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 University course timetable problem (UCTP) is one of the problems on 
which many researches have been conducted over the years because of its 
importance in academic institutions. A nature-inspired metaheuristic 
optimization algorithm, flower pollination algorithm (FPA) has been 
adapted, so-called adapted FPA (AFPA), to cope with UCTP in the previous 

work. However, AFPA suffers from the stagnation problem because of  
the non-diversity in the population. To improve the diversity of  
the population, this work introduces new Hybrid FPA with two variants: 
JFPA provided the Jaccard index to determine similarities among categorical 
data and the greedy selection mechanism to improve the selection of  
the random solution, and DFPA applied the navigational characteristics of 
the dragonfly algorithm (DA) to help in the neighborhood relationship.  
The results in this study indicate that the proposed algorithms have better 

exploration ability and fast convergence rate in comparison to previous 
approaches; JFPA outperforms AFPA in 3 out of 4 datasets for both small and 
large datasets, and DFPA outperforms AFPA and GA in all datasets while it 
outperforms PSO in 3 out of 4 small datasets and 2 complex large datasets. 
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1. INTRODUCTION 

In each academic semester, universities or colleges must face the problem of scheduling their 

resources. The scheduling problem is a broader class of combinatorial optimization problems of allocating 

resources to events. One typical scheduling problem is the timetable problem. Timetable scheduling is 

considered a difficult problem because they are made complicated by the variations in the constraints and due 

to the nature of the problem to solve. In solving optimization problems, the major goal is to search the best 

possible way to find the optimum solution, and the searching process should be completed in the shortest 

amount of iteration or shortest possible time. This paper focuses on automatically solving the university 
course timetable (UCTP) in the optimal time because traditionally academic institutions manually solve 

timetable problems, which takes days or weeks to satisfy the constraints and comply with the nature of  

the problem. The problem consists of assigning appropriate courses to lecturers and other resources  

(room, day and time) while maximizing given constraints. The proposed solution should satisfy both hard 

and soft constraints. Hard constraints are constraints that must be satisfied no matter what to obtain a feasible 

timetable. There are two main hard constraints: lecturer constraint and scheduling constraints.  

Lecturer constraint implies that a lecturer can teach a subset of courses. Scheduling constraints imply that 

two or more courses cannot be assigned to a lecturer at the same time, and two or more courses cannot be 

assigned to the same room at the same time. Soft constraints, on the other hand, are desired to be satisfied 
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only, but if done so, it does not stop the timetable from being a valid solution, such soft constraint included in 

this study is to include the minimum or maximum number of courses should be taken or the total number of 

teaching load assignments a lecturer is allowed. 

The existing solution techniques for timetable problems range from the manual generation of  

a timetable [1] to metaheuristic algorithms. The manual generation of the timetable is tedious and  

time-consuming and it does not guarantee that an optimal course timetable has been generated.  

Meta-heuristic algorithms, on the other hand, can find good solutions with less computational effort 

compared with traditional techniques. Metaheuristic algorithms such as genetic algorithm (GA) and particle 

swarm optimization (PSO) have been reported to be able to solve many optimization problems. GA was first 

used for a timetabling problem in 1992 [2] and has been applied to various scheduling problems [3-6].  

PSO has ties with genetic algorithm and evolutionary algorithms [7] and has been used also for solving  
the various timetabling problems [8-10]. FPA is another meta-heuristic algorithm introduced to solve general 

optimization problems like finding solutions for mathematical equations [11]. It has been formulated for 

multi-objective optimization applications by mimicking the pollination process of flowering plants [12].  

It has enticed the interest of several researchers because of its characteristics; like it uses fewer parameters 

and has shown good results when applied to various optimization problems. In the survey study of [13],  

they found out that the number of parameters can affect the complexity of an algorithm. Another similar 

survey study on metaheuristic algorithms that have adopted a large number of parameters can be  

a disadvantage because it requires that the parameters used must be tuned for the optimal task [14].  

FPA was originally designed to solve continuous optimization problems, by modifying the FPA;  

it is possible to solve a subset of the UCTP problem and promising results proves that FPA can be used 

effectively to solve a combinatorial problem like UCTP [15]. FPA also suffers from a lack of a good balance 
between exploration and exploitation optimization process which may lead to a non-diverse population.  

A lot of researchers have proposed various strategies to enhance FPA performance and its implementation to 

various optimization problems; a study on flexible job shop scheduling problems wherein the crossover 

operator of GA and tabu method are applied to enhance the search capability of FPA [16]. Another study 

shows that when FPA is combined with other algorithms, it can outperform the combined algorithm and can 

improve its speed and convergence rate [17]. Because the population size may affect the results of  

the generation of the population, mutation operators were introduced in FPA [18]. Another study that 

suggests that FPA’s performance can be improved by introducing the clonal operator from the Clonal 

Selection Algorithm (CSA) and replacing the levy flight using the uniform random distribution to improve 

the global pollination process and continuous checking of the best solution can avoid being trapped in local 

optima [19]. In the survey study on metaheuristic algorithms [14] also concluded in their findings that 

applying a combination of two metaheuristics can improve another metaheuristic algorithm’s performance. 
To the best of our investigation, the majority of the studies presented for solving optimization problems using 

FPA are applied to engineering and industry-related problems [20-23]. Despite the enhancements and related 

works on FPA mentioned in this study, FPA has certain limitations or issues: FPA cannot deal directly with 

combinatorial problems like UCTP, the exploration ability of FPA is dependent on the levy flight which can 

be aggressive and can cause large steps and a non-diverse population may lead to local optima and  

the parameter settings in an FPA may affect also the performance of the algorithm. 

The main contribution of this paper is to design and develop two new hybrid flower pollination 

algorithms: JFPA and DFPA, which improve the performance of adapted-flower pollination (AFPA) 

algorithm [15] in solving the lecturer-course assignment problem and extend our work to solving university 

course timetable problem (UCTP). AFPA has demonstrated that FPA can be adapted to solve a combinatorial 

problem. However, according to our observation, AFPA has limitations. It suffers from a non-diverse 
population when the population is too similar that may result in a low convergence rate or being restrained to 

the local optima. Another possible cause of the lack of diversity in the population is the ineffectiveness of  

the parameter settings. To overcome the limitations of AFPA, the two hybrid FPA algorithms: JFPA and 

DFPA, which are capable of diversifying the population, are introduced. A similarity factor is proposed in 

JFPA to facilitate the searching process when comparing data. This factor helps control diversity by 

measuring the similarity and dissimilarity of two individual solutions in addition to traditional fitness  

value [24]. Since the individual genomes of UCTP are presented as a categorical data, we introduced  

a Jaccard index to find the similarities of categorical data. Therefore, JFPA takes into account not only  

the fitness of the individual solutions but also the diversity among them. To improve the selection of  

the random solution in the local pollination a selection factor is embedded also in JFPA. According to [25] 

algorithms diversity problem occurs if the algorithm’s optimization process cannot balance between 

exploration and exploitation. A good balance between exploration and exploitation is another important 
criterion for the performance of the algorithm [14]. Another reason for a non-diverse population is that  

the parameter choice can influence the algorithm’s performance [26]. To balance AFPA’s exploration and 

exploitation process, the other proposed algorithm DFPA utilizes the navigational behavioral characteristics 
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of the Dragonfly algorithm that mimics the swarming behaviors of dragonflies, which are similar also to  

the exploration and exploitation phases of optimization [27-29]. 

 

 

2. RESEARCH METHOD 

2.1.   The adapted FPA (AFPA) 

AFPA introduced in [13] aims to solve the lecturer-course assignment, which is considered as  

a combinatorial problem. It provided a discrete representation of the solution by defining the position of  
the flowers as a combinatorial set of resources assigned to an event. For the flower pollination process, it presents 

the redesigning of the step size or the scaling factor for updating the candidate solutions position. Also, it applies 

the GA operators to provide the flower constancy operators. The pseudocode of AFPA is given in Figure 1.  

In generating the initial population (line 1), the AFPA randomly assigns the resources to events like in the case of 

assigning courses to the lecturer and assigning room, day, and time to the course-lecturer assignment. Then,  

the algorithm utilizes the selection operator in getting the fittest flower solution (Xbest), the current flower solution 

(Xi t), and a random flower solution in the current iteration (Xj). Mutation (lines 10 and 22) and crossover (lines 12, 

14, 16, 24, 26, and 28) operators of the GA are used as the flower constancy operators of AFPA. 

 

 
1 Initialize a population of n flowers/pollen gametes with random solutions  
2 Find the best solution Xbest in the initial population 
3 Define a switch probability p ϵ [0,1] 
4 WHILE (t < maxgeneration) 
5   FOR i=1: n 
6    IF (rand<p) THEN 
7    DO global pollination  

8    gp=fv(Xbest )fv(Xi t) 

9     IF (gp<pr1) THEN 

10      Xi t+1=mutationOneClass (Xi t) 

11     ELSE IF (gp<pr2) THEN 
12      Xi t+1=crossOverHalfWorkload(Xi t, Xbest) 

13     ELSE IF (gp<pr3) THEN 

14      Xi t+1=crossOverHalfnWorkload(Xi t, Xbest) 
15     ELSE  
16      Xi t+1=crossOvernWorkload(Xi t, Xbest) 
17     ENDIF 
18    ELSE 
19    DO local pollination  

20    lp=fv(Xj t)fv(Xi t) 

21     IF (lp<pr1) THEN 

22      Xi t+1=mutationOneClass (Xi t) 

23     ELSE IF (lp<pr2) THEN 

24      Xi t+1=crossOverHalfWorkload(Xi t, Xj) 

25     ELSE IF (lp<pr3) THEN 

26      Xi t+1=crossOverHalfnWorkload(Xi t, Xj) 
27     ELSE  

28      Xi t+1=crossOvernWorkload(Xi t, Xj) 
29     ENDIF 
30    END IF   
31    IF (fv(Xi t+1)>fv(Xi t)) THEN 
32      fv(Xi t)=fv(Xi t+1) 

33    Find and update the best solution Xbest  
34   END FOR 
35 END WHILE 

 
Figure 1. Pseudocode of AFPA 

 

 

The random value rand and the switch probability p are used to control the switching between the global 

and local pollination process, and at the same time determine the flower constancy operation that the individual 

flower serves (line 6). The fitness value fv as shown in 1 is derived by getting the number of violations in satisfying 

the constraints for each solution; the anticipated result equal to 1.0 indicating an optimal solution in the population. 
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fv = (1.0 – (
𝛴𝑡𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡

𝑡𝑐𝑜𝑢𝑟𝑠𝑒
))  (1) 

 

During global and local pollination, the step size for both pollination gp (line 8) and lp (line 20) is 
derived by getting the difference of the fitness values of two flower solutions; a set of parameters pr1, pr2, 

and pr3 are used to determine how AFPA will behave, in other words, selecting a GA operator for 

pollination. AFPA has some drawbacks in getting the algorithm stuck in local optima since the FPA has  

the weakness of having to use a diverse population; in particular, both local (line 19) and global processes 

(line 7) use the same scaling factor. To solve this diversity problem, we should provide a good balance 

between the global and local process during the search process. 

 

2.2.  Variations of FPA for UCTP 

To address the limitations of AFPA as discussed in the previous section, this work proposes two 
hybridizations of AFPA: hybrid AFPA with similarity index using Jaccard index and selection factor (JFPA) 

and hybrid AFPA with navigational characteristics of the dragonfly (DFPA). JFPA applies the Jaccard index 

as another scaling factor to enhance the local pollination process. Jaccard index provides the similarity 

measurement of the information contained for each flower solution. This scaling factor dictates how the local 

pollination will behave and this helps the pollination process the chance that flower solutions may have  

the best information to exchange. The selection factor helps improve the selection of the best random flower. 

The pseudocode of JFPA is given in Figure 2. 

 

 

1 Initialize a population of n flowers/pollen gametes with random solutions  

2 Find the best solution Xbest in the initial population 

3 Define a switch probability p ϵ [0,1] 
4 WHILE (t<maxgeneration) 
5   FOR i=1: n 
6    IF (rand < p) THEN 
7     DO global pollination  

8     gp=fv(Xbest )fv(Xi t) 

9     IF (gp≤pr) THEN 

10       Xi t+1=mutationOneClass(Xi t) 
11     ELSE  

12       Xi t+1=crossOverHalfWorkload(Xi t, Xbest) 
13         ENDIF 
14    ELSE 
15     DO local pollination  
16     Randomly choose Xj using the selection factor 

17     lp=sf(Xj, Xi) // using Eq. 2 

18     IF (lp>sim_th) THEN 

19      Xi t+1=mutationOneClass (Xi t) 
20     ELSE  
21      Xi t+1=crossOverHalfWorkload(Xi t, Xj) 
22     ENDIF 
23    END IF   

24    IF (fv(Xi t+1)>fv(Xi t)) THEN 
25      fv(Xi t)=fv(Xi t+1 ) 
26     Find and update the best solution Xbest 

27   END FOR 

28 END WHILE 

 

Figure 2. Pseudocode of JFPA 

 

 

During global and local pollination, the gp and lp are used to derive the step size of  

the pollination; gp uses the fitness value to determine the step size of the pollination (line 8), and lp uses  
the similarity factor to determine the step size of the pollination (line 17). The similarity factor sf is  

defined in (2). 

 

𝑠𝑓 =
𝑑

(𝑏+𝑐+𝑑)
, (2) 
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where d are those instances where Xi and Xj both have a value of 1, b are those instances where the attribute 

of Xi is 0 and the attribute of Xj is 1 and c are those instances when the attribute of Xi is 1 and the attribute of 

Xj is 0. Also, the parameters pr and sim_th are used to select a GA operator (swap mutation or a crossover) 

for pollination. It should be noted that JFPA excludes some operators of AFPA: crossOverHalfnWorkload() 

and crossOvernWorkload() because based on the experimental results observed, these operators do not help  

a lot in providing a diverse population. 

For DFPA, neighborhood selection is important because it will improve search efficiency and 

increase population diversity. To accomplish this DFPA embeds the DA’s navigational behavior with FPA 
and also divides the population into a set of subpopulations by finding the similarity between all solutions to 

distribute the solutions into different neighbors. As shown in Figure 3, the algorithm initially finds  

the similarity of the solutions to create or update the radius of the clusters or neighbors (lines 7 and 8). 

During global and local pollination, the update of the new flower solution Xi t+1 depends on the neighborhood 

relationship of Xi. If Xi has neighbors, then both the direction X, and the position of Xi are updated  
(lines 14 and 21). Otherwise, only the position is updated. 

 

 
1 Initialize a population of n flowers/pollen gametes with random solutions  
2 Find the best solution Xbest in the initial population 

3 Define a switch probability p ϵ [0,1] 
4 Determine how many clusters Cn  

5 WHILE (t<maxgeneration) 

6   Randomly select the vector or center point for each cluster C1, C2, …, Cn  
7   Determine the similarity values sv(Xi) in C1, C2,…, Cn  
8   Update the neighboring radius by assign Xi to a cluster Ci  
9   Determine the Xbest, Xworst, Xflowbest  
10   FOR i=1:n 

11       IF (rand <p) THEN 
12        DO global pollination  
13        IF the Xi has at least one neighbor  

14  Update X i t+1 and X i t+1//using 8 and 9, respectively 
15  ELSE  

16  X i t+1=mutationOneClass (Xi t) 
17  END IF 
18       ELSE 
19  DO local pollination  
20  IF the Xi has at least one neighbor  

21          Update X i t+1 and X i t+1//using 8 and 9, respectively 

22  ELSE 
23  X i t+1= mutationOneClass (Xi t) 
24  END IF 

25       END IF 
26       IF (fv(Xi t+1)>fv(Xi t)) THEN 
27  fv(Xi t)=fv(Xi t+1) 
28   END FOR 

29 END WHILE 

 

Figure 3. Pseudocode of DFPA 

 

 

Due to space limitation, we do not provide the traditional operators of DA, but it can be referred to 

in [27]. Dragonfly Algorithm (DA) updates the direction and position of the individual flowers depends on 

five navigational behavioral characteristics of the dragonflies: separation S, alignment A, cohesion C, 

attraction F, and destruction E as determined in 3–7, respectively. The Separation S operator provides 

collision avoidance of the solutions found in the neighbor, and each neighbor avoids colliding with others in 
the neighborhood by determining the similarity of their solutions. This operation will be repeated between Xi 

and its entire neighbor Xj. If similarity value sv(Xi, Xj) is greater than 0.5, then perform the 3. 

 
S = crossoverHalfWorkloadSwap (𝑋𝑖 , 𝑋𝑗), (3) 

 

where crossoverHalfWorkloadSwap(Xi, Xj) selects randomly half of the genomes from the workload from Xi’s 

neighbor Xj and if they are found in Xi, then they are swapped. 4 provides the Alignment A operator to ensure 
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that solutions are moving towards the same best flower solution in the neighborhood, wherein the information 

from the best flower Xflowbest in the current cluster is shared with the current flower Xi of the same cluster. 
A = crossoverHalfWorkloadA(𝑋𝑖 , 𝑋𝑓𝑙𝑜𝑤𝑏𝑒𝑠𝑡), (4) 

 

where crossoverHalfWorkloadA(Xi, Xflowbest) selects randomly half of the genomes from the workload from 

the best solution Xflowbest in the neighborhood and locates the occurrence in Xi, and replace half of the genomes 

at the same random position as indicated in Xflowbest. 5 provides the Cohesion C operator, it maintains a form of 
neighborhood, all the solutions in the same neighborhood exchange information. 

 

C = crossoverHalfWorkloadC(𝑋𝑖 , 𝑋𝑗),  (5) 

 

where the crossoverHalfWorkloadC(Xi, Xj) selects randomly half of the genomes from the workload from  

the neighborhood Xj and locate the occurrence in Xi, and replaces half of the genomes at the same random 

position as indicated in Xj. 6 provides the Attraction F operator crossover, ensures that the current flower 

solution Xi tends to move towards the food source or the best flower Xbest in the entire population by 

exchanging information from the best flower in the entire population. 

 

F = crossoverHalfWorkloadF(𝑋𝑖 , 𝑋𝑏𝑒𝑠𝑡), (6) 

 

where crossoverHalfWorkloadF(Xi, Xbest) selects randomly half of the genomes from the workload from  

the best flower Xbest in the population and locate the occurrence in Xi, and replaces half of the genomes at  

the same random position as indicated in Xbest 7 provides the Destruction D operator; it ensures that  

the current flower solution is kept away from the worst solution. 

 

D = crossoverHalfWorkloadRandomSwap(𝑋𝑖 , 𝑋𝑤𝑜𝑟𝑠𝑡), (7) 

 

where crossoverHalfWorkloadRandomSwap(Xi, Xworst) selects randomly half of the genomes from  
the workload from the worst solution Xworst in the population and if they are found in Xi then they are 

swapped by selecting a new random genome in Xi. During the global and local pollination, the X serves as 
step vector for modifying direction of the flower solutions as shown in 8, and the new position of Xi of  

the flowers can be derived in 9. 
 

∆𝑋𝑖
𝑡+1 = 𝑆𝑖 + 𝐴𝑖 +𝐶𝑖 +𝐹𝑖 +𝐸𝑖   (8) 

 

𝑋𝑖
𝑡+1 =  𝑋𝑖 + ∆𝑋𝑖

𝑡+1  (9) 

 

 

3. RESULTS AND ANALYSIS 

To assess the performance of the proposed improvements of FPA, we compared the results with 

other meta-heuristic algorithms: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).  

The performance of the algorithms was examined concerning different levels of constraint complexity from 

low to high. We provided four sets of constraints with complexity equal 10%, 30%, 50%, and 60% for  

the lecturer-course assignment, respectively; the lower the complexity of the problem was, the higher  

the percentage of feasible courses that a lecturer could teach to. The dataset consists of two categories: one 

for small scale sample size (60 courses offered in a semester, 15 lecturers), and another one for large scale 

sample size (200 courses offered in a semester, 50 lecturers), and a set of constraints. For each test,  
the maximum iteration numbers were set to 1000 and 3000, respectively; the numbers of population n were 

set to 10, 50 and 100, respectively. The results are evaluated in terms of the following: fitness value,  

max generations or iterations, how the sizes of the datasets affect the performance of the algorithm,  

how the population can affect the performance in terms of complexity, and how the complexity constraint 

can affect the behavior of the algorithm. 

Tables 1 and 2 summarize the convergence rate of the 3 benchmarked algorithms: GA, PSO,  

and AFPA, and the two proposed algorithms: JFPA and DFPA. It should be noted that the numbers listed in 

Tables 1 and 2 are the maximum fitness value (fv) generated at the corresponding iteration (gen). The results 

that are optimal for each test case are highlighted in bold to help display the best approach. Experiment 

results in Tables 1 and 2 shows that DFPA tends to find the optimal solution faster than the benchmarked 

algorithms and of the other proposed algorithm JFPA at higher complexity. We further perform the detailed 

analysis and comparison of the 4 algorithms: PSO, AFPA, JFPA, and DFPA as depicted in Figure 4 to 23.  
It is remarked that the experimental results of GA are excluded from the analysis and comparison because it 

does not reach the global optimal value (fv=1.0). 
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Table 1. Summary of fitness value and generation number (small scale dataset) 
Pop 

Size 

Complexity 

Level 

GA PSO AFPA JFPA DFPA 

FV Gen FV Gen FV Gen FV Gen FV Gen 

10 

10 1.00 707 1.0 18 1.00 22 1.0 23 1.0 14 

30 0.88 199 1.0 52 1.00 175 1.0 110 1.0 56 

50 0.70 860 1.0 332 1.00 360 1.0 335 1.0 191 

60 0.58 979 1.0 632 1.00 932 1.0 554 1.0 587 

50 

10 1.00 117 1.0 2 1.00 4 1.0 4 1.0 2 

30 0.90 121 1.0 40 1.00 122 1.0 63 1.0 42 

50 0.73 115 1.0 295 1.00 210 1.0 299 1.0 147 

60 0.62 129 1.0 497 1.00 506 1.0 356 1.0 293 

100 

10 1.00 53 1.0 1 1.00 2 1.0 1 1.0 1 

30 0.93 789 1.0 19 1.00 52 1.0 52 1.0 34 

50 0.77 316 1.0 154 1.00 199 1.0 169 1.0 132 

60 0.65 337 1.0 488 1.00 338 1.0 295 1.0 252 

 
 

Table 2. Summary of fitness value and generation number (large scale dataset) 
Pop 

Size 

Complexity 

Level 

GA PSO AFPA JFPA DFPA 

FV Gen FV Gen FV Gen FV Gen FV Gen 

10 

10 0.97 12 1.00 97 1.00 495 1.0 433 1.0 127 

30 0.80 2256 1.00 527 1.00 1343 1.0 885 1.0 768 

50 0.62 1062 1.00 1813 1.00 2362 1.0 2119 1.0 1676 

60 0.52 838 0.98 1822 0.98 2709 1.0 2784 1.0 2776 

50 

10 0.98 2751 1.00 65 1.00 349 1.0 287 1.0 98 

30 0.82 742 1.00 417 1.00 954 1.0 789 1.0 516 

50 0.64 1600 1.00 1483 1.00 1964 1.0 1925 1.0 1188 

60 0.53 873 0.99 2662 0.99 2852 1.0 2572 1.0 2615 

100 

10 0.98 1773 1.00 40 1.00 293 1.0 212 1.0 69 

30 0.83 430 1.00 235 1.00 754 1.0 748 1.0 375 

50 0.66 314 1.00 1197 1.00 1686 1.0 1883 1.0 824 

60 0.56 2035 0.99 2545 0.99 2642 1.0 2836 1.0 1995 

 

 

Figures 4 to 6 show a comparison of how the algorithms behave (complexity behavior) for small dataset; it 

can be observed in the results that increasing the population size improves the convergence (less number of iterations. 

DFPA tends to improve its number of iterations despite increasing the level of complexity and since the iterations are 

improving in DFPA it also finds the optimal solution faster than the benchmarked algorithms and of JFPA. 
Figures 7 to 9 show that the PSO and AFPA suffers when it is tested on large data set, both algorithms 

were not able to achieve the global optimum value (fv=1.0) in the most constraint complexity level (60%); 

increasing the population size did not improve the number of iterations (decreasing), and increasing the number of 

iterations did not also help in achieving the maximum value. DFPA, on the other hand, increasing the size  

of the dataset and increasing the constraint complexity level tend to improve the number of iterations;  

as the population size is increased, DFPA can find the maximum value faster than the benchmarked algorithms. 

 

 

  
 

Figure 4. Complexity behavior 

(small scale data set, population size=10) 

 

Figure 5. Complexity behavior 

(small scale data set, population size=50) 

 
 

The results can be showed in Figures 10 to 13 that the population size influences the algorithm’s 

performance as indicated by the number of iterations. Increasing the population may help, but when the complexity 

constraints are added, it may not help improve the number of iterations as the complexity level is increased. For all 
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the test results shown in Figures 10 to 13, DFPA performs better whether its population size and complexity level 

are increased. As indicated, it has less iteration compared with the algorithms mentioned in the figures. 

  

  

 
 

Figure 6. Complexity behavior (small scale data set, population size=100) 
 

 

  
 

Figure 7. Complexity behavior 

(large scale data set, population size=10) 
 

 

 

Figure 8. Complexity behavior 

(large scale data set, population size=50) 

 

 

 
 

Figure 9. Complexity behavior (large scale data set, population size=100) 
 

 

  
 

Figure 10. Algorithms behavior for various 

population sizes–complexity level=10 

(small scale data set) 

 

Figure 11. Algorithms behavior for various 

population sizes–complexity level=30 

(small scale data set) 
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Figure 12. Algorithms behavior for various 

population sizes–complexity level=50 

(small scale data set) 

 

Figure 13. Algorithms behavior for various 

population sizes–complexity level=60 

(small scale data set) 
 
 

One way to test the performance of the algorithm for various population sizes is to test whether  
the size of the dataset affects its performance. Results in Figures 14 to 17 shows that a large dataset may 

affect the performance of the algorithm as indicated by a higher number of iterations required to reach  

the global maximum value. It should be addressed that in Figure 17 PSO and AFPA did not provide an 

optimal solution for the large scale dataset with complexity level equal 60 (as referred in detailed result in 

Table 2), therefore, the figure shows the maximum number of iteration that they can achieve their highest 

fitness values (less than 1.0). The dash bar in Figure 17 indicates non-optimal results (fv<1.0). Increasing  

the size of the population may help achieve the optimal solution, but it requires several iterations. It can also 

be observed from the test results that increasing the population size may not help at all some algorithms (PSO 

and AFPA) achieve the optimal solution because of the constraint complexity. Despite the constraint factor in 

improving the results by increasing the population, among the algorithms presented in the Figures, DFPA 

provided better results in the most constraint complexity level. Referring to the results in Tables 1 and 2, 
Figures 4 to 17 it can be observed that increasing the population size significantly improves the number of 

iterations, and referring to Table 2, increasing also the number of iterations allows the algorithm to achieve 

the maximum fitness value for large scale dataset. It has been observed in Figures 10 to 16, increasing  

the population size increases the chance of finding the optimal solution. However, for some algorithms (PSO 

and AFPA) increasing the population size may not improve the solution or the convergence rate because 

population size depends on other parameters like the difficulty of the problem or the complexity level. Also, 

increasing the number of iterations did not make some algorithms (PSO and AFPA) to find the maximum 

fitness value in the large scale dataset especially for the most complex dataset. 

The performance of an algorithm can be tested in terms of the execution time. Figures 18 to 20 

describe the performance of the algorithms for small scale data set at 1000 iterations. In particular,  

increasing the population size will result in an algorithm’s execution time longer. Increasing the population 

size and increasing the complexity level tend not to improve the execution time. The two proposed  
two-hybrid FPA relatively takes a longer time compared with the AFPA, this is due to the additional 

operations to be performed during local pollination in JFPA, and as the optimization progresses in DFPA 

there is a constant update of the neighborhood in both local and global pollination. 

 
 

  
 

Figure 14. Algorithms behavior for various 

population sizes–complexity level=10  

(large scale data set) 

 

Figure 15. Algorithms behavior for various 

population sizes–complexity level=30  

(large scale data set) 
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Figure 16. Algorithms behavior for various 

population sizes–complexity level=50 

(large scale data set) 

 

Figure 17. Algorithms behavior for various 

population sizes–complexity level=60 

(large scale data set) 

 

 

  
 

Figure 18. Execution time 

(small scale data set, population size=10) 

 

Figure 19. Execution time 

(small scale data set, population size=50) 

 

 

 
 

Figure 20. Execution time (small scale data set, population size=100) 

 

 

Another way to test the performance of the algorithm in terms of the execution time is for various 

population sizes is to test whether the size of the dataset affects its performance. Results in Figures 21 to 23 
shows that a large dataset may affect the execution time as indicated by the higher number of the execution 

time. Generally, increasing the population size as well as the size of the data and the number of iterations can 

increase the execution time for all algorithms. The two proposed two-hybrid FPA relatively takes a longer 

time compared with the AFPA; this is due to the same reason as stated in Figures 18 to 20. 
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Figure 21. Execution time 

(large scale data set, population size=10) 

 

Figure 22. Execution time 

(large scale data set, population size=50) 

 

 

 
 

Figure 23. Execution time (large scale data set, population size=100) 

 
 

3.1.   Parameter tuning of FPA 

The behavior of the original FPA is determined by the number of flowers in the population n,  

switch probability p, scaling factor, step size , and the number of iterations i. In this study we fix the value 

of the switch probability (0.80), for the scaling factor we applied the Jaccard index to enhance the local 

pollination process in JFPA, and to increase the diversity of the population; we applied DA’s navigational 

behavior with DFPA. For the size of the population and the number of iterations parameters, we tried 

different values. By providing different values for the population size and the number of iterations allows us 

to test if increasing the population size can improve the algorithm’s performance. Referring to the results in 

Tables 1 and 2, it can be observed that increasing the number of population size, it helps the performance of 

the algorithm even in the most constraint complexity level. It can be seen also in Figures 4 to 17 that using  

a different scaling factor helped the algorithm exchange the best information. 
 

 

4. CONCLUSION 

In the previous work Adapted-FPA (AFPA), FPA has been modified to address the limitation of FPA to 

solve combinatorial problems. However, when solving constrained problems, FPA suffers from slow convergence 

and easy to fall to local optima because of the diversity problem. This happens when the solutions generated are 

too similar. Another cause of the diversity problem is the ineffectiveness of the parameter settings applied. To cope 

up with the observed limitation in AFPA, our work proposed Hybrid AFPA with two improvements. In JFPA,  

the algorithm firstly improved the diversity of the population by introducing the Jaccard index in the local 

pollination process a strategy that can measure the similarity of the solutions for categorical datasets.  

In the previous work of AFPA, the fitness value was used as the scale factor to determine the similarity of the 
solutions. However, this is not a feasible measurement or parameter when determining the similarities for 

categorical data; this technique gives the local pollination a better judgment on how the solutions are similar. 
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Another improvement included in the JFPA is applying a selection factor that allows the selection of the local 

pollination for the best random flower. Therefore, JFPA can ensure that only the best random flower is used in  

the pollination process. As a result, this gives a chance that using the best random flower will also produce better 

new solutions. Another improvement is by improving the exploration and exploitation process of the AFPA, 

wherein we applied the navigational characteristics of the DA, which provides the DFPA a selection mechanism 

for making sure that solutions in the same neighborhood do not collide with each other, and is moving towards  

the best solution and avoiding worst solution. Likewise, the similarity factor is also used to provide  

the neighborhood solution to distribute the solutions into different solution subsets. 

The results in both Tables and Figures 4 to 17 show that both JFPA and DFPA outperform AFPA, 

DFPA’s performance proves its ability to adaptively search the solution space for the most promising 

solution for solving UCTP when compared to similar approaches and better than the other variants of  
the AFPA. DFPA converges faster but has a higher execution time compared with AFPA and JFPA as 

reported in Figures 18 to 23. It can be also considered that execution time is affected by several factors,  

such as algorithms can work differently on different input size or the size of the data, CPU waiting time and 

other programs that might be running in parallel. Our future work will focus on improving the performance 

of Hybrid FPA by further researching on developing the parallel version of the Hybrid FPA to speed up 

computation time. Also, it is feasible to include an internal memory for the personal best and neighbor best 

that is available in PSO to help improve the search process in DFPA. 
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