
Indonesian Journal of Electrical Engineering and Computer Science 

Vol. 19, No. 3, September 2020, pp. 1564~1573 

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v19.i3.pp1564-1573      1564 

  

Journal homepage: http://ijeecs.iaescore.com 

New multi-step three-term conjugate gradient algorithms with 

inexact line searches 
 

 

Abbas Y. Al-Bayati
1
, Muna M. M. Ali

2
 

1Department of Mathematics, College of Basic Education, Telafer University, Iraq 
2Department of Mathematics, College of Computers Sciences and Mathematics, Mosul University, Iraq 

 

 

Article Info  ABSTRACT 

Article history: 

Received Nov 19, 2019 

Revised Feb 8, 2020 

Accepted Mar 29, 2020 

 

 This work suggests several multi-step three-term Conjugate Gradient (CG)-
algorithms that satisfies their sufficient descent property and conjugacy 

conditions. First, we considered (39) well-known three-term CG-method,  
and we have, therefore, suggested two new classes of this type of algorithms 
based on Hestenes and Stiefel (HS) and Polak-Ribière (PR) formulas with 
four different versions. Both descent and conjugacy conditions for all  
the proposed algorithms are satisfied, at each iteration by using the strong 
Wolfe line search condition and it's accelerated version. These new suggested 
algorithms are some sort of modifications to the original HS and PR 
methods. These CG-algorithms are considered as a sort of the memoryless 
BFGS update. All of our new suggested methods are proved to be globally 

convergent and numerically, more efficient than similar methods in the same 
area based on our selected set of used numerical problems. 
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1. INTRODUCTION  

This paper considers the calculation of a local minimizer x*, say, for the problem:  

 

)(Min xf ; where RR: n f  (1) 

 

Is a nonlinear function and its gradient vectoris
kg is available. The Hessian matrix is not available. 

At the current iterative point
kx the CG-method has the following form; based on the quadratic form: 
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Here, k ; step-length, kd ; search direction, k ; parameter. Standard algorithms for solving this 

problem include CG-algorithms, with very low memory requirements, which are iterative algorithms and 

generate a sequence of approximations of the f(x). For more details, see Hassan [1]. 
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The first Three-Term CG-method was proposed by Beale [2] as: 
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And dt, is a restart direction and kkk ggy  1 . Nazareth [3] proposed another three-term 

recurrence formula: 
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Also, two different three-term CG-algorithms was considered by Zhang [4, 5], that is, 
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Zhang [6] introduced a three-term recurrence formula based on Dai and Liao [7] CG-method as 

follows: 
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where d0=-g0, 0t . The sufficient descent condition also holds independent of the used line search 

procedure, i.e. for this method:  
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A specialization of (7) was developed by Nazareth [8] where the search direction is computed as: 
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Furthermore, it is easy to see that (8) satisfies the sufficient descent condition independent of the 

line search used. Moreover, a different three-term CG-method was improved by Al-Bayati and Hassan [9], 

and their search direction, with inexact line search (ILS), is as follows: 
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Recently, a three-term CG-method was introduced by Al-Bayati and Al-Khayat [10] and their search 

direction is as follows: 
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Conjugate Gradient algorithms could be regarded as a sort of the Memoryless QN-updates, 

especially, for the BFGS update. This type of method was suggested for the first time by Perry [11] noted 

that the scalar k has been chosen so that the search directions kd and 1kd  are conjugate using ELS. Perry 
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relaxed this requirement where k  is defined by HS formula in an equivalent form, but assuming ILS, thus 

he obtained, 
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but this matrix is not of full rank; Perry modified it further as:  
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Then Shanno [12] addressed that (11) does not satisfy the actual QN-condition, so he modified it to obtain:  
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This new form of the projection matrix
1kQ has a special relationship with the BFGS update 

formula; defined by Dennis and More [13]. 
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It is easily seen that (12) is equivalent to (13) when kH replaced by I, i.e. if IH k  , the identity 

matrix. For more details, see Hassan [14]. The Memoryless BFGS method is defined by: 

 

111   kkk gQd  (14) 

)( )/()]/)(/()/[( 11111 kkk

T

kk

T

kkk

T

kk

T

kk

T

kk

T

kk

T

kk

T

kkk syysgssysgsysyyysyggd    

 
Finally, Al-Bayati, et al. [15] introduced a new CG-algorithm with different parameters, namely for: 
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2. ON MULTI-STEP THREE-TERM CG-ALGORITHMS 
Nazareth and Nocedal [16] developed a multi-step CG-method which does not need ELS; by 

defining the following matrices: 

ndddD ,.......,, 21 ; 
ngggG ,.......,, 21 ; DBG  ,  where B is an (NxN) upper triangular  

matrix with, kiforii ,,3,2,1,1  . Assuming the Hussain matrix G=I (identity matrix), to get a set of 

mutually orthogonal vectors
nggg ,.......,, 21

. Let us define: 

 

1

*

1 gg   (16a) 

 

iterate for k = 2,3,4, ...... with  

 

     *

1

*

1

*

1

*

1

* //  kk

T

kk

T

kkk ggggggg  (16b) 

 

1

**

 kkk cgg   (16c) 

 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

New multi-step three-term conjugate gradient algorithms with inexact line searches (Abbas Y. Al-Bayati) 

1567 

    















 2,10

,...4,3;/ *

2

*

2

*

2

*

22

1 k

kgggggc
c

kk

T

kk

T

kk

k  (16d) 

 

Note that, (16), for the first iterate, is equivalent to the normal set of gradients, while it gives better 

approximations for the next iterates. In this paper; we have the following (four) new CG-algorithms: 
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Wolfe line search procedure is fully described by many researchers, see for example Nocedal [17] 

and Liu and Nocedal [18]. This line search scheme has been modified by Andrei [19]. The standard Wolfe 

line search conditions can be defined as: 
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The strong Wolfe line search conditions can be defined as: 
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The accelerating Scheme for Wolfe line search technique is as follows: 
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Hence, if 0kb . The new estimation of the solution is computed as, kkkkk dxx 1 , else

kkkk dxx 1 . For this reason, using the definitions of kkk ysg ,,  and the above acceleration 

scheme can present the accelerated Wolfe line search procedure. 

NOTE: (For the rest of this paper, and for simplicity, set 
*

kg  = kg , 
*

ky  = ky ). 

 

First Multi-Step Three-Term CG-Method (N1) 

To compute the new search direction, 
1

1

N

kd 
 let us consider the QN-(BFGS update with H=I). 
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Or, equivalently: 
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Outline of N1-Algorithm. 

St1. Given 
nRx 0

, let 10   , 0t  and 00 gd  . Set 0k . 

St2. If stopping criteria (
610


kg ) satisfied, then stop. 

St3. Compute k by accelerated Wolfe line search condition (18). 

St4. The parameters k , 1t are computed from (22). 

St5. The new search direction
1
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 is computed from (23). 
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Second Multi-Step Three-Term CG-Method (N2) 

To compute the new search direction
2

1

N

kd 
 let us consider Al-Bayati [20] QN-update with H=I 
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Outline of N2-Algorithm. 

All the steps as in Algorithm (N1) except: 

St4. The parameters k , 2t are computed from (27). 

St5. The new search direction
2

1

N

kd 
 is computed from (28). 

 

Third Multi-Step Three-Term CG-Method (N3) 

To compute the new search direction, 
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kd 
, let us consider Oren [21] QN-update with H=I. 
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Outline of N3-Algorithm. 

All the steps as in Algorithm (N1) except: 

St4. The parameters k , 3t are computed from (33). 

St5. The new search direction
3

1

N

kd 
 is computed from (34). 

 

Fourth Scaled Multi-Step Three-Term CG-Method (N4) 

Here, we describe our new CG-method (N4) as a scaled CG-algorithm; (for details of scaled CG-algorithms;  
see Al-Bayati, at el. [22] and Hassan et al. [23]). This algorithm is independent of the line search, at every  

step. The search direction 
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 is computed as: 
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Outline of N4-Algorithm. 

All the steps as in Algorithm (N1) except: 

St4. The parameters k , kp , k are computed from (36). 

St5. 
SPR

k and the new search direction
4

1

N

kd 
 are computed from (37) and (38) respectively. 

 

3.1 CONVERGENCE ANALYSIS 

Descent and global convergence conditions properties of HS and PR methods can be found directly in 

Hestenes and Stiefel [24] and Polak and Ribière [25]. To show that our new multi-step TTCG-algorithms 

(N1, N2, N3, and N4) have a descent and global convergence properties using Wolfe conditions (18). 

Consider 

 

Theorem-I. 

Suppose that Wolfe conditions (18) are satisfied, then new search directions, N1, N2, N3, and N4 defined by 

(23), (28), (34), and (38) satisfy the descent property, i.e.  
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Therefore, our new algorithms N1, N2, N3, and N4 are descent. 

 

Assumption (H): 

(a)- "The level set  )()(,: 1xfxfRxxS n   is bounded, and 1x  is the starting point".  

(b)- "In a neighborhood   of S, f is continuously differentiable and its gradient is Lipchitz continuously, 

namely, there exists a constant 0L  such that "  kkk xxxxLxgxg ,,)()( ". 

under these assumptions on f there exists a constant 0  such that Sxxg  ,)( .  

We know that the new search directions generated by (23), (28), (34) and (38) are always descent directions. 

To ensure the global convergence property of these algorithms let us consider: 

Theorem-II  

Assume that (H, a) and (H, b) hold, and consider the algorithms (2), (23), (28), (34), and (38) where N1, N2, 

N3and N4 are descent directions and k computed by (18). Suppose that f is a uniformly convex function on 

S, i.e. there exists a constant   such that: 
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Consider CG-algorithms (2), (23), (28), (34) and (38). From "Lipschitz continuity", we get kk sLy  . 

Furthermore, from uniform convexity
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(H, b) and the above inequalities, we get: 
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Therefore, putting (48) and (49) in (17a) and (17b) yields: 
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Hence, putting (53) in (17c) yields: 
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3. RESULTS AND DISCUSSION 

Here, we report the performance of the new proposed CG-algorithms, namely (N1, N2, N3, N4) on 

a set of (39) large-scale nonlinear test problems; CUTE library (see Bongartz [26] for details of these test 

problems) using codes written in Fortran. We have taken (10) numerical experiments with N=1000, 4500, 
10000 for each test problem. To assess the reliability of our new proposed method, we have tested it against 

other similar CG-algorithms with the stopping criterion 610


kg or when the iterations exceed 10000 or 

the number of function gradient evaluations (NOFG) reach 15000 without satisfying the stopping criteria. In 

all these tables: N = "Dimension of the problem"; NOI = "Number of iterations"; TIME = " Total time 

required to complete the evaluation process for each test Problem". All our numerical results are represented 

in Figures 1, 2, 3, 4, 5, and 6. 

Figures 1 and 2 compares N1, N2, N3, and N4 against TT(BS; PR and HS) due to NOI. Figures 3 

and 4 compares N1, N2, N3, and N4 against TT(BS; PR and HS) due to NOFG. Figiures 5 and 6 compares 

N1, N2, N3, and N4 against TT(BS; PR and HS) due to TIME. 
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Figure 1. Performance due to NOI Figure 2. Performance due to 

NOI 

Figure 3. Performance due to 

NOFG 

   

   

  
 

   

Figure 4. Performance due to 

NOFG 

Figure 5. performance due to 

Time 

Figure 6. performance due to Time 

 

 

4. CONCLUSION 

In this work, we have investigated new three-term multi-step search directions defined in (17).  

The goal of these new algorithms is a multi-step property that combines three-term CG-techniques with 

memoryless QN-updates. Our theoretical implementation related to the requirement of sufficient descent 

property and ensures the property of global convergence. Also, we have presented four new three-term multi-

step CG-algorithms, which they use Wolfe's and it's acceleration as a line search subprogram. Moreover, Our 
numerical results show that our new algorithms have robust numerical results as compared to other similar 

algorithms in the same field. 
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