
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 20, No. 3, December 2020, pp. 1556~1568

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v20.i3.pp1556-1568 1556

Journal homepage: http://ijeecs.iaescore.com

New hybrid flower pollination algorithm with dragonfly

algorithm and jaccard index to enhance solving university

course timetable problem

Ma. Shiela C. Sapul1, Rachsuda Setthawong2, Pisal Setthawong3
1,2Computer Science Department, Assumption University, Thailand

3Management Information Systems Department, Assumption University, Thailand

Article Info ABSTRACT

Article history:

Received Apr 3, 2020

Revised Jun 6, 2020

Accepted Jun 20, 2020

 University course timetable problem (UCTP) is one of the problems on
which many researches have been conducted over the years because of its
importance in academic institutions. A nature-inspired metaheuristic
optimization algorithm, flower pollination algorithm (FPA) has been
adapted, so-called adapted FPA (AFPA), to cope with UCTP in the previous

work. However, AFPA suffers from the stagnation problem because of
the non-diversity in the population. To improve the diversity of
the population, this work introduces new Hybrid FPA with two variants:
JFPA provided the Jaccard index to determine similarities among categorical
data and the greedy selection mechanism to improve the selection of
the random solution, and DFPA applied the navigational characteristics of
the dragonfly algorithm (DA) to help in the neighborhood relationship.
The results in this study indicate that the proposed algorithms have better

exploration ability and fast convergence rate in comparison to previous
approaches; JFPA outperforms AFPA in 3 out of 4 datasets for both small and
large datasets, and DFPA outperforms AFPA and GA in all datasets while it
outperforms PSO in 3 out of 4 small datasets and 2 complex large datasets.

Keywords:

Course timetable

Dragonfly algorithm

Flower pollination algorithm

Jaccard index

Metaheuristic

Optimization

Copyright © 2020 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Ma. Shiela C. Sapul,

Assumption University, Bangkok, Thailand.

Email: p5919398@au.edu

1. INTRODUCTION

In each academic semester, universities or colleges must face the problem of scheduling their

resources. The scheduling problem is a broader class of combinatorial optimization problems of allocating

resources to events. One typical scheduling problem is the timetable problem. Timetable scheduling is

considered a difficult problem because they are made complicated by the variations in the constraints and due

to the nature of the problem to solve. In solving optimization problems, the major goal is to search the best

possible way to find the optimum solution, and the searching process should be completed in the shortest

amount of iteration or shortest possible time. This paper focuses on automatically solving the university
course timetable (UCTP) in the optimal time because traditionally academic institutions manually solve

timetable problems, which takes days or weeks to satisfy the constraints and comply with the nature of

the problem. The problem consists of assigning appropriate courses to lecturers and other resources

(room, day and time) while maximizing given constraints. The proposed solution should satisfy both hard

and soft constraints. Hard constraints are constraints that must be satisfied no matter what to obtain a feasible

timetable. There are two main hard constraints: lecturer constraint and scheduling constraints.

Lecturer constraint implies that a lecturer can teach a subset of courses. Scheduling constraints imply that

two or more courses cannot be assigned to a lecturer at the same time, and two or more courses cannot be

assigned to the same room at the same time. Soft constraints, on the other hand, are desired to be satisfied

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

New hybrid flower pollination algorithm with dragonfly algorithm and jaccard... (Ma. Shiela C. Sapul)

1557

only, but if done so, it does not stop the timetable from being a valid solution, such soft constraint included in

this study is to include the minimum or maximum number of courses should be taken or the total number of

teaching load assignments a lecturer is allowed.

The existing solution techniques for timetable problems range from the manual generation of

a timetable [1] to metaheuristic algorithms. The manual generation of the timetable is tedious and

time-consuming and it does not guarantee that an optimal course timetable has been generated.

Meta-heuristic algorithms, on the other hand, can find good solutions with less computational effort

compared with traditional techniques. Metaheuristic algorithms such as genetic algorithm (GA) and particle

swarm optimization (PSO) have been reported to be able to solve many optimization problems. GA was first

used for a timetabling problem in 1992 [2] and has been applied to various scheduling problems [3-6].

PSO has ties with genetic algorithm and evolutionary algorithms [7] and has been used also for solving
the various timetabling problems [8-10]. FPA is another meta-heuristic algorithm introduced to solve general

optimization problems like finding solutions for mathematical equations [11]. It has been formulated for

multi-objective optimization applications by mimicking the pollination process of flowering plants [12].

It has enticed the interest of several researchers because of its characteristics; like it uses fewer parameters

and has shown good results when applied to various optimization problems. In the survey study of [13],

they found out that the number of parameters can affect the complexity of an algorithm. Another similar

survey study on metaheuristic algorithms that have adopted a large number of parameters can be

a disadvantage because it requires that the parameters used must be tuned for the optimal task [14].

FPA was originally designed to solve continuous optimization problems, by modifying the FPA;

it is possible to solve a subset of the UCTP problem and promising results proves that FPA can be used

effectively to solve a combinatorial problem like UCTP [15]. FPA also suffers from a lack of a good balance
between exploration and exploitation optimization process which may lead to a non-diverse population.

A lot of researchers have proposed various strategies to enhance FPA performance and its implementation to

various optimization problems; a study on flexible job shop scheduling problems wherein the crossover

operator of GA and tabu method are applied to enhance the search capability of FPA [16]. Another study

shows that when FPA is combined with other algorithms, it can outperform the combined algorithm and can

improve its speed and convergence rate [17]. Because the population size may affect the results of

the generation of the population, mutation operators were introduced in FPA [18]. Another study that

suggests that FPA’s performance can be improved by introducing the clonal operator from the Clonal

Selection Algorithm (CSA) and replacing the levy flight using the uniform random distribution to improve

the global pollination process and continuous checking of the best solution can avoid being trapped in local

optima [19]. In the survey study on metaheuristic algorithms [14] also concluded in their findings that

applying a combination of two metaheuristics can improve another metaheuristic algorithm’s performance.
To the best of our investigation, the majority of the studies presented for solving optimization problems using

FPA are applied to engineering and industry-related problems [20-23]. Despite the enhancements and related

works on FPA mentioned in this study, FPA has certain limitations or issues: FPA cannot deal directly with

combinatorial problems like UCTP, the exploration ability of FPA is dependent on the levy flight which can

be aggressive and can cause large steps and a non-diverse population may lead to local optima and

the parameter settings in an FPA may affect also the performance of the algorithm.

The main contribution of this paper is to design and develop two new hybrid flower pollination

algorithms: JFPA and DFPA, which improve the performance of adapted-flower pollination (AFPA)

algorithm [15] in solving the lecturer-course assignment problem and extend our work to solving university

course timetable problem (UCTP). AFPA has demonstrated that FPA can be adapted to solve a combinatorial

problem. However, according to our observation, AFPA has limitations. It suffers from a non-diverse
population when the population is too similar that may result in a low convergence rate or being restrained to

the local optima. Another possible cause of the lack of diversity in the population is the ineffectiveness of

the parameter settings. To overcome the limitations of AFPA, the two hybrid FPA algorithms: JFPA and

DFPA, which are capable of diversifying the population, are introduced. A similarity factor is proposed in

JFPA to facilitate the searching process when comparing data. This factor helps control diversity by

measuring the similarity and dissimilarity of two individual solutions in addition to traditional fitness

value [24]. Since the individual genomes of UCTP are presented as a categorical data, we introduced

a Jaccard index to find the similarities of categorical data. Therefore, JFPA takes into account not only

the fitness of the individual solutions but also the diversity among them. To improve the selection of

the random solution in the local pollination a selection factor is embedded also in JFPA. According to [25]

algorithms diversity problem occurs if the algorithm’s optimization process cannot balance between

exploration and exploitation. A good balance between exploration and exploitation is another important
criterion for the performance of the algorithm [14]. Another reason for a non-diverse population is that

the parameter choice can influence the algorithm’s performance [26]. To balance AFPA’s exploration and

exploitation process, the other proposed algorithm DFPA utilizes the navigational behavioral characteristics

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 3, December 2020 : 1556 - 1568

1558

of the Dragonfly algorithm that mimics the swarming behaviors of dragonflies, which are similar also to

the exploration and exploitation phases of optimization [27-29].

2. RESEARCH METHOD

2.1. The adapted FPA (AFPA)

AFPA introduced in [13] aims to solve the lecturer-course assignment, which is considered as

a combinatorial problem. It provided a discrete representation of the solution by defining the position of
the flowers as a combinatorial set of resources assigned to an event. For the flower pollination process, it presents

the redesigning of the step size or the scaling factor for updating the candidate solutions position. Also, it applies

the GA operators to provide the flower constancy operators. The pseudocode of AFPA is given in Figure 1.

In generating the initial population (line 1), the AFPA randomly assigns the resources to events like in the case of

assigning courses to the lecturer and assigning room, day, and time to the course-lecturer assignment. Then,

the algorithm utilizes the selection operator in getting the fittest flower solution (Xbest), the current flower solution

(Xi t), and a random flower solution in the current iteration (Xj). Mutation (lines 10 and 22) and crossover (lines 12,

14, 16, 24, 26, and 28) operators of the GA are used as the flower constancy operators of AFPA.

1 Initialize a population of n flowers/pollen gametes with random solutions
2 Find the best solution Xbest in the initial population
3 Define a switch probability p ϵ [0,1]
4 WHILE (t < maxgeneration)
5 FOR i=1: n
6 IF (rand<p) THEN
7 DO global pollination

8 gp=fv(Xbest)fv(Xi t)

9 IF (gp<pr1) THEN

10 Xi t+1=mutationOneClass (Xi t)

11 ELSE IF (gp<pr2) THEN
12 Xi t+1=crossOverHalfWorkload(Xi t, Xbest)

13 ELSE IF (gp<pr3) THEN

14 Xi t+1=crossOverHalfnWorkload(Xi t, Xbest)
15 ELSE
16 Xi t+1=crossOvernWorkload(Xi t, Xbest)
17 ENDIF
18 ELSE
19 DO local pollination

20 lp=fv(Xj t)fv(Xi t)

21 IF (lp<pr1) THEN

22 Xi t+1=mutationOneClass (Xi t)

23 ELSE IF (lp<pr2) THEN

24 Xi t+1=crossOverHalfWorkload(Xi t, Xj)

25 ELSE IF (lp<pr3) THEN

26 Xi t+1=crossOverHalfnWorkload(Xi t, Xj)
27 ELSE

28 Xi t+1=crossOvernWorkload(Xi t, Xj)
29 ENDIF
30 END IF
31 IF (fv(Xi t+1)>fv(Xi t)) THEN
32 fv(Xi t)=fv(Xi t+1)

33 Find and update the best solution Xbest
34 END FOR
35 END WHILE

Figure 1. Pseudocode of AFPA

The random value rand and the switch probability p are used to control the switching between the global

and local pollination process, and at the same time determine the flower constancy operation that the individual

flower serves (line 6). The fitness value fv as shown in 1 is derived by getting the number of violations in satisfying

the constraints for each solution; the anticipated result equal to 1.0 indicating an optimal solution in the population.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

New hybrid flower pollination algorithm with dragonfly algorithm and jaccard... (Ma. Shiela C. Sapul)

1559

fv = (1.0 – (
𝛴𝑡𝑐𝑜𝑛𝑓𝑙𝑖𝑐𝑡

𝑡𝑐𝑜𝑢𝑟𝑠𝑒
)) (1)

During global and local pollination, the step size for both pollination gp (line 8) and lp (line 20) is
derived by getting the difference of the fitness values of two flower solutions; a set of parameters pr1, pr2,

and pr3 are used to determine how AFPA will behave, in other words, selecting a GA operator for

pollination. AFPA has some drawbacks in getting the algorithm stuck in local optima since the FPA has

the weakness of having to use a diverse population; in particular, both local (line 19) and global processes

(line 7) use the same scaling factor. To solve this diversity problem, we should provide a good balance

between the global and local process during the search process.

2.2. Variations of FPA for UCTP

To address the limitations of AFPA as discussed in the previous section, this work proposes two
hybridizations of AFPA: hybrid AFPA with similarity index using Jaccard index and selection factor (JFPA)

and hybrid AFPA with navigational characteristics of the dragonfly (DFPA). JFPA applies the Jaccard index

as another scaling factor to enhance the local pollination process. Jaccard index provides the similarity

measurement of the information contained for each flower solution. This scaling factor dictates how the local

pollination will behave and this helps the pollination process the chance that flower solutions may have

the best information to exchange. The selection factor helps improve the selection of the best random flower.

The pseudocode of JFPA is given in Figure 2.

1 Initialize a population of n flowers/pollen gametes with random solutions

2 Find the best solution Xbest in the initial population

3 Define a switch probability p ϵ [0,1]
4 WHILE (t<maxgeneration)
5 FOR i=1: n
6 IF (rand < p) THEN
7 DO global pollination

8 gp=fv(Xbest)fv(Xi t)

9 IF (gp≤pr) THEN

10 Xi t+1=mutationOneClass(Xi t)
11 ELSE

12 Xi t+1=crossOverHalfWorkload(Xi t, Xbest)
13 ENDIF
14 ELSE
15 DO local pollination
16 Randomly choose Xj using the selection factor

17 lp=sf(Xj, Xi) // using Eq. 2

18 IF (lp>sim_th) THEN

19 Xi t+1=mutationOneClass (Xi t)
20 ELSE
21 Xi t+1=crossOverHalfWorkload(Xi t, Xj)
22 ENDIF
23 END IF

24 IF (fv(Xi t+1)>fv(Xi t)) THEN
25 fv(Xi t)=fv(Xi t+1)
26 Find and update the best solution Xbest

27 END FOR

28 END WHILE

Figure 2. Pseudocode of JFPA

During global and local pollination, the gp and lp are used to derive the step size of

the pollination; gp uses the fitness value to determine the step size of the pollination (line 8), and lp uses
the similarity factor to determine the step size of the pollination (line 17). The similarity factor sf is

defined in (2).

𝑠𝑓 =
𝑑

(𝑏+𝑐+𝑑)
, (2)

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 3, December 2020 : 1556 - 1568

1560

where d are those instances where Xi and Xj both have a value of 1, b are those instances where the attribute

of Xi is 0 and the attribute of Xj is 1 and c are those instances when the attribute of Xi is 1 and the attribute of

Xj is 0. Also, the parameters pr and sim_th are used to select a GA operator (swap mutation or a crossover)

for pollination. It should be noted that JFPA excludes some operators of AFPA: crossOverHalfnWorkload()

and crossOvernWorkload() because based on the experimental results observed, these operators do not help

a lot in providing a diverse population.

For DFPA, neighborhood selection is important because it will improve search efficiency and

increase population diversity. To accomplish this DFPA embeds the DA’s navigational behavior with FPA
and also divides the population into a set of subpopulations by finding the similarity between all solutions to

distribute the solutions into different neighbors. As shown in Figure 3, the algorithm initially finds

the similarity of the solutions to create or update the radius of the clusters or neighbors (lines 7 and 8).

During global and local pollination, the update of the new flower solution Xi t+1 depends on the neighborhood

relationship of Xi. If Xi has neighbors, then both the direction X, and the position of Xi are updated
(lines 14 and 21). Otherwise, only the position is updated.

1 Initialize a population of n flowers/pollen gametes with random solutions
2 Find the best solution Xbest in the initial population

3 Define a switch probability p ϵ [0,1]
4 Determine how many clusters Cn

5 WHILE (t<maxgeneration)

6 Randomly select the vector or center point for each cluster C1, C2, …, Cn
7 Determine the similarity values sv(Xi) in C1, C2,…, Cn
8 Update the neighboring radius by assign Xi to a cluster Ci
9 Determine the Xbest, Xworst, Xflowbest
10 FOR i=1:n

11 IF (rand <p) THEN
12 DO global pollination
13 IF the Xi has at least one neighbor

14 Update X i t+1 and X i t+1//using 8 and 9, respectively
15 ELSE

16 X i t+1=mutationOneClass (Xi t)
17 END IF
18 ELSE
19 DO local pollination
20 IF the Xi has at least one neighbor

21 Update X i t+1 and X i t+1//using 8 and 9, respectively

22 ELSE
23 X i t+1= mutationOneClass (Xi t)
24 END IF

25 END IF
26 IF (fv(Xi t+1)>fv(Xi t)) THEN
27 fv(Xi t)=fv(Xi t+1)
28 END FOR

29 END WHILE

Figure 3. Pseudocode of DFPA

Due to space limitation, we do not provide the traditional operators of DA, but it can be referred to

in [27]. Dragonfly Algorithm (DA) updates the direction and position of the individual flowers depends on

five navigational behavioral characteristics of the dragonflies: separation S, alignment A, cohesion C,

attraction F, and destruction E as determined in 3–7, respectively. The Separation S operator provides

collision avoidance of the solutions found in the neighbor, and each neighbor avoids colliding with others in
the neighborhood by determining the similarity of their solutions. This operation will be repeated between Xi

and its entire neighbor Xj. If similarity value sv(Xi, Xj) is greater than 0.5, then perform the 3.

S = crossoverHalfWorkloadSwap (𝑋𝑖 , 𝑋𝑗), (3)

where crossoverHalfWorkloadSwap(Xi, Xj) selects randomly half of the genomes from the workload from Xi’s

neighbor Xj and if they are found in Xi, then they are swapped. 4 provides the Alignment A operator to ensure

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

New hybrid flower pollination algorithm with dragonfly algorithm and jaccard... (Ma. Shiela C. Sapul)

1561

that solutions are moving towards the same best flower solution in the neighborhood, wherein the information

from the best flower Xflowbest in the current cluster is shared with the current flower Xi of the same cluster.
A = crossoverHalfWorkloadA(𝑋𝑖 , 𝑋𝑓𝑙𝑜𝑤𝑏𝑒𝑠𝑡), (4)

where crossoverHalfWorkloadA(Xi, Xflowbest) selects randomly half of the genomes from the workload from

the best solution Xflowbest in the neighborhood and locates the occurrence in Xi, and replace half of the genomes

at the same random position as indicated in Xflowbest. 5 provides the Cohesion C operator, it maintains a form of
neighborhood, all the solutions in the same neighborhood exchange information.

C = crossoverHalfWorkloadC(𝑋𝑖 , 𝑋𝑗), (5)

where the crossoverHalfWorkloadC(Xi, Xj) selects randomly half of the genomes from the workload from

the neighborhood Xj and locate the occurrence in Xi, and replaces half of the genomes at the same random

position as indicated in Xj. 6 provides the Attraction F operator crossover, ensures that the current flower

solution Xi tends to move towards the food source or the best flower Xbest in the entire population by

exchanging information from the best flower in the entire population.

F = crossoverHalfWorkloadF(𝑋𝑖 , 𝑋𝑏𝑒𝑠𝑡), (6)

where crossoverHalfWorkloadF(Xi, Xbest) selects randomly half of the genomes from the workload from

the best flower Xbest in the population and locate the occurrence in Xi, and replaces half of the genomes at

the same random position as indicated in Xbest 7 provides the Destruction D operator; it ensures that

the current flower solution is kept away from the worst solution.

D = crossoverHalfWorkloadRandomSwap(𝑋𝑖 , 𝑋𝑤𝑜𝑟𝑠𝑡), (7)

where crossoverHalfWorkloadRandomSwap(Xi, Xworst) selects randomly half of the genomes from
the workload from the worst solution Xworst in the population and if they are found in Xi then they are

swapped by selecting a new random genome in Xi. During the global and local pollination, the X serves as
step vector for modifying direction of the flower solutions as shown in 8, and the new position of Xi of

the flowers can be derived in 9.

∆𝑋𝑖
𝑡+1 = 𝑆𝑖 + 𝐴𝑖 +𝐶𝑖 +𝐹𝑖 +𝐸𝑖 (8)

𝑋𝑖
𝑡+1 = 𝑋𝑖 + ∆𝑋𝑖

𝑡+1 (9)

3. RESULTS AND ANALYSIS

To assess the performance of the proposed improvements of FPA, we compared the results with

other meta-heuristic algorithms: Genetic Algorithm (GA) and Particle Swarm Optimization (PSO).

The performance of the algorithms was examined concerning different levels of constraint complexity from

low to high. We provided four sets of constraints with complexity equal 10%, 30%, 50%, and 60% for

the lecturer-course assignment, respectively; the lower the complexity of the problem was, the higher

the percentage of feasible courses that a lecturer could teach to. The dataset consists of two categories: one

for small scale sample size (60 courses offered in a semester, 15 lecturers), and another one for large scale

sample size (200 courses offered in a semester, 50 lecturers), and a set of constraints. For each test,
the maximum iteration numbers were set to 1000 and 3000, respectively; the numbers of population n were

set to 10, 50 and 100, respectively. The results are evaluated in terms of the following: fitness value,

max generations or iterations, how the sizes of the datasets affect the performance of the algorithm,

how the population can affect the performance in terms of complexity, and how the complexity constraint

can affect the behavior of the algorithm.

Tables 1 and 2 summarize the convergence rate of the 3 benchmarked algorithms: GA, PSO,

and AFPA, and the two proposed algorithms: JFPA and DFPA. It should be noted that the numbers listed in

Tables 1 and 2 are the maximum fitness value (fv) generated at the corresponding iteration (gen). The results

that are optimal for each test case are highlighted in bold to help display the best approach. Experiment

results in Tables 1 and 2 shows that DFPA tends to find the optimal solution faster than the benchmarked

algorithms and of the other proposed algorithm JFPA at higher complexity. We further perform the detailed

analysis and comparison of the 4 algorithms: PSO, AFPA, JFPA, and DFPA as depicted in Figure 4 to 23.
It is remarked that the experimental results of GA are excluded from the analysis and comparison because it

does not reach the global optimal value (fv=1.0).

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 3, December 2020 : 1556 - 1568

1562

Table 1. Summary of fitness value and generation number (small scale dataset)
Pop

Size

Complexity

Level

GA PSO AFPA JFPA DFPA

FV Gen FV Gen FV Gen FV Gen FV Gen

10

10 1.00 707 1.0 18 1.00 22 1.0 23 1.0 14

30 0.88 199 1.0 52 1.00 175 1.0 110 1.0 56

50 0.70 860 1.0 332 1.00 360 1.0 335 1.0 191

60 0.58 979 1.0 632 1.00 932 1.0 554 1.0 587

50

10 1.00 117 1.0 2 1.00 4 1.0 4 1.0 2

30 0.90 121 1.0 40 1.00 122 1.0 63 1.0 42

50 0.73 115 1.0 295 1.00 210 1.0 299 1.0 147

60 0.62 129 1.0 497 1.00 506 1.0 356 1.0 293

100

10 1.00 53 1.0 1 1.00 2 1.0 1 1.0 1

30 0.93 789 1.0 19 1.00 52 1.0 52 1.0 34

50 0.77 316 1.0 154 1.00 199 1.0 169 1.0 132

60 0.65 337 1.0 488 1.00 338 1.0 295 1.0 252

Table 2. Summary of fitness value and generation number (large scale dataset)
Pop

Size

Complexity

Level

GA PSO AFPA JFPA DFPA

FV Gen FV Gen FV Gen FV Gen FV Gen

10

10 0.97 12 1.00 97 1.00 495 1.0 433 1.0 127

30 0.80 2256 1.00 527 1.00 1343 1.0 885 1.0 768

50 0.62 1062 1.00 1813 1.00 2362 1.0 2119 1.0 1676

60 0.52 838 0.98 1822 0.98 2709 1.0 2784 1.0 2776

50

10 0.98 2751 1.00 65 1.00 349 1.0 287 1.0 98

30 0.82 742 1.00 417 1.00 954 1.0 789 1.0 516

50 0.64 1600 1.00 1483 1.00 1964 1.0 1925 1.0 1188

60 0.53 873 0.99 2662 0.99 2852 1.0 2572 1.0 2615

100

10 0.98 1773 1.00 40 1.00 293 1.0 212 1.0 69

30 0.83 430 1.00 235 1.00 754 1.0 748 1.0 375

50 0.66 314 1.00 1197 1.00 1686 1.0 1883 1.0 824

60 0.56 2035 0.99 2545 0.99 2642 1.0 2836 1.0 1995

Figures 4 to 6 show a comparison of how the algorithms behave (complexity behavior) for small dataset; it

can be observed in the results that increasing the population size improves the convergence (less number of iterations.

DFPA tends to improve its number of iterations despite increasing the level of complexity and since the iterations are

improving in DFPA it also finds the optimal solution faster than the benchmarked algorithms and of JFPA.
Figures 7 to 9 show that the PSO and AFPA suffers when it is tested on large data set, both algorithms

were not able to achieve the global optimum value (fv=1.0) in the most constraint complexity level (60%);

increasing the population size did not improve the number of iterations (decreasing), and increasing the number of

iterations did not also help in achieving the maximum value. DFPA, on the other hand, increasing the size

of the dataset and increasing the constraint complexity level tend to improve the number of iterations;

as the population size is increased, DFPA can find the maximum value faster than the benchmarked algorithms.

Figure 4. Complexity behavior

(small scale data set, population size=10)

Figure 5. Complexity behavior

(small scale data set, population size=50)

The results can be showed in Figures 10 to 13 that the population size influences the algorithm’s

performance as indicated by the number of iterations. Increasing the population may help, but when the complexity

constraints are added, it may not help improve the number of iterations as the complexity level is increased. For all

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

New hybrid flower pollination algorithm with dragonfly algorithm and jaccard... (Ma. Shiela C. Sapul)

1563

the test results shown in Figures 10 to 13, DFPA performs better whether its population size and complexity level

are increased. As indicated, it has less iteration compared with the algorithms mentioned in the figures.

Figure 6. Complexity behavior (small scale data set, population size=100)

Figure 7. Complexity behavior

(large scale data set, population size=10)

Figure 8. Complexity behavior

(large scale data set, population size=50)

Figure 9. Complexity behavior (large scale data set, population size=100)

Figure 10. Algorithms behavior for various

population sizes–complexity level=10

(small scale data set)

Figure 11. Algorithms behavior for various

population sizes–complexity level=30

(small scale data set)

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 3, December 2020 : 1556 - 1568

1564

Figure 12. Algorithms behavior for various

population sizes–complexity level=50

(small scale data set)

Figure 13. Algorithms behavior for various

population sizes–complexity level=60

(small scale data set)

One way to test the performance of the algorithm for various population sizes is to test whether
the size of the dataset affects its performance. Results in Figures 14 to 17 shows that a large dataset may

affect the performance of the algorithm as indicated by a higher number of iterations required to reach

the global maximum value. It should be addressed that in Figure 17 PSO and AFPA did not provide an

optimal solution for the large scale dataset with complexity level equal 60 (as referred in detailed result in

Table 2), therefore, the figure shows the maximum number of iteration that they can achieve their highest

fitness values (less than 1.0). The dash bar in Figure 17 indicates non-optimal results (fv<1.0). Increasing

the size of the population may help achieve the optimal solution, but it requires several iterations. It can also

be observed from the test results that increasing the population size may not help at all some algorithms (PSO

and AFPA) achieve the optimal solution because of the constraint complexity. Despite the constraint factor in

improving the results by increasing the population, among the algorithms presented in the Figures, DFPA

provided better results in the most constraint complexity level. Referring to the results in Tables 1 and 2,
Figures 4 to 17 it can be observed that increasing the population size significantly improves the number of

iterations, and referring to Table 2, increasing also the number of iterations allows the algorithm to achieve

the maximum fitness value for large scale dataset. It has been observed in Figures 10 to 16, increasing

the population size increases the chance of finding the optimal solution. However, for some algorithms (PSO

and AFPA) increasing the population size may not improve the solution or the convergence rate because

population size depends on other parameters like the difficulty of the problem or the complexity level. Also,

increasing the number of iterations did not make some algorithms (PSO and AFPA) to find the maximum

fitness value in the large scale dataset especially for the most complex dataset.

The performance of an algorithm can be tested in terms of the execution time. Figures 18 to 20

describe the performance of the algorithms for small scale data set at 1000 iterations. In particular,

increasing the population size will result in an algorithm’s execution time longer. Increasing the population

size and increasing the complexity level tend not to improve the execution time. The two proposed
two-hybrid FPA relatively takes a longer time compared with the AFPA, this is due to the additional

operations to be performed during local pollination in JFPA, and as the optimization progresses in DFPA

there is a constant update of the neighborhood in both local and global pollination.

Figure 14. Algorithms behavior for various

population sizes–complexity level=10

(large scale data set)

Figure 15. Algorithms behavior for various

population sizes–complexity level=30

(large scale data set)

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

New hybrid flower pollination algorithm with dragonfly algorithm and jaccard... (Ma. Shiela C. Sapul)

1565

Figure 16. Algorithms behavior for various

population sizes–complexity level=50

(large scale data set)

Figure 17. Algorithms behavior for various

population sizes–complexity level=60

(large scale data set)

Figure 18. Execution time

(small scale data set, population size=10)

Figure 19. Execution time

(small scale data set, population size=50)

Figure 20. Execution time (small scale data set, population size=100)

Another way to test the performance of the algorithm in terms of the execution time is for various

population sizes is to test whether the size of the dataset affects its performance. Results in Figures 21 to 23
shows that a large dataset may affect the execution time as indicated by the higher number of the execution

time. Generally, increasing the population size as well as the size of the data and the number of iterations can

increase the execution time for all algorithms. The two proposed two-hybrid FPA relatively takes a longer

time compared with the AFPA; this is due to the same reason as stated in Figures 18 to 20.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 3, December 2020 : 1556 - 1568

1566

Figure 21. Execution time

(large scale data set, population size=10)

Figure 22. Execution time

(large scale data set, population size=50)

Figure 23. Execution time (large scale data set, population size=100)

3.1. Parameter tuning of FPA

The behavior of the original FPA is determined by the number of flowers in the population n,

switch probability p, scaling factor, step size , and the number of iterations i. In this study we fix the value

of the switch probability (0.80), for the scaling factor we applied the Jaccard index to enhance the local

pollination process in JFPA, and to increase the diversity of the population; we applied DA’s navigational

behavior with DFPA. For the size of the population and the number of iterations parameters, we tried

different values. By providing different values for the population size and the number of iterations allows us

to test if increasing the population size can improve the algorithm’s performance. Referring to the results in

Tables 1 and 2, it can be observed that increasing the number of population size, it helps the performance of

the algorithm even in the most constraint complexity level. It can be seen also in Figures 4 to 17 that using

a different scaling factor helped the algorithm exchange the best information.

4. CONCLUSION

In the previous work Adapted-FPA (AFPA), FPA has been modified to address the limitation of FPA to

solve combinatorial problems. However, when solving constrained problems, FPA suffers from slow convergence

and easy to fall to local optima because of the diversity problem. This happens when the solutions generated are

too similar. Another cause of the diversity problem is the ineffectiveness of the parameter settings applied. To cope

up with the observed limitation in AFPA, our work proposed Hybrid AFPA with two improvements. In JFPA,

the algorithm firstly improved the diversity of the population by introducing the Jaccard index in the local

pollination process a strategy that can measure the similarity of the solutions for categorical datasets.

In the previous work of AFPA, the fitness value was used as the scale factor to determine the similarity of the
solutions. However, this is not a feasible measurement or parameter when determining the similarities for

categorical data; this technique gives the local pollination a better judgment on how the solutions are similar.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

New hybrid flower pollination algorithm with dragonfly algorithm and jaccard... (Ma. Shiela C. Sapul)

1567

Another improvement included in the JFPA is applying a selection factor that allows the selection of the local

pollination for the best random flower. Therefore, JFPA can ensure that only the best random flower is used in

the pollination process. As a result, this gives a chance that using the best random flower will also produce better

new solutions. Another improvement is by improving the exploration and exploitation process of the AFPA,

wherein we applied the navigational characteristics of the DA, which provides the DFPA a selection mechanism

for making sure that solutions in the same neighborhood do not collide with each other, and is moving towards

the best solution and avoiding worst solution. Likewise, the similarity factor is also used to provide

the neighborhood solution to distribute the solutions into different solution subsets.

The results in both Tables and Figures 4 to 17 show that both JFPA and DFPA outperform AFPA,

DFPA’s performance proves its ability to adaptively search the solution space for the most promising

solution for solving UCTP when compared to similar approaches and better than the other variants of
the AFPA. DFPA converges faster but has a higher execution time compared with AFPA and JFPA as

reported in Figures 18 to 23. It can be also considered that execution time is affected by several factors,

such as algorithms can work differently on different input size or the size of the data, CPU waiting time and

other programs that might be running in parallel. Our future work will focus on improving the performance

of Hybrid FPA by further researching on developing the parallel version of the Hybrid FPA to speed up

computation time. Also, it is feasible to include an internal memory for the personal best and neighbor best

that is available in PSO to help improve the search process in DFPA.

REFERENCES
[1] Murphy, J., & Sutter, R., “School Scheduling by Computer,” the Story of GASP, 1964.
[2] Colorni, A., Dorigo, M., & Maniezzo, V., “Genetic algorithms: A new approach to the timetable problem,”

In NATO ASI Series, Combinatorial Optimization, vol. F82, pp. 235-239, Springer, Berlin, Heidelberg, 1992.
[3] Li, D. C., Hsu, P. H., & Chang, C. C., “A genetic algorithm-based approach for single-machine scheduling with

learning effect and release time,” Mathematical Problems in Engineering, vol. 2014, pp. 1-12, 2014.
[4] Poorjafari, V., Yue, W. L., & Holyoak, N., “A comparison between genetic algorithms and simulated annealing for

minimizing transfer waiting time in transit systems,” International Journal of Engineering and Technology, vol. 8,
no. 3, pp. 216-221, 2016.

[5] Budhi, G. S., Gunadi, K., & Wibowo, D. A., “Genetic Algorithm for Scheduling Courses,” In International
Conference on Soft Computing, Intelligence Systems, and Information Technology, pp. 51-63, Springer, Berlin,
Heidelberg, 2015.

[6] Kadam, V. J., Upadhye, S. V., & Laddha, M. D., “Implementation of University Sports Time table Scheduling
using Genetic Algorithm-A Case Study,” International Journal of Advance Foundation and Research in Science &
Engineering (IJAFRSE), vol. 1, 2015.

[7] R. Eberhart and J. Kennedy, "A new optimizer using particle swarm theory," MHS'95. Proceedings of the Sixth
International Symposium on Micro Machine and Human Science, Nagoya, Japan, pp. 39-43, 1995.

doi: 10.1109/MHS.1995.494215.
[8] S. F. H. Irene, S. Deris and M. H. S. Zaiton, "A Study on PSO-Based University Course Timetabling Problem,"

2009 International Conference on Advanced Computer Control, Singapore, pp. 648-651, 2009,
doi: 10.1109/ICACC.2009.112.

[9] Shu-Chuan Chu, Yi-Tin Chen and Jiun-Huei Ho, "Timetable Scheduling Using Particle Swarm Optimization,"
First International Conference on Innovative Computing, Information and Control-Volume I (ICICIC'06), Beijing,
pp. 324-327, 2006. doi: 10.1109/ICICIC.2006.541.

[10] Chen, R. M., & Shih, H. F., “Solving university course timetabling problems using constriction particle swarm
optimization with local search,” Algorithms, vol. 6, no. 2, pp. 227-244, 2013.

[11] Yang, X. S., “Flower pollination algorithm for global optimization. In International conference on unconventional
computing and natural computation, pp. 240-249, Springer, Berlin, Heidelberg, 2012.

[12] Yang, X. S., Karamanoglu, M., & He, X., “Flower pollination algorithm: a novel approach for multiobjective
optimization,” Engineering Optimization, vol. 46, no. 9, pp. 1222-1237, 2014.

[13] BoussaïD, I., Lepagnot, J., & Siarry, P., “A survey on optimization metaheuristics,” Information sciences, vol. 237,
pp. 82-117, 2013.

[14] Dokeroglu, T., et al., “A survey on new generation metaheuristic algorithms,” Computers & Industrial
Engineering, vol. 137, 2019.

[15] M. S. C. Sapul, R. Setthawong and P. Setthawong, "Adapted Flower Pollination Algorithm for Lecturer-Class
Assignment," 2019 International Conference of Artificial Intelligence and Information Technology (ICAIIT),
Yogyakarta, Indonesia, pp. 315-321, 2019. doi: 10.1109/ICAIIT.2019.8834620.

[16] A. Phuang, "The flower pollination algorithm with disparity count process for scheduling problem," 2017 9th
International Conference on Information Technology and Electrical Engineering (ICITEE), Phuket, pp. 1-5.
2017. doi: 10.1109/ICITEED.2017.8250497.

[17] D. Chakraborty, S. Saha and O. Dutta, "DE-FPA: A hybrid differential evolution-flower pollination algorithm for
function minimization," 2014 International Conference on High Performance Computing and Applications

(ICHPCA), Bhubaneswar, pp. 1-6, 2014. doi: 10.1109/ICHPCA.2014.7045350.
[18] Salgotra, R., & Singh, U., “Application of mutation operators to flower pollination algorithm,” Expert Systems with

Applications, vol. 79, no. 112-129, 2017.

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 20, No. 3, December 2020 : 1556 - 1568

1568

[19] Nabil, E., “A modified flower pollination algorithm for global optimization,” Expert Systems with Applications,
vol 57, pp. 192-203, 2016.

[20] S. Sutradhar, N. B. D. Choudhury and N. Sinha, "Hydrothermal scheduling using Modified Flower Pollination

Algorithm: A parallel approach," 2016 IEEE Region 10 Conference (TENCON), Singapore, pp. 1696-1700, 2016.
doi: 10.1109/TENCON.2016.7848307.

[21] Gupta, I., Kaswan, A., & Jana, P. K., “A Flower Pollination Algorithm Based Task Scheduling in Cloud
Computing,” In International Conference on Computational Intelligence, Communications, and Business Analytics,
pp. 97-107, Springer, Singapore, 2017.

[22] Abdel-Baset, M., & Hezam, I., “A hybrid flower pollination algorithm for engineering optimization
problems. International Journal of Computer Applications, vol. 140, no. 12, pp. 10-23, 2016.

[23] Łukasik, S., & Kowalski, P. A., “Study of flower pollination algorithm for continuous optimization. In Intelligent
Systems' 2014, Springer, Cham, pp. 451-459, 2015.

[24] Niwattanakul, S., et al., “Using of Jaccard coefficient for keywords similarity. In Proceedings of the international
multiconference of engineers and computer scientists, vol. 1, 2013.

[25] Herrera-Poyatos, A., & Herrera, F., “Genetic and memetic algorithm with diversity equilibrium based on greedy
diversification. arXiv preprint arXiv:1702.03594, pp 1-27, 2017.

[26] Cui, W., & He, Y., “Biological flower pollination algorithm with orthogonal learning strategy and catfish effect
mechanism for global optimization problems,” Mathematical Problems in Engineering, 2018.

[27] Mirjalili, S., “Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective,
discrete, and multi-objective problems,” Neural Computing and Applications, vol. 27, pp. 1053-1073, 2016.

[28] Sambandam, R. K., & Jayaraman, S., “Self-adaptive dragonfly based optimal thresholding for multilevel
segmentation of digital images,” Journal of King Saud University-Computer and Information Sciences, vol. 30,
no. 4, pp. 449-461, 2018.

[29] Raman, G., et al., “Dragonfly algorithm based global maximum power point tracker for photovoltaic systems,”
In International Conference on Swarm Intelligence, pp. 211-219, Springer, Cham, 2016.

