by the component. To simplify the complexity of input and output data of the 

provided and required interfaces, a value object is introduced as a set of primitive attributes to encapsulate 

the complexity of inputs/outputs, thus a process of mapping of value object to input/output and vice versa 
must be envisaged. In order to accelerate its discovery, provided interface element are grouped by semantic.  

 

b) Goal module 

The goal module defines a goal as a composition of sub-goals; each sub goal is an action performed 

by an actor and semantically related to a specific domain. Each goal is semantically related to other goals: 

travelling to another county is semantically related to booking a room in a hotel or renting a car. To facilitate 

the discovery of a goal based on its domain, a domain is decomposed on sub-domains.  

 

c) Scenario module 

Since goal is an abstract concept, scenario is a more pragmatic concept that has been introduced to 

dynamically compose component. In our meta-model we consider that a scenario is a bag of words, an 

activation predicate and a tree representation. The tree representation is a binary tree where each node holds a 
validation rule that decides the next node to be chosen. On the other hand, the bag of words is a set of words 

with the associated probabilities that represent the representativeness of a word in the scenario. For example, 

the bag [ (object,0.9) ; (constructor,0.7) ; (inheretence,0.6) ; (encapsulation,0.5) ; (class,0.8) ] represent the 

most accurate word that reflect the scenario of learning an object oriented course. The activation predicate is 

the validation condition to lunch the scenario. In order to study an object oriented course, the validation 

predicate could be having algorithmic prerequisite.  
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d) Composition module 

Composition module conceives the composition planning as a tree that measure the distance 

between the expected goal and the real goal. Each node holds three main ingredients: user data, scenario node 

and the scenario rule evaluation. In fact, two categories of user data must be distinguished: standard input and 

contextual data. Standard inputs are mandatory data that must be provided by the end user in order execute a 

specific scenario, while contextual data are optional information that frame and guide the scenario execution.  

 

 

3. RESULTS AND DISCUSSION 

3.1.   Application of the meta model 

In the context of e-learning, each course is represented by a component which exposes the services 

providing its chapters, the associated translations and the prerequisites required. The scenario associated with 

the objective "studying a course" is as follows: (i) the collection of knowledge, (ii) the processing of 

knowledge, (iii) the construction of knowledge and (iv) the derivation of knowledge. 

a) Collection: when the user looks for a specific course, our system consult the local course database and 

online courses in order to select the most suitable chapters based on user domain knowledge, and 

prerequisite. 

b) Processing: the first element of this step is formatting which consist on unifying the format of the 

collected chapters (converting video/audio chapters to doc/pdf file for example). Once data have been 

formatted, collected data must be adapted to user preference such as translation from the original 
language to user preferred language and a practical oriented course or a classic one. 

c) Construction: Once collected chapters have been formatted and adapted, the system registers the 

constructed course as single component, thus this component could be consulted by user with the same 

requirements and profile. 

d) Derivation: Based on a registered course, the system must be able to derive synthetic knowledge from 

existing one. In order to facilitate and control the process of knowledge transmission, the system must be 

able to sum up and extract quiz or QCM from the constructed course. 

e) Composition: while the result of previous steps is a consistent course component with the derived 

knowledge, this step is interested in building an optimal combination of chapter resulting from several 

components (course) based on the client's request and its context.  

 

3.2.   E-learning application results and discussion 

To evaluate our proposed architecture in the context of e-learning application, we have built five 

APIs: reader component API, formatter component API, matcher component, executor component API and 

the dynamic composer as shown in Figure 2. The reader component API is interested on scrapping online 

courses based their summary page and unify theirs formats since courses could be html pages and pdf files. 

On the other hand, the executor component holds core domain business to be executed. In e-learning 

scenario, it performs course composition based on scrapped courses and contextual parameters (language 

preference, level of difficulty) by composing the most appropriate chapters. Two helpers could be used in the 

composition process: matcher component API and formatter component API.  

 
 

 
 

Figure 2. The dynamic composer for course composition 
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While the formatter component API allows us to adapt the chapters of a course to the user's context 

by converting from one language to another (from French to English ), the matcher component API ensures 

that two chapters are equivalent using their bag of words, so that we can select the most relevant one for a 

well-defined user. 

In our test, we assume that the goal and the associated scenario are already predefined. The goal is 

getting a course by combining the most suitable chapters of different courses, whereas the associated process 

is: (i) looking for at least three courses that meets end-use key word in the scrapper data base or scrapping it 

if it doesn’t exist, (ii) translate and format the scrapped courses, and (iii) select and compose the course based 

on scrapped chapters and user context. 

To test the performance of the dynamic composition composer we perform six requests of 
distinguished by the level of difficulty and the language of the end-user:  

a) Request 1: easy, English JAVA course. 

b) Request 2: medium, French JAVA course. 

c) Request 3: difficult, English JAVA course. 

d) Request 4: easy, French JAVA course. 

e) Request 5: medium, Arabic JAVA course. 

f) Request 6: difficult, Arabic JAVA course. 

The dynamic composer component is the core component of the architecture since it takes the 

composition plan and synchronies between different components to achieve the selected scenario. For the 

composer component, achieving dynamic composition is a process that’s applied to the triplet (URL, Request 

j, OPERATIONS (Request 1….j-1)). In fact, URL represent a unique identifier to access to a component’s 
action, while the Request j is either a client request that holds business and contextual data, or the result of 

logical/arithmetical operations applied to previous requests. 

The performance of execution of the dynamic composer is depicted in the Figure 3.Two categories 

of request could be distinguished: Request 1, 2 and 3; and Request 4, 5 and 6. In fact, the first category 

performs scraping, translation and composition of easy, medium and difficult courses, while the second one 

translates the scrapped courses from its original language to the end-user one which justify the low cost of the 

second category. For instance, the first request seeks for English and easy JAVA course, the result offered by 

the scrapper API is two English courses and 3 French ones. Therefore, the Translator API will translate the 3 

French courses and compose it to get a composed course made up of the most ratted chapters of the five 

courses. The fourth request looks for French and easy JAVA course so the composer will use the result of the 

first request and the Translator will translate the three English courses to French.  

 
 

 
 

Figure 3. The dynamic component composer performance applied to course composition 
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4. CONCLUSIONS 

In this paper, we present an approach that can combine context, the user goal and the scenario in the 

composition process. This approach is based on a layered architecture composed of scenario discovery, 

context collection, and scenario-context tree construction. From a user perspective, the composition process 

start with the discovery of basic scenarios using a bag of words then, the end-user perform a dynamic 

composition of founded scenario using mandatory parameters and contextual data and finally, the 

composition result is registered as a new scenario. Our dynamic composer performs composition in four 

steps: (i) reading core and contextual data, (ii) Formatting data to fit to user context, (iii) matching 
component to be composed and (iv) composition execution based on restful data (URI and data) of each 

component. For the e-learning scenario, we have proposed five main steps: (i) collection, (ii) processing, (iii) 

construction, (iv) derivation, and (v) composition. The process trigger is the end-user key word related to a 

specific domain, then the knowledge collector assembles relevant chapters from different courses, after that, 

collected chapters are processed in order to be formatted and adapted to the user context, so a new course 

could be constructed. The last step is about deriving summaries, multiple choice questions and exams to 

control and facilitate the learner's understanding.  
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