A new class of self-scaling for quasi-Newton method based on the quadratic model

Basim A. Hassan, Ranen M. Sulaiman
Department of Mathematics, College of Computers Sciences and Mathematics, University of Mosul, Iraq

ABSTRACT

Quasi-Newton method is an efficient method for solving unconstrained optimization problems. Self-scaling is one of the common approaches in the modification of the quasi-Newton method. A large variety of self-scaling of quasi-Newton methods is very well known. In this paper, based on quadratic function we derive the new self-scaling of quasi-Newton method and study the convergence property. Numerical results on the collection of problems showed the self-scaling of quasi-Newton methods which improves overall numerical performance for BFGS method.

Keywords:
Global convergence
Self-scaling quasi-Newton
Unconstrained optimization

1. **INTRODUCTION**

All over the complete paper, we deem the unconstrained minimization problem as:

$$\text{Min } f(x), \ x \in \mathbb{R}^n$$

(1)

The most widely used general iterative suggestion for problem resolution (1) is given by:

$$x_0 \in \mathbb{R}^n, \ x_{k+1} = x_k + \alpha_k d_k$$

(2)

where x_{k+1} is a new iteration point, x_k is a current iterative point, $\alpha_k > 0$ is a step-size and d_k is the search direction. (see, for example, [1, 2 and 3]). Quasi-Newton methods form an important class of numerical methods for solving optimization problems. For our purposes, we examine the general iterative scheme of quasi-Newton direction :

$$B_k d_k + g_k = 0$$

(3)
where B_k is an appropriate approximation of the inverse of the Hessian. If we apply the quasi-Newton equation to the chosen approximations x_k and x_{k+1}, our task is to find a B_{k+1} satisfying:

$$B_{k+1} \delta_k = y_k$$

where $\delta_k = x_{k+1} - x_k = \alpha_k d_k$ and $y_k = g_{k+1} - g_k$, see [4].

This key of such methods is a matrix updating procedure, of which the BFGS method is the most successful and widely used can be separated into:

$$B_{k+1}^{BFGS} = B_k - \frac{B_k \delta_k \delta_k^T B_k}{\delta_k^T B_k \delta_k} + \frac{y_k y_k^T}{\delta_k^T y_k}$$

(5)

Let H_k be the inverse of B_k. Then the inverse update formula of (5) method is represented as:

$$H_{k+1}^{BFGS} = H_k - \frac{H_k y_k \delta_k^T + \delta_k y_k^T H_k}{\delta_k^T y_k} + \left[1 + \frac{y_k^T H_k y_k}{\rho_k} \right] \frac{\delta_k \delta_k^T}{\delta_k^T y_k}$$

(6)

The Biggs modification of the BFGS formula to improve the performance of updates, can be written

$$H_{k+1} = H_k - \frac{H_k y_k \delta_k^T + \delta_k y_k^T H_k}{\delta_k^T y_k} + \left[1 + \frac{y_k^T H_k y_k}{\rho_k} \right] \frac{\delta_k \delta_k^T}{\delta_k^T y_k}$$

(7)

which will satisfy:

$$B_{k+1} \delta_k = \rho_k y_k , \quad \rho_k = \frac{4\delta_k^T g_k + 2\delta_k^T g_{k+1} + 6[f(x_k) - f(x_{k+1})]}{\delta_k^T y_k}$$

(8)

Is then called Self-scaling of quasi-Newton methods. More details can be found in [5].

The idea of variant self-scaling of quasi-Newton methods had been studied by many researchers for example, see (Oren, [6]; (Yuan, [7]) and (Basim and Hawraz [8])). A self-scaling of quasi-Newton algorithm was developed to decrease the number of iterations and preserves the global convergence on quasi-Newton algorithms. Interested researcher can refer to [9-12] for further studies and recent reference regarding quasi-Newton. Next, derivation of the a new self-scaling Quasi-Newton are described and tested.

2. A NEW SELF-SCALING QUASI-NEWTON METHODS

In order to derive the new self-scaling of quasi-Newton method we consider the second-order Taylor approximation as:

$$f(x) = f(x_{k+1}) + g_{k+1}^T (x - x_{k+1}) + \frac{1}{2} (x - x_{k+1})^T Q (x - x_{k+1})$$

(9)

Substituting x_{k+1} in to x in equation (9) and using exact line search $g_{k+1}^T d_k = 0$, then (9) we have:

$$f(x_{k+1}) - f(x_k) = -\frac{1}{2} \delta_k^T Q \delta_k$$

(10)

In fact, by using exact line search with this function, the optimal step size α_k is given by:

A new class of self-scaling for quasi-Newton method based on the quadratic model (Basim A. Hassan)
\[\alpha_k = - \frac{g_k^T d_k}{d_k^T Q d_k} \]

(11)

From (10) and (11) we get:

\[f(x_{k+1}) = f(x_k) - \frac{1}{2} \left(\frac{(g_k^T d_k)^2}{d_k^T Q d_k} \right) y_k \]

(12)

Thus one of the possible choices in an approximation of \(Qd_k \) can be given by:

\[Qd_k = - \frac{(g_k^T d_k)^2}{2(f(x_{k+1}) - f(x_k))(d_k^T y_k)} y_k \]

(13)

Since \(\delta_k = x_{k+1} - x_k = \alpha_k d_k \), we obtain:

\[Q\delta_k = - \frac{\alpha_k (g_k^T d_k)^2}{2(f(x_{k+1}) - f(x_k))(d_k^T y_k)} y_k \]

(14)

A good approximation to the Hessian matrix \(Q \) is a sequence of a positive definite matrices \(B_{k+1} \) which will satisfy:

\[B_{k+1}\delta_k = - \frac{\alpha_k (g_k^T d_k)^2}{2(f(x_{k+1}) - f(x_k))(d_k^T y_k)} y_k \]

(15)

The above relation we obtain the scaling denoted as \(\rho_k^{BR1} \) and can be written as:

\[B_{k+1}\delta_k = \rho_k^{BR1} y_k \]

(16)

where:

\[\rho_k^{BR1} = - \frac{\alpha_k (g_k^T d_k)^2}{2(f(x_{k+1}) - f(x_k))(d_k^T y_k)} \]

(17)

So – called \(BR1 \) method.

2.1. Outline of the new algorithm

The outline of the new algorithm is as follows:

Step 0 : Choose an initial point \(x_0 \in R^n \), set \(k = 1 \).

Step 1 : If the stopping criterion is a satisfied stop.

Step 2 : Compute \(d_k = -H_k g_k \).

Step 3 : Find a \(\alpha_k \) which satisfies the Wolfe rule:

\[f(x_k + \alpha_k d_k) \leq f(x_k) + \delta \alpha_k g_k^T d_k \]

\[d_k^T g(x_k + \alpha_k d_k) \geq \sigma d_k^T g_k \]
Step 4: Generate a new iteration point by \[x_{k+1} = x_k + \alpha_k d_k \] and calculate the new updating formula (7) and using (17).

Step 5: Set \(k = k + 1 \) and go back to Step 1.

3. GLOBAL CONVERGENCE PROPERTY OF THE NEW ALGORITHM

Our main interest is convergence Property for the new Algorithm and defined by the relation:

\[
\lim \inf_{k \to \infty} \| g_k \| = 0
\]

(18)

The BFGS update generate identical conjugate gradient search direction provided that the function quadratic and exact line searches are used. To prove that the new updates generate identical conjugate gradient search directions. We first introduce a useful lemma it can be proved in a similar way to the proof of Lemma 5.1 in [13].

Lemma (2.1):

If the BFGS algorithm is applied to the quadratic Function:

\[
f(x) = \frac{1}{2} x^T Q x + b^T x
\]

(19)

Using the same starting point \(x_0 \) and initial symmetric positive definite matrix \(H_0 \), then:

\[
H_k g^* = H_0 g^*
\]

(20)

The detailed proof was given by Nazareth [14].

Powell (Powell, [15]), showed that, the conjugate gradient method achieves the limit:

\[
\lim \inf_{k \to \infty} \| g_k \| = 0
\]

(21)

if the level set \(\{ x: f(x) \leq f(x_k) \} \) is bounded and \(\alpha_k \) is defined so that \(\{ g_k^T d_k = 0, k \geq 1 \} \) holds for all \(k \).

The following theorem are often used to explain the global convergence.

Theorem (2.3)

Assume that \(f(x) \) be a quadratic function defined in (19) and that the line searches are exact: if \(H_k \) is any symmetric positive definite matrix and for the new updating formula,

\[
H_{k+1} = H_k - \frac{H_k y_k \delta_k^T + \delta_k y_k^T H_k}{\delta_k^T y_k} + \left[\frac{1}{\rho_k^{BR1}} + \frac{y_k^T H_k y_k}{\delta_k^T y_k} \right] \frac{\delta_k^T \delta_k}{\delta_k^T y_k}
\]

(22)

where \(\rho_k^{BR1} \) defined in (17), then the search direction as:

\[
d_{k+1}^{new} = -H_{k+1}^{new} g_{k+1}
\]

(23)

is identical to the Conjugate Gradient direction \([H/S direction] \) \(d_{CG} \) and defined by:

A new class of self-scaling for quasi-Newton method based on the quadratic model (Basim A. Hassan)
\[d_{k+1}^{CG} = -g_{k+1} + \frac{y_k^T g_{k+1}}{\delta_k^T y_k} d_k \quad \text{for } k \geq 1 \] (24)

Proof:

The update (22) can be written as:

\[H_{k+1} = H_k - \frac{H_k y_k \delta_k^T}{\delta_k^T y_k} - \delta_k y_k^T H_k + \left[\frac{1}{\rho_k^{BR1}} + \frac{y_k^T H_k y_k}{\delta_k^T y_k} \right] \delta_k \delta_k^T \]

Now,

\[d_{k+1}^{new} = -H_k g_{k+1} + \frac{H_k y_k \delta_k^T g_{k+1}}{\delta_k^T y_k} + \frac{y_k^T H_k g_{k+1}}{\delta_k^T y_k} \delta_k = \frac{1}{\rho_k^{BR1}} \delta_k g_{k+1} \delta_k \]

using the property \(\delta_k^T g_{k+1} = 0 \) quoted earlier which holds for line searches we get:

\[d_{k+1}^{new} = -H_k g_{k+1} + \frac{y_k^T H_k g_{k+1}}{\delta_k^T y_k} \delta_k \]

(26)

The vector \(g_{k+1} \) can be substituted for \(H_k g_{k+1} \) by using lemma (2.1). Therefore:

\[d_{k+1}^{new} = -g_{k+1} + \frac{y_k^T g_{k+1}}{\delta_k^T y_k} \delta_k \]

(27)

We also know that \(d^{BFGS} \) and \(d^{CG} \) are identical (Nazareth, [14,15]), and \(d^{new} \) is identical to \(d^{BFGS} \) with exact line searches. Hence as shown in (27) becomes:

\[d_{k+1}^{new} = -g_{k+1} + \frac{y_k^T g_{k+1}}{\delta_k^T y_k} d_k = d_{k+1}^{CG} \]

(28)

hence the proof.

4. Numerical results

In this section, several computational experiments are conducted on a series of unconstrained optimization test issues the specifics please see more [16] to explain the application and efficacy of the proposed process. Some other class from test problems was observed in [17-25]. Performance of a given methods was measured by two separate data: total number of iteration and total number of function evaluations, respectively. The stopping rule applied throughout was: “If \(\|f(x_i)\| > 10^{-5} \), let \(stop_1 = \left[f(x_i) - f(x_{i+1}) / f(x_i) \right] \); Otherwise, let \(stop_1 = \left[f(x_i) - f(x_{i+1}) \right] \). For every problem, if \(\|g_k\| < \varepsilon \) or \(stop_1 < 10^{-5} \) is satisfied, the program will be stopped”, see [26].

The graphs are plotted using data derived from numerical computations using the output model proposed by Dolan and More [27]. The suggested BR1 approach has the highest results in terms of both number of iterations as seen in Figure 1 and number of function evaluation Figure 2.
A new class of self-scaling for quasi-Newton method based on the quadratic model (Basim A. Hassan)

5. CONCLUSIONS

In this paper, a self-scaling quasi-Newton method has been derived to find minimum for unconstrained optimization problem. Self-scaling of quasi-Newton methods which improved overall numerical performance of these methods.

ACKNOWLEDGMENT

The authors are very grateful to the University of Mosul / College of Computers Sciences and Mathematics for their provided facilities, which helped to improve the quality of this work”.

REFERENCES

