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 Hybridization is one of the popular approaches in modifying the conjugate 
gradient method. In this paper, a new hybrid conjugate gradient is suggested 

and analyzed in which the parameter k is evaluated as a convex combination 

of 
RMIL
k  while using exact line search. The proposed method is shown to 

possess both sufficient descent and global convergence properties. Numerical 
performances show that the proposed method is promising and has 

overpowered other hybrid conjugate gradient methods in its number of 
iterations and central processing unit per time.  
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1. INTRODUCTION  

In unconstrained optimization, consider the following objective function; 

 

 nRxxf :)(min  (1) 

 

where RRf n : is a continuously differentiable function which is bounded from below and nR denotes as 

n dimensional Euclidean space [1-3]. Generally, with any 
nRx 0 as an initial guess, a sequence  

{ kx } is generated by employing the CG iterative method given by;  

 

,...2,1,0,1  kdxx kkkk 
 (2) 

 

where kx is the thk  iterative point and 0k is a step size while the search direction kd is defined by; 
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The scalar k is called the coefficient of CG and kg is the gradient of f  at point kx . Step size 0k

is the stepsize determined by using exact line search, given as; 

 

).(min)(
0

kkkkk dxfdxf 



  (4) 

 

In the study of CG methods, a lot of modifications have been made but it is lacking in term of its 

superior. This study proposed a new method to outperform the number of iteration and CPU time compared to 
the previous coefficients. Hybrid CG method is known to be a combination of some classical CG methods 

combining the good criterion. In this paper, a new approach is suggested in order to get a new hybrid conjugate 

gradient algorithm. The new algorithm is a result from combining RMIL and SMR conjugate algorithms.  

Under exact line search, SMR has good computational properties while RMIL has strong convergence 

properties [1-2]. All the good criteria were combined in order to obtain a better practical algorithm. Section 

two will discuss the motivation of the algorithm and the new hybrid conjugate gradient algorithm. Section three 

presents the convergence analysis. Numerical experiments are discussed at section four and the last section 

concludes all the works in this paper.  

 

 

2. LITERATURE REVIEW 
The exact line search is well known to provide the optimal step size [4]. Recent studies have shown 

that the newer technologies with faster processors and better equipment have successfully eliminated the speed 

problems often suffered by exact line search as demonstrated by Rivaie et al [1]. This motivates plenty of its 

applications for solving unconstrained optimization problems. Different conjugate gradient method yield 

different choices for calculating the CG coefficient k .Some well known formulas for k are; 
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From (7)-(13), kg and 1kg  are the abbreviations of )( kxg and )( 1kxg which are the gradients of 

)(xf at points kx and 1kx  respectively. Euclidean norm of the vectors is denoted by . . The above 

corresponding methods are known as HS (Hestenes and Steifel [5]), FR (Fletcher and Reeves [6]), PRP  

(Polak and Ribierre [7]), CD (Conjugate Descent by Fletcher [8]), DY (Dai and Yuan [9]), RMIL (Rivaie, 

Mustafa, Ismail and Leong [1]), SMR (Syarafina, Mustafa and Rivaie [2]) and LS (Liu-Storey [10]) 

respectively. All of these methods have finite convergence properties under exact line search due to strictly 

convex quadratic function )(xf . From all the methods mentioned above, some of these such as (8), (10) and 

(11) have strong convergence properties but not excellent in practical performance due to jamming problem. 

Meanwhile, methods in (7), (9) and (13) have better performance though lacking in convergence properties 

[11]. Conjugate gradient method can be classified into three different groups; classical, scaled and hybrid CG 

method [12]. Due to their simple approach, CG methods in (7) - (14) are said to be classical. Detailed 

discussions are available in [13-24].  

In this paper, the main objective is to focus on hybrid conjugate gradient method. The idea is to 

combine different conjugate algorithms to use the projections to form a new hybrid convex-combination 

algorithm in order to avoid jamming [11]. Early hybrid conjugate gradient algorithm was first proposed by 
Touati-Ahmed and Storey [25]. Some well known hybrid conjugate algorithms are;  
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From (15)-(18) HDY is a modification effort from Dai and Yuan [9] combining its algorithm with 

Hestenes and Steifel [5], HHUS was introduced by Hu and Storey [26], HLSCD is the combination of LS [10] 

and CD [8] and HJHJ is a hybrid CG from Jinbao-Han-Jiang [27]. From (18), it is easy to know the algorithm 

is a combination of various classical CG methods [28-30]. 

 

 

3. NEW HYBRID CG METHOD 

Motivated by the idea of combining various CG algorithm from (15)-(18), a new hybrid coefficient is 

proposed between RMIL [1] and SMR [2] where the methods are respectively known by (12) and (14).  

The new coefficient introduced is as follows;  

 

}},min{,0max{ RMIL
k

SMR
k

HSMR
k  

 (19) 
 

where HSMR stands for Hybrid-Syarafina-Mustafa-Rivaie method. This new method is suggested due to the 

restart strategy proposed in [31]. It is suitable to set 0k , which implies a restart along kg .  

If 0k , the search direction kd from (3) tend to almost opposite to 1kd . By restricting the CG coefficient to

0k  the two consecutive search directions are prevented from tending to be almost opposite [32]. The new 

algorithm of HSMR
k is given as follows; 
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Figure 1. Conjugate Gradient Algorithm 

 

 

Algorithm 2.1: Conjugate Gradient Algorithm  

A complete algorithm of CG method could be generated as follows: 

Step 1: Initialization. Set  and select nx 0 , 00 gd  , if 00 g , stop.  

Step 2:  Compute HSMR
k based on (19). 

Step 3: Compute search directions kd  based on (3).  If kg , then stop. Otherwise, go to the next step. 

Step 4: Compute for k based on exact line search (4) . 

Step 5: Updating new initial point using (2).  

Step 6: Convergence test and stopping criteria. If )()( 1 kk xfxf   and kg  then, stop. Otherwise go  

to Step 2 with 1 kk . 

 

 

4. CONVERGENCE ANALYSIS 

In this section, the convergence analysis based on exact line search in (4) is analysed. An algorithm 

has to possess both sufficient descent condition and global convergence properties for a method to be 

converged.  

 

4.1.   Sufficient Descent Condition 

Sufficient descent condition holds when 

 

0 and 0for   
2

 CkgCdg kk
T
k  (20) 
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Theorem 1: Consider a CG method with search direction (3) and HSMR
k  defined as (19), then, 

condition (20) will hold for all 0k . Proof: From (3), know that
2

000 gCdgT  . Hence, condition (20) holds. 

In order to show condition (20) also hold for 1k , multiply (3) by T
kg . Then,  
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that 0k
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Since the line search is exact, it is known that 01 k
T
k dg . Thus, 

2
kk

T
k gdg  implying kd is a 

sufficient descent direction. Hence, the descent condition holds i.e.,
2

kk
T
k gCdg  . The proof is completed.   

 

3.2.   Global Convergence Properties 

From [1] and [2], it is known that SMR
k and RMIL

k can be simplified to: 
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Case II stated that HSMR
k and can either be SMR

k or RMIL
k if
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 . Then, from [1, 2] and 

[18], in the analysis of global convergence properties, the following assumption is needed. 

Assumption 1 

1. f is bounded below on the level set nR  and is continuous and differentiable in a neighbourhood N  of the 

 level set  )()(| 0xfxfRx n   at the initial point 0x . 

2. The gradient )(xg  is Lipschitz continuous in N , so, there exists a constant 0L  such that; 

yxLygxg  )()(  for any Nyx ,  .  

 

Under this assumption, the following lemma is obtained, which was proved by Zoutendijk [33]. 

Lemma 1: Suppose that Assumption 1 holds. Consider any CG methods of the form (3) where kd  is a descent 

search direction and k  satisfies the exact minimization rules. Then the following conditions known as 

Zoutendijk conditions hold; 
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The proof of this lemma can be seen from [25].By using this lemma; the following convergence 

theorem of the conjugate gradient method can be obtained by using (22). 

Theorem 1: Suppose that Assumption 1 holds. Consider any CG methods in the form of (3) and (2) where k  

is obtained by the exact minimization rules. Also, suppose that Assumption 1 and the descent condition hold. 
Then either: 
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Proof: By induction, if Theorem 1 is not true then, there exists a constant such that:  
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 (23) 

 

Rewriting (3) and squaring both sides, we get: 
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By completing the square, the equation becomes: 
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Applying (22), yields 
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From (25), noting that: 

 

 
2

0
2

0

11

gd
 ,  

 
then, 

  
  22

0
2

2
11

kkk

k

ggdg

d
  

 

Hence,  

 
  





k

i ikk

k

gdg

d

0
22

2
1

and 
 

k

c

d

dg

k

kk
2

2

2

  

 

Then, from (23) and (25), it follows; 
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. This contradicts the Zoutendijk condition in Lemma 1. 

Therefore the proof is completed. 

 

Corollary 1: If
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Proof: By using contradiction, assume that cg k  and 
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This contradicts the Zoutendijk conditions. Hence the corollary holds.  

 

 

5. NUMERICAL RESULTS AND DISCUSSION 

This section presents the numerical performance of the new coefficient HSMR
k compared with other 

coefficients mentioned in (15)-(18). A list of fifteen small to large-scale unconstrained optimization test 

functions considered in Andrei [34] was selected as shown in Table 1. A large-scaled problem is chosen in 

order to detect a cynical observer preventing the algorithm being tuned in particular functions [35]. In this 

paper, four random initial starting points are chosen for each of test functions used to add to the complexity of 

the computer programming [36]. Points chosen can also be used to test the global convergence properties and 
the robustness of the methods. Results analyses are based on MATLAB subroutine programme on workstation 

Intel Core i7, 2.2 GHz tested on number of iterations and central processing time per unit. The stopping 

criterion is set to 610kg , where 610 . Performance profiles based on Dolan and More [37] are shown 

graphically in Figures 1-2 [38-39] 

 

 

Table 1. List of test functions 
No Function n  Initial Points 

1 3-Hump 2  (2,-2)(-2,2),(1,-1), (-1,1),   

2 6-Hump 2  (-10,-10)(10,10),(-8,-8),(8,8),  

3 Booth 2  (100,100)(50,50),(25,25),(10,10),  

4 Treccani 2  (100,100)(50,50),(10,10),(5,5),  

5 Goldstein-Price 2  (13,-13)(10,-10),(5,-5),(2,-2),  

6 Extended 

Himmelblau 
1000,500,100,10,4,2    200) , 200, (200, 100), , 100, (100,50), , 50, (50, 10), 10,., (10,  

7 Extended Denschnb 1000,500,100,10,4,2  25) ,… 25, (25,13), ,… 13, (13,8), ,… 8, (8,5), ,… 5, (5,  

8 Generalized Quartic 1000,500,100,10,4,2    200) , 200, (200, 100), , 100, (100,50), , 50, (50,10), , 10, (10,  

9 Diagonal 4 1000,500,100,10,4,2    200) … 200, (200,100), … 100, (100,50), , 50, (50,,10), 10, (10,  

10 Extended 

Freundestein and 

Roth 

1000,500,100,10,4,2    7) ,… 7, (7,5), ,… 5, (5,3), ,… 3, (3,1), ,… 1, (1,  

11 Extended 

Rosenbrock 
1000,500,100,10,4,2    30) ,… 30, (30, 20), ,… 20, (20,16), ,… 16, (16, 13), ,… 13, (13,  

12 Extended 

Tridiagonal 1 
1000,500,100,10,4,2  ,20)(20,20,...,17),(17,17,...,12),(12,12,...,10),(10,10,...  

13 Shalow 1000,500,100,10,4,2  100) ,… 100, (100,50), ,… 50, ,25)(50,(25,25,...10), ,… 10, (10,  

14 Extended Beale 1000,500,100,10,4,2    2) ,… 2, (2,3), ,… 3, (3,1),- ,… 1,- (-1,1), ,… 1, (1,  

15 Fletchr 1000,500,100,10,4,2  )(9,9,...,9  7) ,… 7, (7,5), ,… 5, (5,3), ,… 3, (3,2), ,… 2, (2,  

 

 

The )(tPs from the performance profile is the fraction of problem with a ratio performance t .A solver 

has higher efficiency when its value of )(tPs  is higher. In a set of problem P  and a set of optimization solve 
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S , a performance comparison of problem Pp by a particular algorithm Ss is measured. Let, spt , be the 

number of iterations or CPU time required when solving a problem Pp with solver Ss . The performance 

ratio is defined by
 Sst

t
r

sp

sp
sp




:min ,

,
, . From this expression, it is assumed that ],1[, Msp rr  , where spM rr ,

and Msp rr , only when problem p  is not solved by solver s . Then, graphically, a graph of )(tPs versus 

],1[ Mrt is plotted. In a graph of performance profile, the smallest performance ratio is 1 and it will be located 

at the most left of t - axis, hence, the top curve represents the most efficient method. 

 

  
Figure 1. Performance profile based on number of 

iterations 

Figure 2. Performance profile based on CPU time 

 

 

Figure 1 and Figure 2 show the performance of the CG coefficients based on number of iterations and 

central processing time per unit respectively for exact line search. The top left curved indicated how fast the 

coefficient converge while the top right determine how many test functions can be tested on given coefficient. 

From both figures, it is clearly indicate that the new hybrid HSMR
k outperformed the other hybrid CG 

coefficients.  

 

 

6. CONCLUSION  

In this paper, a new hybrid of CG algorithm HSMR
k  is proposed and examined for solving 

unconstrained optimization problem. Proofs showed that the algorithm satisfies the convergence properties 

globally under descent conditions by using exact line search. Numerical results have shown that the new 

algorithm proposed is competitive and performs better than HJHJ, HDY, HHUS and HLSCD. In the future, 

the new algorithm is going to be tested under different search rules. 
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