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 Content addressable memory (CAM) and ternary content addressable 

memory (TCAM) are specialized high-speed memories for data searching. 
CAM and TCAM have many applications in network routing, packet 
forwarding and Internet data centers. These types of memories have 
drawbacks on power dissipation and area. As field-programmable gate array 
(FPGA) is recently being used for network acceleration applications, the 
demand to integrate TCAM and CAM on FPGA is increasing. Because most 
FPGAs do not support native TCAM and CAM hardware, methods of 
implementing algorithmic TCAM using FPGA resources have been proposed 

through recent years. Algorithmic TCAM on FPGA have the advantages of 
FPGAs low power consumption and high intergration scalability. This paper 
proposes a scaleable algorithmic TCAM design on FPGA. The design uses 
memory blocks to negate power dissipation issue and data collision to save 
area. The paper also presents a design of a 256 x 104-bit algorithmic TCAM 
on Intel FPGA Cyclone V, evaluates the performance and application ability 
of the design on large scale and in future developments.  
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1. INTRODUCTION 

Content addressable memory (CAM) is special type of memory which search the entire database in 

one clock cycle and output the address information of the input data [1-3]. The applications of CAM are 

routing Internet package, cache memory for microprocessors, artificial intelligence. Additionally, CAM also 

has applications in biological research, comparing and matching DNA sequences [4]. Although CAM has 

many advantages such as better searching speed of addressing data with software on microprocessors, it 

consumes more energy and has poor integration scalability. The poor integration scalability is caused by the 

needs of using a separated memory structure and being an independent IC connected peripherally to the 

microprocessors [5].  
Ternary content addressable memory (TCAM) is CAM with support for ternary values. TCAM 

consumes 30 times more memory resources than DDR SRAM and 150 times more power consumption per 

memory bit than SRAM [5]. TCAM has always been a vital point for improvement in digital systems. 

However, the development for TCAMs in recent years seems to have slowed down. Very-high-speed 

searching applications still requires the refinements of TCAMs in many directions. 

In recent hardware acceleration solutions, field-programmable gate arrays (FPGA) are commonly 

used as it can be designed quickly and updated directly on installed system. FPGAs applications are in 

accelerating Internet packages routing, artificial intelligence and biological research and DNA sequences [6, 

7]. These applications require fast data searching hardware such as TCAM and CAM. Because most FPGAs 

https://creativecommons.org/licenses/by-sa/4.0/
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do not have native support for CAM and TCAM hardware on their resources, methods have been proposed to 

use existing FPGA on-chip resources such as memory blocks and look-up tables. 

Studies proposed using internal RAM blocks of FPGA to replace CAM and TCAM, however, with 

trade-off for a large amount of resources [5, 8]. In [9] also provide scaleable algorithmic TCAM which uses 

FPGA slices as its main resource. Xilinx also presents an intellectual property core for implementing TCAMs 

on their FPGA [10]. Methods to optimize the amount of resources and energy consumption are also proposed 

[11-17]. GreenTCAM [18] proved that algorithmic TCAM improves power efficiency with reliability on the 

rule set. Pseudo-TCAM [19] has simple and uniform hardware organization for all rulesets and high 
throughput, but need special mapping and relocation for updates. Algorithm aims for fast updating mentioned 

in [20] trade-off with performance. Multi-pumping SRAMs in [15] increases the operating frequency of 

internal RAM blocks and allows multiple access advantage with the same system clock. With high-frequency 

designs, it is difficult to have an internal RAM design that runs 5 times faster than the system [15]. Research 

[17] suggests a special way of positioning data, but only refers to replacing CAM without mentioning how to 

support ternary value often seen in content addressable memory when used in aforementioned applications. 

Multiple hash matching unit [21] is also an option to implement algorithmic TCAM, but it meets with 

hashing collision. 

This study proposed an algorithmic TCAM structure using RAM blocks on FPGA, which would 

give the advantage of power consumption over orginal TCAM cells [14]. To save more area, data collision 

method for CAMs from [17] are used. In order to support ternary value, we use additional memory blocks 

structures and transform ternary value into mask vectors. The architecture shown in the paper is an 
improvement from [17] in the term of ternary matching functions.  

The remainder of this paper is structured as follows. The second section shows the algorithms and 

calculations that organize the database and resources according to mathematical calculations. In the third 

section, an example of a 256 x 104-bit ternary content addressable memory on FPGA Cyclone V is 

presented. The forth section estimates, calculates and evaluates the feasibility of large-scale implementation 

of the proposed algorithm and future development. The final section draws conclusions.  

 

 

2. THE PROPOSED METHOD  

Table 1 shows the basic database of a CAM, including rows of data sorted in order of priority. Rule 

0 is the default rule when the retrieved data does not match with any of the remaining rules in the memory. 
That typical database can be loaded into a content addressable memory that supports ternary values or a 

content addressable memory that does not support the ternary values with controlled prefix expansion (CPE), 

simply separating the ternary value into its binary values. Thus, with a content addressable memory that does 

not support ternary values, the demand for memory resources is extremely large.  

 

 

Table 1. Example of TCAMs basic database 
Rule TCAM Rules 

0 x.x.x.x 

1 11.x.x.x 

2 11.06.x.x 

… … 

n 11.06.19.07 

 

 

The example of controlled prefix expansion (CPE) is shown in [22]. With a large number of rules 

and many arbitrary values like a FIB router, using CPE consumes a huge amount of resources. To build a 

content addressable memory on FPGA, the main resource used in the study is internal RAM on FPGA. The 

internal RAM memory on the FPGA is provided as memory cells as shown in Figure 1. Each memory cell 

supports storing a certain amount of kilobit of data. Intel's M20K memory cell supports 20k-bit and Xilinx 
M9K, M10K or B36K are similar. These memory cells support the number of address bits and memory cell 

lengths that vary by technology. However, when using to build content addressable memory, it must be noted 

that these memory cells do not support ternary values but only support binary values.  

To understand the algorithm, first we need to understand how the content addressable memory 

works. The basic operation of a content addressable memory is depicted in Figure 2. The data as a key is 

input into the content addressable memory and the output is returned. The output is the address of that data in 

the content addressable memory. In general cases, the result is either the data matches a rule that is in the 

content addressable mmemory or not, and the action apply to that data. In building TCAM memory on 

FPGA, as mentioned in [7, 16], the best way to reduce the amount of RAM consumed and optimize the 
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system speed is to cut the key into many pieces with a certain bit length (may or may not be equal with each 

other). The most optimal method [7, 16] is achieved when the bit length of the key fragments is the minimum 

address bit length of the memory cell on the FPGA. For example, for Intel's M20K memory cell, this length 

is 9 bits. In the method implemented in the algorithm of this study, we will also cut the key into pieces to 

optimize speed and reduce memory consumption.  

 

 

  
 

Figure 1.Typical RAM block cell 
 

Figure 2. Basic operation of a content addressable 

memory 

 

 

Figure 3 shows the key cut into pieces of a certain bit length. These pieces access each predefined 

cell cell and form a vector of results, as shown in the study [17]. However, research [17] does not support 
rules that contain ternary values. Once the vector of the result was obtained, they only analyze and verify it to 

produce the result of the matching key. The research presented in this paper modifies and reorganizes the 

data collision structure which was presented in research [17]. The modifications and additional modules 

allow rules to use ternary values and reduce the burden of CPE on memory consumption. Figure 4 shows the 

basic dataflow of this TCAM structure. The data follows 3 main steps to achieve result. 

 

 

 
 

Figure 3. The CAM Key is cut into pieces and used to create a match vector at the end 

 

 

 
 

Figure 4. Basic dataflow of structure 

 

 
Figure 5 illustates the process of setting rules into the memory. Here we take an example of 10-bit 

rules, divided into 5 2-bit pieces. A table of this content addressable memory consists of cells containing two 

parts, the status of the cell and the identification number (ID number or ID) for the rule. The way to write the 

rules into the table is as follows. First, the rules must be in proper form to be added to the table. The 

appropriate form to be included in the table is the rules with fragments containing two arbitrary value bits 

that go together as "**" or have no arbitrary values. If the rule has fragments in the form of only one arbitrary 

value, the rule must be separated into two rules. To put a rule into a table, write the rule's ID into the cell, 

respectively, with the address corresponding to the value of that rule on the table and transfer the state of the 

cell to written. If the cell already has a rule written in first, the cell will be in collision state. After finishing 
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writing the rules, each cell in the table has one in three states: blank, filled, or collision. When writing a rule, 

it is necessary to ensure that there are at least n cells that do not collide, usually, n only needs to be 1. To 

remove a rule from the table, remove that rule from the cell it has filled in, the collision cell will return to be 

a normal filled cell if there is only one fill rule left, the filled cell will return to be a blank cell.  

To find the address for a key, few more components are needed. However, at this step, a data vector 

can already be found to move on. Figure 6 illustrates how to find a key from the written rule data table and in 

some invalid cases, quickly conclude the result. Bad cases are predictable during table construction and can 

be prevented with proper software optimization. According to [16], for a table with n addresses and 
containing m random rules, the collision rate for a column is 26%. For z fragments, the rate of having an 

entire z-piece vector is all in collided state is 26%𝑧, this is very small with a long bit-length key.  

 

 

 

 

 

 

 
 

Figure 5. Setting rules into the database of the 

TCAM 

 

Figure 6. Searching for the match vector from the 

database 

 

 

In the next step, the rules have been written in the table. For each of these rules, we have a vector 

that marks the corresponding ternary values (mask vector). Each bit in this vector marks a fragment of 
arbitrary value ”**”. For each piece that contains a written ID (not in an collision state), we need to find a 

corresponding mask vector to compare. There are many ways that can be applied to search for custom vectors 

in this case, each with different advantages and disadvantages when applying on hardware. The mask vectors 

and the marking process are described in Figure 7. The mask vectors are presented in the figure as 5-bit bit 

strings with each asserted bit represent a masked segment.  

 

 

 
 

Figure 7. Mask vectors from the Rule ID Vector 

 
 

The following step is to compare the segments in the masked rule ID vector and give the final result 

including whether the key matches the rule database and if so, the ID of the rule. In the case there is a match, 

it still has to go through another memory to confirm again as [16], because of the false positive rate. The re-
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confirmation is done before comparing the priority order because if compare the priority first, there will be 

cases of false positive eliminating true positives. The step is shown in Figure 8.  

 

 

 
 

Figure 8. Re-confirmation of the vector to get the correct result 

 

 

The priority is included in the reconfirmation table and with rules sets in large content addressable 

memory can be hierarchically preprioritized between regions to reduce the pressure of comparing priorities. 

After comparing the priority and getting the highest-priority match, the result is the ID of the rule that 

matched the key or show that the key does not match. This ID is used by an external data memory to guide 
further action for the packet that ties with the key.  

 

 

3. NUMERICAL EXPERIMENTATION 

The algorithm is built on FPGA Cyclone V DE-10 chip, using FPGA chip 5CSXFC6D6F31C6. The 

main memory resource of the chip is M10K memory unit. The minimum length of address bit the M10K 

memory supports is 8 bits (256 x 40) for the Simple Dual Port mode for independent write and read control. 

Using this mode eases the writing process, allows updating the database into memory without affecting the 

reading process to search and retrieve data [23].  

The memory access memory size selected for simulation and testing on Kit is 256 x 104-bit. The 

minimum bit length of the address is chosen. The chosen key length is 104 bits, 8 bit fragments to match the 
address bit length of the address. The 104-bit length is suitable for practical applications used in OpenFlow’s 

5-tuple network routers consisting of: source IP address (32-bit), destination IP address (32-bit), source port 

(16 -bit), destination Port (16-bit), protocol (8-bit) [24]. With the 8-bit fragmentation option, the total number 

of fragments in the vector is 13 pieces. 

For calculation on memory resources, 256 rules and assuming with proper arrangement, no rule with 

all the piece of that rule in a collision state requires 13 M10K memory units. Each unit contains the 

information of 1 piece. The pieces information consists of 8 bits to contain the rule ID and 2 bits to indicate 

the status of the memory cell, so 10 bits in total. With 40 data bit-length of M10K memory, it is possible to 

hold an additional 3 vector fragments without consuming any additional resources, supporting 1024 rules. 

But to simplify the simulation process, the test only uses the first 10 bits of memory data. Thus, saving the 

fragments of the rule ID vector consumes 13 M10K. With 13 fragments, for direct searching implementation, 

13 M10K memories are used to store mask vectors of rules. Although there are only 256 rules, but for direct 
searching, to search for mask vectors in parallel with ID vector, it is required to be perform on 13 pieces at 

the same time, each memory contains 256 x 13-bit of mask vector data of the rules. The resources for simple 

and direct confirmation memory are 13 256 x 125-bit of memory. Each 125-bit strings consists of 104 rule 

data bits, 13 mask bits and 8 priority bits. In this step, 52 M10K memory units for confirmation and priority 

comparison. 

Simulation and synthesis results on the FPGA kit showed that the amount of memory resources con- 

sumed is 78 M10K. Simulate the result on the testbench shows acceptable latency. The design was relatively 

optimized in terms of clock speed, resulting in 200 MHz on the FPGA 5CSXFC6D6F31C6 chip. The result 

confirmed that the structure works as intended in correspondence with our theory. Overall block diagram of 

the design as shown in Figure 9.  
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Figure 9. Overall block diagram of the design 

 

 

4. RESULT AND DISCUSSION 

The algorithm is built on the purpose of improvement [17] and provides the future development di- 

rections of the application capabilities based on the need to implement data access memory to support custom 
values with a larger scale. Because the FPGA’s internal memory is used and accessed many times in the 

process of searching, trade-off with latency, the power consumption of this architecture is lower than that of 

traditional TCAM [17]. In addition, the entire use of static random-access memory (SRAM) also gives the 

maximum clock speed of the structure higher than traditional content addressable memory. 

Compared to other algorithmic TCAM structures, on a large scale and on industry-used FPGAs, the 

algorithm achieves better performance optimization. On high-speed FPGAs such as Intel Arria and Stratix 

series, the M20K memory has a minimum of 9-bit address bit length, in [5] has difficulties with large internal 

memory consumption and because it needs to access a lot of memory in parallel, and every time a new rule is 

written in, another 1-bit column in memory is used. It is difficult to optimize memory usage. 

For a 1024 x 104-bit content addressable memory, building on [5] uses an average of 302 M20K. 

The proposed structure does not consume more M20K unit than in the example (using only 8 bits of 9 bit and 
use the remaining 1 bit to write-copy, allowing to change the entire database of memory access without 

affecting the retrieval process) for rule ID vector search. The memory section contains mask vectors and the 

reconfirmation memory consumes 4 times more resources, for a total of 273 M20K units. The difference in 

resource usage will be greater with logical rules arrangement, optimizing the ability to overlap rules on 

software. In addition, memory containing ternary vectors and recertified memory can be built in other ways 

of direct search and will save much more resources, with popular search methods instead of direct search, 

such as hash tables, binary trees, and bit vectors. 

With using the SRAM True Dual Port mode, we have two memory access as read or write per cycle. 

The throughput is double for searching purpose. The consumed resources would stay the same due to data 

words width is halved compared to SDP. Updating the table would slow the throughput of the algorithmic 

content addressable memory during writing cycles which could be fix with an update-copy method but it 

would also require additional resources. 
Fragments bit-length could also be vary based on the applications. In routers, parsing IP in the range 

of /16 to /24 subnet mask would make the default 8-bit fragment becoming heavy on the expansion and 

resources. Instead of one fragment represents for the 8-bit range /16 to /24, we could split it into two 4-bit 

fragments, shown in Figure 10. Many other ways of segmenting the bit strides apply to different applications. 

Masking memory searching step could also be deducted from the structure by include the masking 

information in the rule ID vector table. Example is illustrated in Figure 11. For the cell in collision or empty 

state, there would be blank masking information. 

The masking information could further be encoded to reduce memory consumption. For example, in 

IPv4 case, the real-world rule set could be found in [25] only have the masking from mostly /8. With 32-bit 

data key, 4-bit fragment normally it would require 8 bits to inform the masks (each bit for each segment). But 

the case is that IPv4 would only either be mask in /0, /4, /8, /12, /16, /20, /24, /28, /32. Those are 9 masking 
cases, so would require at most 4 bits to represent, which has halved the resources consumption. 
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The situation where range matching is needed could be done with registers in combination with the 

above structure or range conversion into masks could also be used but it would cost a huge amount of 

resources. The problem that need to be considered with range conversion is that the small range would 

collide with the large range data, causing many collision cells to appear in the rule ID table. 

Many hash-table chaining and bucket methods could also be implement into the structure such as 

linear chaining or bucket cell rule ID table as shown in Figure 12. One important direction of improving 

algorithmic TCAM on FPGA is to make it possible to be im- plement on external memories with an interface 

that is fast enough to support industry-level requirement. The external memory could be DDR, HBM or even 

eSRAM.  

 
 

 
 

Figure 10. Splitting the original 8-bit fragment into two 4-bit fragments 

 

 

 

 
 

 

Figure 11. The mask vector information is included 

with the database that is used to search match vector 

 

Figure 12. Many techniques that are used in hash-

table searching could also be applied to the proposed 

structure 

 

 

5. CONCLUSION 
The paper presents a structure of RAM-based TCAM on FPGA. It has advantages in scalabilty and 

integration compare to traditional TCAMs. Its function has been improved and resource consumption is more 

optimized compare to other FPGA-based TCAM structure. We hope to achieve further improvements of 

FPGA-based TCAM design and even general TCAM in the future.  
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