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1. INTRODUCTION  
Previously, the issue of large-dimensional optimization was solved using widely derived methods 

such as CG techniques, especially when general functions existed. This method is designed for unconstrained 

optimization in the following manner: 

 

    ( )                             (1) 

 

The variable here is a vector, and function f is a continuous and nonlinear function. The approach 

to the associated gradient methods is a repetitive method that defines the function at the iterative points 

i.e. at    (    (  )), The approach to the associated gradient methods is a repetitive method that defines 

the function at the iterative points     (  ) and the second derivative of the function is the formula  

    (  ) in the iteration k (Hessian matrix).“This method generates a sequential repeat of the step 

calculated from the following formula: 

 

             (2) 

 

              and    is the measure of the step between each successive point [1]. The strong 

Wolfe (SWC) line search is one of the important methods to calculate the step scale when solving general 

functions and can be defined    as a form [2]: 
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Multiplied by the search direction in which it is: 

 

     {
      if     
            if      

 (4) 

 

The CG method depends mainly on the selection of a parameter between 0 and 1 which is the 

parameter    to illustrate its importance and types, its main definitions can be read [3].”The well-known 

formulas for   are the Fletcher-Reeves (FR) [4], Hestenes-Stiefel (HS) [5] and Polak-Ribière (PR) [6, 7] 

formulas, which are specified by: 

 

  
   

    
     

  
   

 , (Fletcher Reeves (FR),1964) 

 

  
   

    
   

  
   

 , (Hestenes Stiefel (HS),1952) 

 

Such that ‖ ‖ known as the two-point Euclidean distance. The measure of the extent of 

accompaniment is through the achievement of one of the Conjugacy conditions, which ranges from the usual 

to the general and the general ones in the following formulas: 
 

    
       (5) 

 

    
         

    (6) 
 

    
          

     (7) 
 

S.t. t is a positive scalar, the last version is the widest of the three formulas, from which the rest can be 

derived and called a formula Dai and Liao [8]. To facilitate understanding of these formulas         
  and           . Many kind of research have discussed the convergence of methods used for 

parameters FR, HS and PR s.t. Zoutendijk [2] and Al-Baali [9]. Based on these theories in the previous article, 

many researchers have developed and updated the formulas of the correlation parameter as in [10-18].” 

Swarm intelligence algorithms are of great importance at this time, namely, Metaheuristics 

algorithms, for example the Cuckoo bird algorithm, where cuckoo birds behave poorly to use other birds 

nests and lay their eggs. [19] Birds that host cuckoo eggs do two things, either to leave their eggs or to leave 
those nests. While the cuckoo adjusts its eggs by simulating the color and pattern of host eggs. There are 

rules that this Cuckoo algorithm follows in its behavior ((1) Distribute eggs randomly on other birds nests 

each time. (2) Breed future generations at the best nest (good eggs). (3) Make sure the eggs that the cuckoo 

had in the host birds fixed the number for each nest with the probability pα ∈ [0, 1], i.e. this method,  

give new random solutions and replace the nest host.” 

“According to the rules (CS) there can be one solution and there can be a set of solutions according 

to the number of eggs in the nest. According to this conclusion, each bird is likely to place only one egg in 

the nest in the same original form, giving us that each nest contains eggs of multiple traits representing a set 

of solutions, as a general idea. Mathematically, these types of issues are reduced to the maximum 

transformation of problems with respect to the exact equation. Here the objective function referred to as the 
fitness function [20]. For a random search, the animal search path is randomly chosen without any 

discrimination as the next step depends on (location - current status - likely to move to your next location). 

The implicit trend depends on the probability of the mathematical model. The cuckoo algorithm can be 

written clearly. It is the search for x that reduces the function of the target function f (x) and through these 

rules, we conclude that for cuckoo nest i, the solution for the new generation can be defined as [21]: 

 

     
    

     Lévy (  ) (8) 
 

Let it be (      ) the amount of possible flight Lévy is possible,   multiplication symbol 

meaning double entries and After the search went beyond random search behavior in the nature of the 

animals when the characteristics of the behavior converge Lévy flight. We write the distribution: 
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                           (9) 

 

N denotes that it follows the natural distribution by the number of frequencies k is. How many 

times do we produce the numbers randomly, obey Lévy flights, Calculate the amount and direction of the 

step in a random way using the Levy distribution contained in the two search papers [22-23]. So, it is clear 

to us that if the Cuckoo's egg is very similar to host eggs, it may lead to the disappearance of this Cuckoo's 

egg, so the fitness must be linked to different solutions and it is recommended that a random path be 

conducted in a biased manner with some random steps size [24-25].” 

We will organize our search as follows: In Section 2, in fact, will derive two new formulas for CG-
algorithm with a descent characteristic of these two algorithms. In Section 3, the theoretical side and derive 

the attributes of the global convergence of the two new CG-algorithm under some assumptions. In Section 

4, combine the CG-algorithm with the Cuckoo’s-algorithm to reinforce each other. In Section 5, to assign 

the search to the numerical side by applying the two integrated algorithms on 10 unconstrained functions 

and comparing them with the Cuckoo algorithm.” 

 

 

2. TWO NEW FORMULAS FOR CG 

In this part of the article, we will give an update of the parameter of   
   in two forms once in two 

and three times with a given derivation of the two formulas. All the proposed parameters were derived using 

the normal conjugacy condition (5) as in the following equations 

 

    
     

 

  
   
       

     (10) 

 

By dealing with the normal conjugacy condition (5), and when multiplying the two ends of (12) by   : 

 

  
       

 

  
   

  
        

    
    

 

   
 

  
   

  
        

    
    

 
 

  
   

  
        

    
    

 

  
     

  
    

   
   

    

 

  
  

  
  

  
     

 

And when taking the square root of the parties hence: 

 

  
      √

  
     

  

  
   (11) 

 

Now we can consider that the formulas (10) and (11) are the first updated algorithm, and to develop 

them we add a third term to the new search direction of the format: 

 

    
     

 

  
   
       

       
    (12) 

 

In the same way as the derivation of the parameter    we derive the third term parameter as well: 
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,(  
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     - (13) 

 

The last two in (12-13) represent Formula 2 for modernization the formula of   
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3. PROVE CONVERGENCE OF THE CG ALGORITHM 

To prove in this part of the article that the new algorithms in the use of mathematical tools in 

theoretical analysis led to a comprehensive convergence and gave efficiency when compared to the basic 

algorithm under the conditions of the line of search and retrieval, now we provide the basics of convergence 

analysis used, For any theory prepared, suppose that,    never equal to zero for all    , otherwise,  

a stationary point was found, including the following basics on the approved function: 

 

3.1.  Assumption 

When    is exists, then the level set   *   ( )   (  )+ is bounded, namely there exists a number; 

 

(   ) such that‖ ‖   ,  ∈   (14) 

 

In some N neighborhoods of S,   it can be distinguished continuously differentiable and  is 

Lipschitz continuously added, namely, there exists a constant    such that 

 

|| ( ) - g(  )||    L||x -x ||  x,x ∈   (15) 

 

3.2.  Theorem (descent condition-2) 

Let      and      be generated by two new Algorithm (10-13), respectively, and let    be 

obtained by the SWC (3), then the direction holds s. t. 
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       (16) 

 

Proof: 

Multiplying (12) by       we have:  
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Where     
      

      
      

      For the first algorithm, when eliminating the last term and applying 
the last condition to it, we get sufficient descent for this algorithm as follows: 
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Let's complete the descent proof of the second algorithm, in addition, and using Powell restart criteria  
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Hence, 
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3.3.  Theorem 

Let Assumptions (3.1) A holds and consider any CG-algorithm (2-4), where      is a satisfied (20) 

and    is obtained by (3), if 

 

∑
 

‖  ‖
        (17) 

 

Then, we have  
 

   
   

   ‖  ‖    (18) 

 

Let us now give the theory of global convergence using conditions in previous theories of proof:” 

 

3.4.  Theorem 

Let Assumptions (3.1) B hold. Assume that          , for every, k≥0, there exists a positive 

constant     (     ) as the constants    and    such that    ‖  ‖    . Then, the two new scheme and 

   is determined by the SWC search, either      for some k or    
   

   ‖  ‖    

Proof: 

Because the descent condition holds, we have ‖  ‖   .using the Lipchitz condition 
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This implies   ∑
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3.5.  New 1 (2-Term) CG-Algorithm: 

Step 1: Inserts: initialized Cuckoo parameter (pα= 0.25, N-IterTotal=1000)  

Give initial CG parameter: variable   ∈  
 ,  ∈ ,     - and  ∈ ,   - . Let k = 0,       . 

Step 2: The best amount of step to algorithm results: set    from SWC in (3), calculate the parameters used 

by the new 1 search direction (10-11). 

Step 3: Find the new point happened      as (2-4).  

Step 4: Using this point in (9) to evaluate the new Lévy flight. 

Step 5: Evaluate the new solution (8). 

Step 6: If the value of the total number of duplicates has ended, stop and print the new value is the best and 

not adjusted in  

k = k+1 and go to Step (2). 

 

3.6.  New 2 (3-Term) CG-Algorithm: 

Step 1: Inserts: initialized Cuckoo parameter (pα= 0.25, N-IterTotal=1000)  

Give initial CG parameter: variable   ∈  
 ,  ∈ ,     - and  ∈ ,   - . Let k = 0,       . 

Step 2: The best amount of step to algorithm results: set    from SWC in (3), calculate the parameters used 

by the new 1 search direction (12-13). 

Step 3: Find the new point happened      as (2-4).  

Step 4: Using this point in (9) to evaluate the new Lévy flight. 

Step 5: Evaluate the new solution (8). 

Step 6: If the value of the total number of duplicates has ended, stop and print the new value is the best and 

not adjusted in 

k = k+1 and go to Step (2). 

 

 

4. NUMERICAL RESULTS: 

“In this part of the article, the new algorithms were implemented on ten test functions taken from the 

source Jamil and Yang [26] and we used a program provided by Yang [27]. It has been modified to fit with 

the new algorithms and implemented the program within the MATLAB R2018b during PC CORE I5 laptop. 

The results are categorized into 3 main categories. The results of the new algorithms were compared with the 

original Cuckoo algorithm (OCA) as follows: 

1- n=25 &NOI=5000 

2- n=50 &NOI=100000 

3- n=250 &NOI=500000 

 

And finding the      of the function that showed the following Table 1 the efficiency of the new algorithms. 
If we observe the tables closely and we understand the values, we note the superiority of the 

performance of the new algorithms on the algorithm of the patch to find the miniaturization of the test 

functions used within the article in the following numbers: 

a) The first algorithm (two-term) has exceeded 10 times the cuckoo algorithm and different frequencies. 

b) The second algorithm (three-term) has exceeded 20 times the cuckoo algorithm and with a different 

frequency. 
 

 

Table 1. The performance of the two new CCG algorithms compared to the original algorithm 

Function name Dimension 
     

OCA Vs. (CCG-1 - CCG-2) 

Sphere 

n=25 & NOI=5000 8.2807e-08 Vs. (5.316312e-19 - 1.704955e-18) 

n=50 & NOI=100000 1.0777e-06 Vs. (9.330753e-21 - 1.132487e-19) 

n=250 & NOI=500000 9.8068e-05 Vs. (3.237586e-19 - 2.036010e-19) 

ALPINE 1 

n=25 & NOI=5000 0.4933 Vs. (1.389594e-16 - 2.460353e-19) 

n=50 & NOI=100000 0.7902 Vs. (2.354100e-18 - 3.567730e-20) 

n=250 & NOI=500000 0.8511 Vs. (2.208516e-21 - 1.045163e-18) 

BROWN 

n=25 & NOI=5000 3.2250e-04 Vs. (1.527760e-18 - 1.839775e-18) 

n=50 & NOI=100000 0.1256 Vs. (1.037208e-18 - 7.686261e-19) 

n=250 & NOI=500000 0.939 Vs. (1.585121e-21 - 1.192826e-19) 

EXPONENTIAL 

n=25 & NOI=5000 -1.0000 Vs. (2.019619e-19 - 8.954126e-18) 

n=50 & NOI=100000 -1.0000 Vs. (2.614323e-19 - 1.852968e-19) 

n=250 & NOI=500000 -0.9999 Vs. (7.179282e-20 - 5.300398e-20) 
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Function name Dimension 
     

OCA Vs. (CCG-1 - CCG-2) 

GRIEWANK 

n=25 & NOI=5000 3.4194e-07 Vs. (5.667865e-19 - 2.620217e-18) 

n=50 & NOI=100000 1.9925e-04 Vs. (1.730804e-19 - 2.656963e-18) 

n=250 & NOI=500000 9.5789e-04 Vs. (1.665153e-18 - 2.649322e-19) 

PERIODIC 

n=25 & NOI=5000 1.0196 Vs. (1.560061e-17 - 7.818540e-21) 

n=50 & NOI=100000 1.0150 Vs. (2.073343e-18 - 1.463280e-19) 

n=250 & NOI=500000 1.0145 Vs. (1.168592e-19 - 9.218664e-20) 

POWELL SUM 

n=25 & NOI=5000 2.5433e-08 Vs. (1.672876e-18 - 1.553991e-19) 

n=50 & NOI=100000 4.8484e-06 Vs. (4.516643e-19 - 2.918082e-19) 

n=250 & NOI=500000 0.0139 Vs. (8.660050e-19 - 8.920962e-20) 

SALOMON 

n=25 & NOI=5000 0.2999 Vs. (5.442767e-18 - 2.685704e-18) 

n=50 & NOI=100000 0.3999 Vs. (3.940597e-19 - 3.792677e-19) 

n=250 & NOI=500000 0.4999 Vs. (4.527411e-20 - 7.371142e-20) 

SCHWEFEL 2.23 

n=25 & NOI=5000 4.0638e-12 Vs. (1.844583e-17 - 3.526535e-18) 

n=50 & NOI=100000 1.0075e-18 Vs. (2.361283e-21 - 6.668129e-22) 

n=250 & NOI=500000 1.1731e-10 Vs. (7.059524e-24 - 1.478208e-20) 

ROSENBROCK 

n=25 & NOI=5000 19.781 Vs. (2.511745e-17 - 7.962472e-18) 

n=50 & NOI=100000 20.9467 Vs. (6.798510e-19 - 6.475936e-17) 

n=250 & NOI=500000 23.6746 Vs. (1.074577e-19 - 8.996584e-24) 

 

 

5. CONCLUSIONS 

We note that from our numerical results that the two new algorithms perform better than the basic 

algorithm (Cuckoo) by 90%, which indicates that it is not possible to use these two algorithms mixed with 
each other to improve the performance of the associated gradient algorithm through the cuckoo algorithm 

using some distinct techniques within the two methods. 
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