Certain properties of \(\omega\)-\(Q\)-fuzzy subrings

Dilshad Alghazzawi\(^1\), Wafaa H. Hanoon\(^2\), Muhammad Gulzar\(^3\), Ghazanfar Abbas\(^4\), Nasreen Kausar\(^5\)

\(^1\)Department of mathematics, King Abdulaziz University (Rabigh), Jeddah, Saudi Arabia
\(^2\)Department of Computer Science, College of Education for Girls, University of Kufa, Kufa, Iraq
\(^3\)Department of Mathematics, Government College University Faisalabad, Pakistan
\(^4\)Department of Mathematics and Statistics, Institute of Southern Punjab, Multan, Pakistan
\(^5\)Department of mathematics, University of Agriculture Faisalabad, Faisalabad, Pakistan

Article Info

Article history:
Received Jun 23, 2020
Revised Aug 11, 2020
Accepted Aug 21, 2020

Keywords:
\(Q\)-fuzzy set
\(Q\)-fuzzy subring
\(\omega\)-\(Q\)-fuzzy ideal
\(\omega\)-\(Q\)-fuzzy set
\(\omega\)-\(Q\)-fuzzy subring

ABSTRACT

In this paper, we define the \(\omega\)-\(Q\)-fuzzy subring and discussed various fundamental aspects of \(\omega\)-\(Q\)-fuzzy subrings. We introduce the concept of \(\omega\)-\(Q\)-level subset of this new fuzzy set and prove that \(\omega\)-\(Q\)-level subset of \(\omega\)-\(Q\)-fuzzy subring form a ring. We define \(\omega\)-\(Q\)-fuzzy ideal and show that set of all \(\omega\)-\(Q\)-fuzzy cosets form a ring. Moreover, we investigate the properties of homomorphic image of \(\omega\)-\(Q\)-fuzzy subring.

This is an open access article under the CC BY-SA license.

Corresponding Author:
Muhammad Gulzar
Department of Mathematics
Government College University Faisalabad, 38000, Pakistan
Email:98kohly@gmail.com

1. INTRODUCTION

In mathematics, ring theory is one of the most important part of abstract algebra. In algebra, ring theory studies the algebraic structures of rings. Rings algebraic structure is a framework in which addition and multiplication are well defined with some more properties.

in [24]. Shafei et al [25] studied the fuzzy logic control systems for demand management in airports and energy efficiency by using 3D simulator.

This paper is organized as the section 2 contains the elementary definition of \(Q\)-fuzzy subrings and related results which are thoroughly crucial to understand the novelty of this article. In section 3, we define the \(\omega-Q\)-fuzzy subring and prove that the level subset of \(\omega-Q\)-fuzzy subrings is a subring. We also define \(\omega-Q\)-fuzzy ideal and discuss its properties. In section 5, we use the classical ring homomorphism to investigate the behavior of homomorphic image (inverse-image) of \(\omega-Q\)-fuzzy subring.

2. PRELIMINARIES

We recall first the elementary notion of fuzzy sets which play a key role for our further analysis.

Definition 2.1. [1]: A fuzzy set \(A\) of a nonempty set \(M\) is a function,

\[
A : P \to [0, 1]
\]

Definition 2.2. [10]: Let \(A\) be fuzzy subset of a ring \(R\). Then \(A\) is said to be a fuzzy subring if

i. \(A(u - v) \geq \min\{A(u), A(v)\}\)

ii. \(A(uv) \geq \min\{A(u), A(v)\}\), for all \(u, v \in R\).

Definition 2.3. [14]: Let \(M\) and \(Q\) be two nonempty sets. A \(Q\)-fuzzy subset \(A\) of set \(M\) is a function \(A: X \times Q \to [0, 1]\) for all \(u, v \in M\) and \(q \in Q\).

Definition 2.4. [14]: A function \(A : R \times Q \to [0, 1]\) is a QFSR of a ring \(R\) if

i. \(A(u - v, q) \geq \min\{A(u, q), A(v, q)\}\)

ii. \(A(uv, q) \geq \min\{A(u, q), A(v, q)\}\), for all \(u, v \in R\) and \(q \in Q\).

Definition 2.5. Let the mapping \(f: R_1 \to R_2\) be a homomorphism. Let \(A\) and \(B\) be \(\omega\)-QFSRs of \(R_1\) and \(R_2\) respectively, then \(f(A)\) and \(f^{-1}(B)\) are image of \(A\) and the inverse image of \(B\) respectively, defined as

i. \(f(A)(v, q) = \{\sup(A(u, q) : u \in f^{-1}(v)), if f^{-1}(v) \neq \emptyset\}, for every v \in R_2\) and \(q \in Q\)

ii. \(f^{-1}(B)(u, q) = B(f(u), q), for every u \in R_1\) and \(q \in Q\)

Definition 2.6. [13]: Let \(t_p: [0, 1] \times [0, 1] \to [0, 1]\) be the algebraic product \(t\)-norm on \([0, 1]\) and is described as \(t_p(a, b) = ab, 0 \leq a \leq 1, 0 \leq b \leq 1\)

3. PROPERTIES OF \(\omega-Q\)-FUZZY SUBRINGS

Definition 3.1. Let \(M\) and \(Q\) be any two nonempty sets and \(A\) be a \(Q\)-fuzzy subset of a set \(P\), any \(\omega \in [0, 1]\). Then fuzzy set \(A^\omega\) of \(M\) is said to be \(\omega-Q\)-fuzzy subset of \(M\) (w.r.t \(Q\)-fuzzy set \(A\)) and defined by:

\[
A^\omega(m, q) = t_p(A(m, q), \omega), for all m \in M and q \in Q
\]

Remark 3.2. Clearly, \(A^1(m, q) = A(m, q)\) and \(A^0(m, q) = 0\).

Remark 3.3. If \(A\) and \(B\) be two \(Q\)-fuzzy sets of \(M\). Then \((A \cap B)^\omega = A^\omega \cap B^\omega\).

Definition 3.4. A \(Q\)-fuzzy subset of a ring \(R\) is called \(\omega\)-QFSR, and \(\omega \in [0, 1]\), if

i. \(A^\omega(m - n, q) \geq \min\{A^\omega(m, q), A^\omega(n, q)\}\), for all \(m, n \in R\) and \(q \in Q\).

Theorem 3.5. If \(A\) is a \(\omega\)-QFSR of a ring \(R\), then \(A^\omega(m, q) \leq A^\omega(0, q)\), for all \(m \in R\) and \(q \in Q\) where 0 is the additive identity of \(R\).

Proof: Consider \(A^\omega(0, q) = A^\omega(m - m, q) \geq \min\{A^\omega(m, q), A^\omega(m, q)\} = \min\{A^\omega(m, q), A^\omega(m, q)\}\)

Hence, \(A^\omega(0, q) \geq A^\omega(m, q)\), for all \(m \in R\)

Theorem 3.6. If \(A\) is QFSR of a ring \(R\), then \(A\) is an \(\omega\)-QFSR of \(R\).

Proof: Assume that \(A\) is a QFSR of a ring \(R\) and \(\forall a, b \in R\) and \(q \in Q\).
Assume that, \(A^\omega(a - b, q) = t_p\{A(a - b, q), \mu\} \geq t_p\{\min\{A(a, q), A(b, q)\}, \omega\} \)
\[\text{min}\{t_p\{A(a, q), \omega\}, t_p\{A(b, q), \omega\}\} = \text{min}\{A^\omega(a, q), A^\omega(b, q)\} \]
\[A^\omega(a - b, q) \geq \text{min}\{A^\omega(a, q), A^\omega(b, q)\} \]
Further \(A^\omega(ab, q) = t_p\{A(ab, q), \mu\} \geq t_p\{\min\{A(a, q), A(b, q)\}, \omega\} \)
\[\text{min}\{t_p\{A(a, q), \omega\}, t_p\{A(b, q), \omega\}\} = \text{min}\{A^\omega(a, q), A^\omega(b, q)\} \]
\[A^\omega(ab, q) \geq \text{min}\{A^\omega(a, q), A^\omega(b, q)\} \]
Consequently, \(A \) is \(\omega \)-QFSR of \(R \). In general, the converse may not be true.

Note 3.7. We take \(A^\omega = \{A(a, q), \omega\} \) in all the examples.

Example 3.8 Let \(R = \{0, 1, 2, 3\} \), be a ring and \(Q = \{q\} \). Let the \(Q \)-fuzzy set \(A \) of \(R \) described by:
\[
A(a, q) = \begin{cases}
0.3, & \text{if } a = 0 \\
0.5, & \text{if } a = 1 \text{ or } 3 \\
0.4, & \text{if } a = 2
\end{cases}
\]

Take \(\omega = 0 \) then,
\[
A^\omega(a, q) = t_p\{A(a, q), \omega\} = t_p\{A(a, q), 0\} = 0, \text{ for all } a \in R
\]
\[\Rightarrow A^\omega(a - b, q) \geq \text{min}\{A^\omega(a, q), A^\omega(b, q)\} \]
Further, we have \(A^\omega(ab, q) \geq \text{min}\{A^\omega(a, q), A^\omega(b, q)\} \)
Consequently \(A \) is \(\omega \)-QFSR of \(R \) and \(A \) is not QFSR of \(R \).

Definition 3.9. Let \(A \) be \(\omega \)-Q-fuzzy set of universe set \(M \). For \(t, \omega \in [0, 1] \) the level subset \(A^\omega_t \) of \(\omega \)-Q-fuzzy set is given by:
\[A^\omega_t = \{m \in M : A^\omega(m, q) \geq t\} \]

Theorem 3.10. Let \(A \) is \(\omega \)-Q-fuzzy subring of \(R \) then \(A^\omega_t \) is subring of \(R \) for all \(t \leq A(0, q) \).

Proof: It is quite obvious that \(A^\omega_t \) is non-empty. Since \(A \) be \(\omega \)-Q-fuzzy subring of a ring \(R \), which implies that \(A^\omega(m, q) \leq A^\omega(0, q) \), for all \(m \in R \) and \(q \in Q \). Let \(m, n \in A^\omega_t \) then \(A^\omega(m, q) \geq t \) \(A^\omega(n, q) \geq t \).

Now,
\[A^\omega(m - n, q) \geq \text{min}\{A^\omega(m, q), A^\omega(n, q)\} \geq \text{min}\{t, t\} = t \]
\[A^\omega(mn, q) \geq \text{min}\{A^\omega(m, q), A^\omega(n, q)\} \geq \text{min}\{t, t\} = t \]
This implies that \(-n, mn \in A^\omega_t \). Hence, \(A^\omega_t \) is subring of \(R \).

Definition 3.11. Let \(A \) be a \(Q \)-fuzzy subset of a ring \(R \) and \(\omega \in [0, 1] \). Then \(A^\omega \) is \(\omega \)-Q-fuzzy left ideal (\(\omega \)-QFLI) of \(R \) if,
\[i. \quad A^\omega(m - n, q) \geq \text{min}\{A^\omega(m, q), A^\omega(n, q)\} \]
\[ii. \quad A^\omega(mn, q) \geq A^\omega(n, q), \text{ for all } m, n \in R \text{ and } q \in Q \]

Definition 3.12. Let \(A \) be a \(Q \)-fuzzy subset of a ring \(R \) and \(\omega \in [0, 1] \). Then \(A^\omega \) is \(\omega \)-Q-fuzzy right ideal (\(\omega \)-QFRI) of \(R \) if,
\[i. \quad A^\omega(m - n, q) \geq \text{min}\{A^\omega(m, q), A^\omega(n, q)\} \]
\[ii. \quad A^\omega(mn, q) \geq A^\omega(m, q), \text{ for all } m, n \in R \text{ and } q \in Q \]

Definition 3.13. Let \(A \) be a \(Q \)-fuzzy subset of a ring \(R \) and \(\omega \in [0, 1] \). Then \(A^\omega \) is \(\omega \)-QFI of \(R \) if,
\[i. \quad A^\omega(m - n, q) \geq \text{min}\{A^\omega(m, q), A^\omega(n, q)\} \]
\[ii. \quad A^\omega(mn, q) \geq \text{max}\{A^\omega(m, q), A^\omega(n, q)\}, \text{ for all } m, n \in R \text{ and } q \in Q \]

Definition 3.14. Let \(A \) be a \(\omega \)-QFSR of a ring \(R \) and \(\omega \in [0, 1] \). For any \(m \in R \) and \(q \in Q \), the \(\omega \)-Q-fuzzy coset of \(A \) in \(R \) is represented by \(m + A^\omega \) as defined as,
Theorem 3.15. Let A be an ω-QFI of ring R. Then the set $A_0^\omega = \{ m \in R : A_0^\omega(m, q) = A_0^\omega(0, q) \}$ is an ideal of ring R.

Proof: Obviously $A_0^\omega \neq \emptyset$ because $0 \in R$. Let $m, n \in A_0^\omega$ be any elements. Consider

\[A_0^\omega(m - n, q) \leq \min\{A_0^\omega(m, q), A_0^\omega(n, q)\} = \min\{A_0^\omega(0, q), A_0^\omega(0, q)\} \]

Implying that $A_0^\omega(m - n, q) = A_0^\omega(0, q)$. But $A_0^\omega(m - n, q) \leq A_0^\omega(0, q)$

Therefore, $A_0^\omega(m - n, q) = A_0^\omega(0)$

Implying that $m - n \in A_0^\omega$.

Further, let $m \in A_0^\omega$ and $n \in R$. Consider

$A_0^\omega(mn, q) \geq \max\{A_0^\omega(m, q), A_0^\omega(n, q)\} = \max\{A_0^\omega(0, q), A_0^\omega(n, q)\}$.

Implying that $A_0^\omega(mn, q) \geq A_0^\omega(0, q)$. But $A_0^\omega(mn, q) \leq A_0^\omega(0, q)$

Therefore, $A_0^\omega(mn, q) = A_0^\omega(0, q)$.

Similarly, $A_0^\omega(nm, q) = A_0^\omega(0, q)$

Implying that $mn, nm \in A_0^\omega$.

Implying that A_0^ω is an ideal.

Theorem 3.16. Let A_0^ω be an ω-QFI of ring R, $m, n \in R$ and $q \in Q$. Then,

\[m + A_0^\omega = n + A_0^\omega \]

if and only if $m - n \in A_0^\omega$.

Proof: For any $m, n \in S$, we have $m + A_0^\omega = n + A_0^\omega$.

Consider,

\[A_0^\omega(m - n, q) = (n + A_0^\omega)(m, q) = (m + A_0^\omega)(m, q) = A_0^\omega(0, q) \]

Therefore, $m - n \in A_0^\omega$.

Conversely, let $m - n \in A_0^\omega$

Implying that $A_0^\omega(m - n, q) = A_0^\omega(0, q)$

Consider,

\[(m + A_0^\omega)(h, q) = A_0^\omega(h - m, q) = A_0^\omega((h - n) - (m - n), q) \]

\[\geq \min\{A_0^\omega((h - n), q), A_0^\omega((m - n), q)\} \]

\[= \min\{A_0^\omega((h - n), q), A_0^\omega(0, q)\} = A_0^\omega((h - n), q) = (n + A_0^\omega)(h, q) \]

Interchange the role of p and q we get

\[(n + A_0^\omega)(h, q) \geq (m + A_0^\omega)(h, q) \]

Therefore, $(m + A_0^\omega)(h, q) = (n + A_0^\omega)(h, q)$, for all $h \in R$.

Definition 3.17. Let A be a ω-QFI of a ring R. The set of all ω-Q-fuzzy cosets of A denoted by R/A_0^ω form a ring with respect to binary operation $*$ defined by

\[(m + A_0^\omega) * (n + A_0^\omega) = (m + n) + A_0^\omega, \text{where } m + A_0^\omega, n + A_0^\omega \in R/A_0^\omega, m, n \in R. \]

\[(m + A_0^\omega) * (n + A_0^\omega) = (m * n) + A_0^\omega, \text{where } m + A_0^\omega, n + A_0^\omega \in R/A_0^\omega, m, n \in R. \]

The ring R/A_0^ω is called the factor ring of R with respect to ω-QFI A_0^ω.

Theorem 3.18. The set R/A_0^ω forms a ring with respect to the above stated binary operation.

Proof: Let $m_1 + A_0^\omega = m_2 + A_0^\omega$ and $n_1 + A_0^\omega = n_2 + A_0^\omega$ for some $m_1, m_2, n_1, n_2 \in R$. Let $g \in R$ be any element of R and $q \in Q$.

\[(m_2 + n_2 + A_0^\omega)(g, q) = A_0^\omega(g - (m_2 + n_2), q) \]

\[= A_0^\omega(g - m_2 - n_2, q) = n_2 + A_0^\omega((g - m_2), q) = n_1 + A_0^\omega((g - m_2), q) \]

\[= A_0^\omega((g - m_2 - n_1), q) = m_2 + A_0^\omega((g - n_1), q) = m_1 + A_0^\omega((g - n_1), q) \]

\[= A_0^\omega((g - m_1 - n_1), q) = A_0^\omega(g - (m_1 + n_1), q) = (m_1 + n_1 + A_0^\omega)(g, q) \]

Moreover,

\[(m_2 n_2 + A_0^\omega)(g, q) = A_0^\omega(g - m_1 n_1 - (m_2 n_2 - m_1 n_1), q) \]
\[
\geq \min\{A^\omega(g - m_1n_1), A^\omega((m_2n_2 - m_1n_1), q)\}
\]

But we have, \(A^\omega((m_2n_2 - m_1n_1), q) = A^\omega((m_1n_1 - m_2n_1 + m_2n_1 - m_2n_2), q)\)

\[
= A^\omega((m_1 - m_2)n_1 + m_2(n_1 - n_2), q) \geq \min\{A^\omega((m_1 - m_2)n_1, q), A^\omega(m_2(n_1 - n_2), q)\}
\]

\[
= \min\{A^\omega(0, 0), A^\omega(0, q)\}
\]

\(A^\omega((m_2n_2 - m_1n_1), q) \geq A^\omega(0, q)\)

\(m_2n_2 + A^\omega(g, q) \geq A^\omega(g - m_1n_1, q)\)

\[
(0 + A^\omega) + (0 + A^\omega) = (n + A^\omega)
\]

Similarly, we can prove that \((m_2n_2 + A^\omega)(g, q) \leq (m_1n_1 + A^\omega)(g, q)\)

Consequently, \((m_2n_2 + A^\omega)(g, q) = (m_1n_1 + A^\omega)(g, q)\).

Therefore \(\ast\) is well defined. Now we prove that the following axioms of ring, for any \(m, n \in R\).

1) \((m + A^\omega) + (n + A^\omega) = m + n + A^\omega\)
2) \((m + A^\omega) + ((n + A^\omega) + (r + A^\omega)) = m + A^\omega + [n + r + A^\omega] = (m + n) + r + A^\omega = [m + n + A^\omega] + r + A^\omega = [(m + A^\omega) + (n + A^\omega)] + (r + A^\omega)\)
3) \((m + A^\omega) + (n + A^\omega) = m + n + A^\omega = n + m + A^\omega = (n + A^\omega) + (m + A^\omega)\)
4) \((0 + A^\omega) + (n + A^\omega) = (n + A^\omega)\)
5) \((m + A^\omega) + (-m + A^\omega) = A^\omega\)
6) \((m + A^\omega)(n + A^\omega) = mn + A^\omega\)
7) \((m + A^\omega)[(n + A^\omega)(r + A^\omega)] = m + A^\omega + [nr + A^\omega] = mnr + A^\omega = [mn + A^\omega] + r + A^\omega = [(m + A^\omega)(n + A^\omega)](r + A^\omega)\)
8) \([(n + A^\omega) + (r + A^\omega)](m + A^\omega) = (n + A^\omega)[(n + r) + A^\omega] = m(n + r) + A^\omega = (mn + mr) + A^\omega = (mn + A^\omega) + (mr + A^\omega) = [(m + A^\omega)(n + A^\omega)] + (m + A^\omega)(r + A^\omega)\)
9) \([(n + A^\omega) + (r + A^\omega)](m + A^\omega) = [(n + r) + A^\omega][m + A^\omega] = (n + r)m + A^\omega = (nm + rm) + A^\omega = (mn + A^\omega) + (rm + A^\omega) = [(n + A^\omega)(m + A^\omega)] + (r + A^\omega)(m + A^\omega)\)

Consequently, \((R/A^\omega, +, \ast)\) is a ring.

4. HOMOMORPHISM OF \(\omega\)-Q-FUZZY SUBRINGS

In this section, we investigate the behavior of homomorphic image and inverse image of \(\omega\)-QFSR.

Lemma 4.1. Let \(f: M \rightarrow N\) be a mapping and \(A\) and \(B\) be two fuzzy subsets of \(M\) and \(N\) respectively, then

(i) \(f^{-1}(B^\omega)(m, q) = (f^{-1}(B))^\omega(m, q)\), for all \(m \in M\) and \(q \in Q\)
(ii) \(f(A^\omega)(n, q) = (f(A))^\omega(n, q)\), for all \(n \in N\) and \(q \in Q\)

Proof:
(i) \(f^{-1}(B^\omega)(m) = B^\omega(f(m)) = t^\omega[p(B(f(m)), \omega)] = t^\omega[f^{-1}(B)(m), \omega]\)

\[
f^{-1}(B^\omega)(m) = (f^{-1}(B))^\omega(m), \text{ for all } m \in M
\]

(ii) \(f(A^\omega)(n, q) = \sup\{A^\omega(m, q): f(m) = y\} = \sup\{t^\omega[A(m, q), \omega]: f(m) = n\}\)

\[
= t^\omega[\{A(m, q): f(m) = n\}, \omega] = t^\omega[f(A)(n, q), \omega] = (f(A))^\omega(n, q), \text{ for all } n \in N
\]

Hence, \(f(A^\omega)(n, q) = (f(A))^\omega(n, q)\)

Theorem 4.2. Let \(f: R_1 \rightarrow R_2\) be a homomorphism from a ring \(R_1\) to a ring \(R_2\) and \(A\) be a \(\omega\)-QFSR of ring \(R_1\). Then \(f(A)\) is a \(\omega\)-QFSR of ring \(R_2\).

Proof: Let \(A\) be a \(\omega\)-QFSR of ring \(R_1\). Let \(n_1, n_2 \in R_2\) be any element. Then there exists unique elements \(m_1, m_2 \in R_1\) such that \(f(m_1) = n_1\) and \(f(m_2) = n_2\) and for \(q \in Q\).

Consider,
Certain properties of ω-fuzzy subrings

Dilshad Alghazzawi

\((f(A))_1^{\omega} (n_1 - n_2, q) = t_p[f(A) (n_1 - n_2, q), \omega] = t_p[f(A) (f(m_1) - f(m_2), q), \omega] \)
\(= t_p[f(A) (f(m_1 - m_2, q), \omega) = t_p[A (m_1 - m_2, q), \omega] = A^{\omega} (m_1 - m_2, q) \)
\(\geq \min(A^{\omega} (m_1, q), A^{\omega} (m_2, q)) \), for all \(m_1, m_2 \in H \), such that \(f(m_1) = n_1 \) and \(f(m_2) = n_2 \)
\(\geq \min(\sup(A^{\omega} (m_1, q) : f(m_1) = n_1), \sup(A^{\omega} (m_2, q) : f(m_2) = n_2)) \)
\(= \min(f(A^{\omega} (n_1, q), f(A^{\omega} (n_2, q)) = \min\{(f(A))^{\omega} (n_1, q), (f(A))^{\omega} (n_2, q) \}\)
Thus, \((f(A))^{\omega} (n_1, n_2, q) \geq \min\{(f(A))^{\omega} (n_1, q), (f(A))^{\omega} (n_2, q) \}\)

Further, \((f(A))^{\omega} (n_1, n_2, q) = t_p[f(A)(n_1, n_2, q), \omega] = t_p[f(A)(f(m_1)f(m_2), q), \omega] \)
\(= t_p[f(A)(f(m_1m_2), q), \omega] = t_p[A(m_1m_2, q), \omega] = A^{\omega} (m_1m_2, q) \)
\(\geq \min(A^{\omega} (m_1, q), A^{\omega} (m_2, q)) \), for all \(m_1, m_2 \in H \), such that \(f(m_1) = n_1 \) and \(f(m_2) = n_2 \)
\(\geq \min(\sup(A^{\omega} (m_1, q) : f(m_1) = n_1), \sup(A^{\omega} (m_2, q) : f(m_2) = n_2)) \)
\(= \min(f(A^{\omega} (n_1, q), f(A^{\omega} (n_2, q)) = \min\{(f(A))^{\omega} (n_1, q), (f(A))^{\omega} (n_2, q) \}\)
Thus, \((f(A))^{\omega} (n_1, n_2, q) \geq \min\{(f(A))^{\omega} (n_1, q), (f(A))^{\omega} (n_2, q) \}\)

Consequently, \(f(A) \) is \(\omega \)-QFSR of \(R_2 \).

Theorem 4.3. Let \(f : R_1 \rightarrow R_2 \) be a homomorphism from ring \(R_1 \) into a ring \(R_2 \) and \(B \) be a \(\omega \)-QFSR of ring \(R_2 \). Then \(f^{-1}(B) \) is \(\omega \)-QFSR of ring \(R_1 \).

Proof: Let \(B \) be \(\omega \)-QFSR of ring \(R_2 \). Let \(m_1, m_2 \in R_1 \) be any elements, then \((f^{-1}(B))^{\omega} (m_1 - m_2, q) = f^{-1}(B^{\omega})(m_1 - m_2, q) = B^{\omega}(f(m_1 - m_2, q) \)
\(= B^{\omega}(f(m_1) - f(m_2), q) \)
\(\geq \min(B^{\omega}(f(m_1), q), B^{\omega}(f(m_2), q)) = \min(f^{-1}(B^{\omega})(m_1, q), f^{-1}(B^{\omega})(m_2, q) \)
\(= \min\{(f^{-1}(B))^{\omega} (m_1, q), (f^{-1}(B))^{\omega} (m_2, q) \}\)
Thus, \((f^{-1}(B))^{\omega} (m_1, m_2, q) \geq \min\{(f^{-1}(B))^{\omega} (m_1, q), (f^{-1}(B))^{\omega} (m_2, q) \}\)

Further, \((f^{-1}(B))^{\omega} (m_1m_2, q) = f^{-1}(B^{\omega})(m_1m_2, q) = B^{\omega}(f(m_1)m_2, q) \)
\(\geq \min(B^{\omega}(f(m_1), q), B^{\omega}(f(m_2), q)) = \min(f^{-1}(B^{\omega})(m_1, q), f^{-1}(B^{\omega})(m_2, q) \)
\(= \min\{(f^{-1}(B))^{\omega} (m_1, q), (f^{-1}(B))^{\omega} (m_2, q) \}\)
Thus, \((f^{-1}(B))^{\omega} (m_1m_2, q) \geq \min\{(f^{-1}(B))^{\omega} (m_1, q), (f^{-1}(B))^{\omega} (m_2, q) \}\)

Consequently, \(f^{-1}(B) \) is \(\omega \)-QFSR of a ring \(R_1 \).

5. CONCLUSION

In paper, we have proved the level subset of two \(\omega \)-Q-fuzzy subrings is a subring. In addition, we have extended the study of this ideology to investigate the effect of image and inverse image of \(\omega \)-QFSR under ring homomorphism.

ACKNOWLEDGEMENT

This work was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia. The authors, therefore, acknowledge with thanks DSR for technical and financial support.
Conflict of interest
All authors declare no conflict of interest in this paper

REFERENCE