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 Modern BigData data-intensive and scientific workload execution is 

challenging. The major issues are reliable processing, performance efficiency 

and energy efficacy perquisite of BigData processing framework. This work 

assume self-aware MC architectures that autonomously adjust or optimize 

their performance to accommodate users quality of service (QoS) 

performance requirement, job execution performance, energy efficiency, and 

resource accessibility. Extensive workload scheduling has been presented to 

minimize energy consumption in cloud computing (CC) environment. 

However, the existing workload scheduling model induces higher amount of 

interaction cost between inter-processors communications. Further, due to 

poor resource utilization, routing inefficiency these existing model induces 

higher energy cost and fails to meet workload QoS prerequisite. For 

overcoming research challenges, this paper presented quality and energy 

optimized scheduling (QEOS) technique for executing data-intensive 

workload by employing dynamic voltage and frequency scaling (DVFS) 

technique. Experiment outcome shows QEOS model attains good trade-off 

between system performance and energy consumption in multi-core cloud 

computing (CC) architectures when compared with existing model. 
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1. INTRODUCTION  

Cloud computing has been center of attraction for industry as well as academia purpose since it 

provides flexible computing model and business purpose, it mainly focus on the huge computing resource in 

distributed resource pool to achieve the large scale as well as efficient RU (resource utilization ) from 

internet using low maintenance cost and minimal platform management. Moreover, workflow is one of the 

common model for the data intensive applications and LS (large scale) scientific computing that runs on 

IAAS and these models are formed through the data dependencies and the number of task. Moreover, 

Workflow can be easily abstracted into the DAG (directed acyclic graph) where the edge denotes the 

dependencies among the task and node denotes the task itself. In addition, there has been numerous 

advantage of using the Cloud on workflows; some of the grid workflow such as ASKALON and Pegasus 

have already started supporting the execution of workflows on the Cloud Platforms. Furthermore, IAAS is 

cloud service model and it provides the customer with the preconfigured release or the provision abilities 

virtual machine from the given infrastructure of cloud. Customer can access the Virtual Machine also known 

as instance in unlimited computer resources and lower TCO (total cost of ownership) to compute the tasks 

https://creativecommons.org/licenses/by-sa/4.0/
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[1]. Normally the above-described service are considered under the SLA (service level agreement) and 

defines the QoS (quality of service) as well as the tenure. In addition, WFS (workflow Scheduling) is also 

considered the NP-complete problem and helps in finding the proper scheme for assigning the services/task 

in the MP (multi-processor) environment. The multi-core methodology describes a stage change in the 

quantity of processing cores accessible either in single gadgets or in firmly coupled environment [2]. Using 

methods and strategies obtained from the Network-on-Chip (NoC) [3], SoCs (system-on-chips) [4], FPGA 

[5], hardware extension such as Intel SGX [6] and graphical processing units (GPU) environment [7, 8], 

multi-core frameworks are probably going to considerably affect application advancement, pushing towards 

data flow computational and memory models. In the meantime, the traditional consideration of "a higher 

number of computational cores than processors" will be released or transformed, diminishing somewhat the 

multifaceted (complexities) nature of procedures, for example, fluctuation and power/heat dissemination, 

load balancing and task mapping etc. 

Moreover in process of workload scheduling, user have to submit their assigned job to the CS (cloud 

scheduler), at first CS inquires the CIS (cloud information service) to get the available resource status along 

with their attributes. Cloud Scheduler assigns the various user jobs to multiple VM (virtual machine). 

Meanwhile a fair scheduling improvises the cumulative throughput, TAT (turnaround time) and CPU 

utilization. In addition workload scheduling algorithm, performs on the various parameter in the various 

ways, it can be allocated statically to the various resources at the given compile time and can be allocated 

dynamically at the given run time. Moreover recent year have seen various research be performed in the 

homogeneous CE (computing environments). Furthermore, implied the GA (genetic algorithm) and brings 

the tradeoff in make-span time reduction and load balancing, however these two method i.e. [9, 10] failed to 

consider the energy optimization for the workload execution. This results in higher cost execution, moreover 

to address the reliable processing, efficient performance and energy efficiency for the Big Data frameworks. 

In [11] SMCF (self-aware multi-core framework) were considered which optimizes the performance and 

allow the processing in the dynamic environment in accordance with SLA or QoS, resource accessibility, 

performance requirement and energy constraint. In addition this method traverses right throughout the 

applications such as task mapping and scheduling to the for power gathering and on a similar fashion DVFS 

interconnects the manufacture such as DVFS and routing.  

Cloud computing is considered as the heterogeneous and distributed computation environment that 

comprises the various collections of data storage processing or VCM (virtual computing machine) along with 

the computing environment as well as strategies in the larger scale [12]. These strategies involves the 

expensive computational cost and directly affects the environment. The above scenario rises mainly due to 

the HED (higher energy dissipation) in various computational procedure and various storage [13]. Similarly 

[14] reports that super computer that comprises the 16,000 nodes and it consumes 17,808 KW power. 

Moreover, Energy Dissipation is the one of the issue, which influences the utilization, and improvisation of 

computational frameworks. Furthermore in heterogeneous environment priority bound task with the parallel 

applications are elaborated through DAG (directed acyclic graph), meanwhile DAG node elaborates the 

edges and jobs which again elaborates the messages the jobs [15-17]. In past several examinations have led to 

energy dissipations and at the same time it tries to fulfill the requirement or the SLA perquisite [18, 19]. 

However, the given examination has been confined to the other jobs; nevertheless, heterogeneous framework 

needs to be improvised regularly 

Scheduling task in various environment is considered to be the NP-Hard problems [20], several 

meta heuristic technique such as ACO (ant colony optimization), tabu search, GA (genetic algorithm), CRO 

(chemical reaction optimization) have been utilized in the SWS (scientific workflow scheduling) [21-23]. 

Meanwhile these methods produce the better optimization when compared with the heuristic approach, this 

occurs mainly due to the bad efficacy and poor FSC (frequent strategy computation) [24]. In [25], the focus 

was on the integrated pre- fetching model and workload scheduling in the MM (multimedia mobile) Cloud 

Computing to reduce the cost and enhance the response time performance to process the data (multimedia 

data). Moreover, the cost optimization and the response time are adapted along with various CR 

(computation resources) such as QSC (queuing stability constraints, workload conservation) and VM (virtual 

machine) allocation. Moreover, a heuristic technique is modelled to optimize the cost and response time. In 

[26], surveyed and observed that there are various challenges in the hybrid cloud environment is to deploy 

the novel application with minimal cost, various cloud providers and heterogeneous jobs. Moreover, here 

author introduced job scheduling technique for the heterogeneous workloads in the private cloud is adapted 

that tries to ensure the absolute resource utilization. Furthermore, task-scheduling technique based on the BP 

neural network in the integrated cloud and it is modelled to ensure that jobs can be completed in the given 

deadline. In [27] gives the two distinctive workload design in the HCE (hybrid cloud environment), here at 

first scheduling model is developed using the objective function Deadline Constrained–OH (optimization for 

hybrid clouds) to reduce the scheduling workflows cost under the given deadline constraint. Later they 
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presented multi-objective named MOH (multi-objective optimization in case of hybrid clouds) to optimize 

the cost and make-span workflows. The main disadvantage of these models that they were not efficient in 

energy reduction for the scientific workflow in heterogeneous environment. Meanwhile in IAAS cloud, users 

buys the cloud service that are given the service provider to perform the workflows. Moreover, given 

workflow is associated with low QoS (quality of service) that imposes penalties on SP (service provider). 

Furthermore, it is associated to match the deadline and ensures the QoS. Nevertheless SP (service provider) 

charges primarily based on the QoS and make-span. Hence, in order to ensure the make profitable and 

improvise QoS, cost reduction and make-span reduction has to be main goal for service provider. However, 

this workflow scheduling technique considers the fixed execution time in workflow application and their 

assumption is wrong most of the time in the real time scenario. Further CS (cloud server) supports DVFS 

(dynamic voltage frequency scaling) method and this was not considered by many WSM (workload 

scheduling model), hence ensuring the cost optimization and execution time optimization without any effect 

on resource utilization and system performance remains a major issue. For overcoming research issues, this 

paper presented a quality and energy optimized scheduling (QEOS) technique for executing data-intensive 

workflow under heterogeneous CC environment.  

The contribution of research work are as follows:  

a) This paper presented efficient workload scheduling technique that brings good tradeoff between 

minimizing energy consumption and processing time for executing data-intensive workflow under 

heterogeneous CC environment. 

b) The QEOS technique attain better performance than existing workflow scheduling model algorithm in 

terms of power consumption, processing time, and energy efficiency. 

The paper organization is as follows: The Section 2 presents quality and energy optimized 

scheduling technique for data intensive workflow application in heterogeneous CC environment. The result 

and analysis is discussed in Section 3. In last section, the research work is concluded. Along with, future 

work is discussed.  

 

 

2. QUALITY AND ENERGY OPTIMIZED SCHEDULING APPROACH FOR EXECUTING 

DATA-INTENSIVE WORKLOAD IN CLOUD COMPUTING ENVIRONMENT 

This section present quality and energy optimized scheduling (QEOS) technique for executing 

workload application in CC environment using DVFS technique based on distinct frequencies and their time 

slots for every VM. The algorithm of proposed QEOS model is described in Algorithm 1. 

 
Algorithm 1: Quality and energy optimized scheduling technique 

1. Fix (      )basic SLA constraints 

2. Fix (      
       ) Parameter processing of   VMs 

3. Fix (          
    )Parameter of channels processing of   VMs 

4. Collect    
5. Verify the attainable constraints in (15) and (16) 

6.     (        ,(    )   ( )
  - ) 

7.      (    ∑    
 
    ) 

8. if  (     )       
9.      (                        ) 
10. else 

11. Special optimization complexity : 

12.    (              ) 

13. subjected to: 

14. conditions in (8) and (11) 

15. end if 

16. return                 

 

First, this work present about the optimization of interaction cost using our QEOS technique. In 

QOES, virtual machine interacts with the scheduler via a traffic free reliable connection whose transmission 

rate (TR)    in bits per seconds where          , where   describes the virtual machines or server size, 

and   depicts the information block size. Let the connection is symmetric and bidirectional one. Moreover, 

let that one-way communication and switching process for     connection consumes a power   
   in watts. 

The consumed power can be  
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Where,   
  ( ) represents the consumed power through transmission and frequency switching 

whereas   
  ( ) represents power required by the receiver. The absolute power consumption   

   can be 

defined as the combination of switching power consumption, big error rate (BER) (noise occurred in the 

    connection) and required power for receiver. Further for reducing the interaction cost   
  , the 

information processing centers should use standard physical servers which can be connected via commodity 

superfast ethernet switching (ES) devices. Moreover, TCP/IP protocols can be utilized to achieve endwise 

reliable communication. This protocol helps to attain endwise reliable communication as well as can 

perfectly operate in presence of congestion/traffic. Therefore, interaction power consumption can be 

optimized in our framework using following equation 

 

  
  (  )      (   

̅̅ ̅̅    )
 
    

             (2) 

 

Where, 

 

     (  )
  .(    )

    √   ( )  /
 

             
(3) 

 

Where,      represents maximum size of the sector and   is the number of sector which is 

acknowledged. Here,    is the noise power ratio of gain to receiver of     endwise connection and    
̅̅ ̅̅  is the 

average time of round trip of     endwise connection which can be less than     for standard information 

processing centers.   
  Represents the cost of idle power for     endwise connection. Here, the respective one 

way communication delay can be represented using following equation. 
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(4) 

 

Therefore, the respective one way interaction energy    ( ) can be defined as in joule using following 

equation. 
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) 

(5) 

 

Here, the energy spend in endwise connection does not have any impact on energy computation cost 

and both are totally independent from each other.  

Further, the proposed QEOS technique helps to tune the task load portions precisely as *        
                  +, where   depicts for each virtual computing processor the number of 

frequencies grouped among highest and lowest frequencies,       describes the respective handled 

information in bits,   depicts the frequency number which will be in range of       . r size, and   depicts the 

information block size. Along with, the endwise connection information transmitting rates *     
       + which can be used to reduce the total computation, reconfiguration and interaction energy and 

can be defined in joule as, 

 

    ∑   ( )   ∑   ( )  ∑   ( ) 

 

   

 

 

   

 

   

 

(6) 

 

Where,    ( ) represents the reconfiguration cost of   ( ) for the permitted block processing and 

interaction time underneath     constraint   . The interaction energy consumption depends on one-way 

interaction delay * ( )          + which is occurred by endwise virtual connections. For DVFS 

technique, the functioning frequency for every VM lies in small range of distinct frequencies. The optimum 

functioning frequency can be selected by switching the CPU frequencies of VMs over a various range of 

possible time periods. However, due to the existence of distinct frequencies a non-convex problem can be 

occurred which can be sorted out as,  

Every VM switches from its current distinct frequency to succeeding distinct frequency to finish the 

task load. Thus, the time is distributed into     distinct indefinite time variables. Therefore, we have 
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known distinct frequencies for each VM whereas the corresponding time slots are unknown for each VM. 

Moreover, every component of time vector defines the time period length during which VM   process at the 

frequency   . System keeps the record of working servers so that it can assign next tasks to them which are 

coming from the gateway. This information is very essential to forward over all the information processing 

centers and servers so that the average energy consumption can be reduced by minimizing the execution 

time. Therefore, the above problem can be expressed in following form,  
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Where, it is subjected to,  
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Where, the above equation can be described as follows. The (7) defines the combined energy 

computation and interaction cost in which cost of switching frequencies from the arriving task load is also 

considered whereas (8) indicates that the summation of products of computing rates of each VMs of their 

respective time slots must be equal to the arriving task load   . Moreover, (9) and (10) presents a factor   
which represents the maximum time required for the processing. The total energy computation and 

interaction time underneath     constraint    can be distributed in two parts which is shown in, (9) and (10) 

respectively. Precisely, (9) represents the computational cost and (10) represents the interaction cost. Then, 

(11) represents that the volume of information transferred through information processing center should not 

surpass the total capacity of information network center. This equation provides endwise connection for the 

bandwidth load matching and also fine tunes VM bandwidth according to their given task load.  

To reduce the non-convex difficulty, we divide all three energy components into three different 

events such as computation cost, frequency reconfiguration cost and interaction cost. All three events can be 

scheduled separately to achieve an efficient scheduling as well as execution. Hence the energy consumption 

will be minimized. Therefore, the computational optimization problem can be defined as follows,  
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From the above observations we can consider that (12) is linear for a control parameter     and can 

be sorted out using the (8) and (9). Similarly, the interaction aware non-convex variables are    and 

      optimization problem can be defined as follows, 
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This interaction aware non-convex variables are    and       optimization problem can be sorted 

out using the (10) and (11) or the following (14) also can be a solution,  
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The optimization problem in (6) can be sorted out using following equation 
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Where, (15) and (16) are essential and suitable for the feasibility of optimization problem occurred 

in the (6). Now, for reconfiguration cost    ( ) can be divided into two parts as external and internal 

reconfiguration cost. First, the cost of distinct frequency changes from    to      . Where, in      factor   is 

the movement to outreach the following active distinct frequency for all   ( ). Second, to switch from one 

active distinct frequency of its respective time period to the following active distinct frequency of its 

respective time period for all   ( ). Hence, total internal switching cost and external switching cost to get 

updated reconfiguration cost all VMs can be defined as follows, 
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where     is the total number of active distinct frequencies for every   ( ).  
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(18) 

 

where    represents the first active distinct frequency in the following arriving task load. Therefore, 

all the energies are optimized as well as performance of the model also maintained at very high level. Hence, 

the tradeoff between performance and energy consumption can be achieved using our proposed QEOS 

approach which is experimentally proved below.  

 

 

3. RESULT AND ANNALYSIS 
This section presents experiment analysis of proposed QEOS workflow scheduling model over 

existing workflow scheduling model [12, 13, 23, 27]. The proposed and existing model are implemented 

using Java programing language. The cloudsim simulator is used for evaluating proposed QEOS and existing 

workflow scheduling model. For carrying out experiment Inspiral Workflow is used [23, 27]. The workflow 

scheduling of both proposed and existing model is executed on 64-bit quad core I-7 processor on window OS 

platform with 16 GB RAM. The performance of both proposed QEOS and existing workflow scheduling 

model is evaluated in terms of processing time and power consumption (i.e., energy efficiency). 

Figure 1 shows processing time performance outcome attained by proposed QEOS over existing 

DVFS based workflow scheduling model in terms of total processing time considering varied task/job size 

and virtual computing node for executing Inspiral workflow. The job size of Inspiral is 30, 50, 100, and 1000. 

From result attained it can be seen total processing time of existing workload scheduling method for 

executing scientific workflow Inspiral 30 is 4471.22 sec, Inspiral 50 is 23896.98 sec, Inspiral 100 is 51551.41 

sec and Inspiral 1000 is 153820.04 sec. Similarly, the total processing time of QEOS model for executing 

scientific workflow Inspiral 30 is 1344.12 sec, Inspiral 50 is 1419.89 sec, Inspiral 100 is 2563.76 sec and 

Inspiral 1000 is 11859.21 sec. From overall result attained it can be seen proposed QEOS reduce average 

total processing time by 87.82% when compared with existing workload scheduling model. 

Figure 2 shows performance outcome attained by proposed QEOS over existing DVFS in terms of 

total execution time considering varied task/job size and virtual computing node for executing Inspiral 

workflow. The job size of Inspiral is 30, 50, 100, and 1000. From result attained it can be seen average 

execution time of existing resource allocation model for executing scientific workflow Inspiral 30 is 149.04 sec, 

Inspiral 50 is 477.94 sec, Inspiral 100 is 515.51 sec and Inspiral 1000 is 153.82004 sec. Similarly, average 

execution time of QEOS for executing scientific workflow Inspiral 30 is 44.804 sec, Inspiral 50 is 28.3978 

sec, Inspiral 100 is 25.6376 sec and Inspiral 1000 is 11.85921 sec. From overall result attained it can be seen 

proposed QEOS reduce average execution time by 91.46% when compared with standard DVFS model. 
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Figure 1. Processing time QEOS over existing DVFS method using scientific workload inspiral 

 

 

 
 

Figure 2. Average processing time of QEOS over existing DVFS based workflow scheduling model for 

executing Inspiral workflow 

 

 

Figure 3 show performance comparison of average processing time attained by QEOS over existing 

workflow scheduling method [23, 27]. The average processing time of existing workflow scheduling method 

[23, 27] for executing scientific workflow Inspiral 30 is 206.78 sec, Inspiral 50 is 226.19 sec, Inspiral 100 is 

206.12 sec and Inspiral 1000 is 227.25 sec. From overall result attained it can be seen proposed QEOS reduce 

average execution time by 87.068% when compared with existing resource allocation model. 

 

 

 
 

Figure 3. Processing time of QEOS over existing workload scheduling model for  

inspiral workflow execution 
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Figure 4 shows performance outcome attained by proposed QEOS over existing DVFS in terms of 

average power consumption considering varied task/job size and virtual computing node for executing 

Inspiral workflow. The job size of Inspiral is 30, 50, 100, and 1000. From result attained it can be seen 

Average power consumption of existing resource allocation model for executing scientific workflow Inspiral 

30 is 19.146 watts, Inspiral 50 is 20.12 watts, Inspiral 100 is 20.39 watts, and 19.146 watts. Similarly, the 

QEOS for executing scientific workflow Inspiral 30 is 15.815 watts, Inspiral 50 is 15.901 watts, Inspiral 100 

is 15.9011, watts, and Inspiral 1000 is 15.81 watts. From overall result attained it can be seen proposed 

QEOS reduce average power consumption by 19.45% when compared with standard DVFS model. 

 

 

 
 

Figure 4. Average power comparison of QEOS over existing DVFS method using  

scientific workload Inspiral 

 

 

4. CONCLUSION 
Finding ways to allocate task loads to every embedded processor and effectively decrease energy 

consumption in each processor is of essential significance. Therefore, a solution to sort out the difficulties to 

achieve trade-off between performance and energy consumption for virtual machines in a cloud environment 

using a novel Quality and energy optimized approach based on Dynamic Voltage and Frequency Scaling 

technique is provided. Here modelling to solve optimization problem is presented which occurs in most of 

the existing state-of-art techniques. Methods to reduce task load and increase efficient resource utilization is 

also presented. The results are demonstrated in terms of processing time taken and reduction in power 

consumption required for processors. An average processing time performance improvement of 91.46% and 

87.068% is attained by QEOS over DVFS and existing workflow scheduling model, respectively. Similarly, 

average power consumption reduction of 19.45% is attained by QEOS over DVFS based workflow 

scheduling model. From overall result attained it can be seen proposed attain good tradeoffs between 

minimizing energy consumption and meeting SLA of workload execution. Future work would further 

consider performance evaluation considering varied workflow. Along with, would further improve the 

resource utilization of proposed scheduling model by reducing I/O overhead by better utilizing cloud 

resources. 
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