An efficient hybrid model for secure transmission of data by using efficient data collection and dissemination (EDCD) algorithm based WSN

Mustafa Mahmood Akawee1, Mohanad Ali Meteab Al-Obaidi2, Haider Mohammed Turki Al-Hilfi3, Sabbar Insaif Jassim4, Tole Sutikno5

1Department of Theology, The Great Emam University College, Iraq
2Al-Mustansiriya University, College of Science, Department of Computer Science, Iraq
3Directorate General of Vocational Education, Ministry of Education, Iraq
4Faculty of Al-dour Technical institute, Northern Technical University, Iraq
5Department of Electrical Engineering, Universitas Ahmad Dahlan, Indonesia

ABSTRACT

Wireless sensor network is the life wire of the internet of things (IoT) paradigm. One of themajor issues in IoT and WSN is energy consumption owing to the consumption of energy by the security gadgets in the newtork. Solving the security-related issues for the transmitted data using IoT sensor node also involves energy consumption and this ads to the already existing energy-related problem in the system. With these considerations, it seems difficult to find solutions that can achieve satisfactory reduction of energy consumption while maintaining the expected level of system security and services. Therefore, in this paper, we proposed an efficient hybrid model for secure transmission of data from sensor nodes to receivers in WSN applications. The proposed model includes two algorithms Rivest–Shamir–Adl eman (RSA) and efficient data collection and dissemination (EDCD). The key idea behind the proposed model is to prevent to secure sensed data if no significant change between the current data and the last transmitted data by the apply EDCD1 algorithm, which that will help in saving the sensor node energy. The reason for that the size of cipher data is so large compared to the sensed data, which that will increase the energy consumption. The outcome results shown that the proposed model has a high performance compared to RSA in term of energy consumption.

Keywords:
Data collection
Energy consumption
Rivest–shamir–adl eman security
Wireless sensor network

1. INTRODUCTION

Due to the unique challenges brought about by "sensor networks, traditional security technologies used in traditional networks cannot be applied directly" [1, 2]. First, the sensor network is economically profitable because the energy, computing and communication capabilities of the sensor device are limited. Second, sensor nodes are often deployed in inaccessible areas, increasing the risk of physical attacks [3-6]. Third, the sensor network interacts closely with the physical environment and personnel and constitutes a new security issue. WSN is "one of the most important elements of the internet of things (IoT) paradigm. It extends the benefits of remote access, monitoring, health, and environmental research to smart cities and smarter planets" [7]. The convergence of wireless sensor networks with other technologies has created new demands and brought a variety of security threats [8].

Journal homepage: http://ijeecs.iaescore.com
The previous works describes the investigation of various security issues that arise when “integrating wireless sensor networks into the IoT”. It is difficult to find solutions that can achieve significant reduction in power consumption and still maintain system functionality and security [9, 10]. In our early studies, a heterogeneous offline and online encryption system was proposed for ensuring the security of communication data between internet host and sensor nodes. This paper demonstrates the scheme as indistinguishable from the “unselectable ciphertext attack in the bilinear Diffie-Hellman inversion problem and the q-strong Diffie-Hellman problem in the random oracle prediction model.” The advantages of the proposed solution include achieving a good level of confidentiality, certification, non-repudiation, and integrity in a single and logical step. The system also allows message propagation from the sensor nodes in identity-based cryptography to the internet hosts through a public key system. Finally, the system considers two stages of encryption; these are offline and online encryption phases. The offline phase permits offline heavy calculations without having to know the message, while the online phase permits only lightweight calculations when the message is accessible [11-14].

In WSN, size of transmitted data is directly related to energy consumption. Therefore, paper proposed an efficient hybrid model for ensuring the security of transmitted data from the sensor nodes to the receivers via WSN. This study was conceived in a bid to discourage the use of data security algorithms for sensor data in situations where the current sensor reading is equivalent to the transmitted value to the base station [15-17].

The contributions of this paper are as follows:

a) Development of a system that achieved integrity, confidentiality, certification, and non-repudiation in both single and logical steps.

b) Development of a system that allows propagation of messages by sensor nodes in identity-based cryptography to the internet hosts in a public key infrastructure.

c) It avoids applying data security algorithms for sensor data when the current sensor reading is equal to the value sent to the base station.

This paper is organized into sections. Section 1 is a preface where the problem and the most important goals have been defined. Second section went through the studies related to the problem and discussed strengths and weaknesses of it. Third section spoke about the proposed system and included code, a diagram and mathematical equation, and fourth section discusses results and comparing them to algorithms exist and the last part is significance of statement and conclusion.

2. EFFICIENT DATA COLLECTION AND DISSEMINATION (EDCD)

A study by Li, F., & Xiong developed a method called EDCD1 for reducing the number of data propagation and amount of data to ensure extension of the service life of the network [18-20]. The proposed EDCD1 was based on the relative difference between the measured transmitted values of the current sensor and the last sensor as defined in as shown in (1), where \(\beta \) is the maximum allowed differential value.

\[
F_S = \begin{cases}
1 & \text{if } R_f = \frac{|V(t) - V(t-1)|}{V(t-1)} > \beta, \text{1} \\
0 & \text{Otherwise}, \text{0}
\end{cases}
\]

(1)

Pseudo code for the EDCD1 algorithm as presented in [8]

EDCD1 Algorithm

Inputs:
\(V(t), V(t-1), \) and \(\beta \)

Output:
\(F_S \): the binary parameter to send data / not send data

Begin
Set \(V(t-1) \) ← last measuring value transmitted by the sensor
Read: the sensor value \(V(t) \) at t time
Set \(V(t) \) ← \(V \)

//Calculate the relative change \((R_f) \)
\(R_f = \frac{|V(t) - V(t-1)|}{V(t-1)} \)
If \(R_f > \beta \) Then
Set \(F_S = 1 \)
Else: Set \(F_S = 0 \)
End if

// The decision to send data
If \(F_S = 1 \) Then
\(\text{RFtransmit (ON)} \) // Send the new data
Else \(\text{RFtransmit (Off)} \) // No
End If
End Algorithm

The decision-making process in the EDCD1 relies on the relative difference value as shown in (1) based on a given threshold value of \(\beta \) for the update.
3. RSA ALGORITHM

The world today places much emphasis on data security owing to the advancement of the internet and the emergence of e-commerce, e-mail, online banking, and other services that have become a part of our daily lives. Despite the pleasure we derive from these services, they are also prone to privacy and security risks [21, 22]. As such, cryptography has been suggested as the ideal solution to these problems and many more [21, 23, 24]. Cryptography comes in different forms based on the number of keys employed; the three major categories of cryptography are:

a) Secret key cryptography: Both encryption and decryption processes are implemented using a single key.
b) Public key cryptography: A public key which is available to everyone is used for the encryption process while the decryption process requires a private/secret key which is available only to the intended recipient.
c) Hash functions: Here, an irreversible function is used to make information in the transmitted message un-retrievable from the original data; such systems are used mainly for securing data integrity [6, 25-28].

Pseudo code for RSA algorithm as described in [29]

RSA - Key generation
Select two distinct prime numbers p and q so that the product n = pq has the required length.
Calculate \(\varphi(n) = (p-1)(q-1) \).
Select a common exponent \(e, 1 < e < \varphi(n) \), which is relatively prime to \(\varphi(n) \), i.e., \(\gcd(e, \varphi(n)) = 1 \).
Calculate a private index \(d \) that satisfies \(d \cdot e \equiv 1 \pmod{\varphi(n)} \).

Make the public key \((n, e)\) available to others. Privacy values \(d, p, q, and \varphi(n) \).

RSA - Key generation
Rule - Encryption: ciphertext, \(c = \text{RSA Public}(m) = m^e \mod n, 1 < m < n-1 \)
Rule - Decryption: plaintext, \(m = \text{RSA Private}(c) = c^d \mod n \)
Inverse transformation: \(m = \text{RSA Private} \circ \text{RSA Public}(m) \)

4. THE PROPOSED MODEL

This section describes the proposed model. Figure 1 describes the general structure of the proposed model. The proposed model has two main stages: (i) EDCD1 and (ii) RSA. The steps of implementing the proposed model described in detail in the following pseudo code.
PROPOSED MODEL
START:
INPUT: Real-time sensor value $V(t)$,
SET:
$\beta = 0.01$, $P \leftarrow 33$ and $Q \leftarrow 54$,
APPLY EDCD1

\[F \leftarrow EDCD1(V(t), V(t-1)) \]

IF (F NOT Equal Zero) THEN
Encrypt the measured value by Apply RSA // Encryption measured data//
$C_{\text{rsa}} \leftarrow$ RSA ($V(t), P, Q$), $C \in \mathbb{R}^{2n}$
SEND Data Encrypted C_{rsa} TO the BS
Calculate the Energy consumption
SET $V(t) \leftarrow V(t-1)$
GO TO START
ELSE
No need to Encrypt the measured value
GO TO START
END IF
END ALGORITHM

5. RESULTS AND DISCUSSIONS
This section introduces the simulation and analysis study that used to test performance the proposed model. The assessment is based on numerous scenarios. The real-time data set used in this paper was extracted from the WSN deployment at Intel Berkeley Research Labs. Select a subset of this data set to evaluate the proposed model and MATLAB software was used for analysis. In this article, we assume that the cost of sending one byte is 59.2 uJ, as calculated for MICA2Dot mote.

The proposed model was evaluated in various scenarios as the follows, Figure 1 shown the Temperature sensor values in various forms floating point and integer, Figure 2 shown the Humidity sensor values in various forms floating point and integer and Figure 3 shown the Light sensor values in various forms floating point and integer. The parameters values set as shown in Table 1.

Figures 4, 5, 6 and 7 show the results of applying the provided model and RSA to real-time data sets with different types of sensors. It can be seen from the results that the proposed model shows better performance in terms of energy consumption. The total energy computations by applied RSA algorithm was higher than total energy computations by applied the proposed model in this article for all sensors temperatures, humidity, and light. The reason for that has RSA transmitted the chirper data for all samples which that increase the energy consumptions because the size of the cipher is such much large camper to the original data, especially for the sensors in floating point format as that clear from the results. For example, Figure 4 showed the cipher data for 3 samples for each value need 7 values after applied RSA to secure the transmitted data. Form the figure it observed that the cipher data2 and data3 are totally same, which that’s mean the sensor node will waste the energy to transmit same chipper data for two consecutive samples. Conversely, the proposed model able to prevent secure sensed data if no significant change between the current data and the last transmitted data by the apply EDCD1 algorithm.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost of sending one byte</td>
<td>59.2uJ</td>
</tr>
<tr>
<td>β</td>
<td>0.01</td>
</tr>
<tr>
<td>N the number of samples</td>
<td>500</td>
</tr>
<tr>
<td>q, p</td>
<td>37,51</td>
</tr>
</tbody>
</table>

Table 1. Parameters values

Figure 2. Temperature sensor values in various forms floating point and integer
Figure 3. Humidity sensor values in various forms floating point and integer
An efficient hybrid model for secure transmission of data by using efficient… (Mustafa Mahmood Akawee)
7. CONCLUSION

In this paper, we proposed an efficient hybrid model for secure data propagation from the sensor nodes to the receivers via IoT-WSN platforms. The proposed model includes two algorithms RSA and EDCD1. The key idea behind the proposed model is to prevent secure sensed data if no significant change between the current data and the last transmitted data by apply EDCD algorithm, which that will help in saving the sensor node energy. The reason for that the size of cipher data is so large compared to the sensed data, which that will increase the energy consumption. The outcome results shown that the proposed model has a high performance compared to RSA in term of energy consumption.

REFERENCES
An efficient hybrid model for secure transmission of data by using efficient… (Mustafa Mahmood Akawee)