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 Medical imaging is a growing field due to the development of digital 
technologies that produce 3D and even 4D data. The counterpart to the 
resolution offered by these voluminal images resides in the amount of 

gigantic data, hence the need for compression. This article presents a new 
coding scheme dedicated to 3D medical images. The originality of our 
approach lies in the application of the Quinqunx wavelet transform coupled 
with the SPIHT encoder on a database of medical images. This approach 
achieves much higher compression rates, while maintaining a very 
acceptable visual quality. 
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1. INTRODUCTION  

Medical imaging has made very significant progress in recent years with the development of 

techniques that produce 3D data more and more accurate but in return for more voluminous. Some of these 

images are intrinsically volumic while others correspond to a succession of 2D images (slices images) [1-5]. 

The increasing increase in storage capacity provides a partial answer to this problem but remains insufficient. 

In addition to the issue of archiving, the transmission of these images on bandwidths by nature is  

also a problem. 

Therefore, the compression of volume medical images cannot be avoided: it involves reducing the 

number of bits necessary for the faithful representation of the original image and to access only the required 

information, thus facilitating the transmission and allowing a remote access to data. 
In this paper we present a 3D medical image compression approach based on the Quinqunx wavelet 

transform coupled with the SPIHT encoder on a medical image database. This is recognized as a 

decorrelating transformation very effective for this type of images [6]. This provides a significant 

improvement in the rate-distortion compromise. The numerical and visual results produced by the coupling 

of Quincunx and SPIHT on the images are very promising. 

 

 

2. RESEARCH APPROACH 

The general scheme of our compression approach is shown in Figure 1. The 3D image contains z 

slices [6-8] (one slice represents a 2D image (x, y)), in the compression phase, in the first step, a quincunx 

transformation is applied on the slice i (i = 1 to z). Second, we enter the result of the transformation in the 
progressive encoder SPIHT (set of partitioning in hierarchical trees) is a compression algorithm for the 

compression of wavelet transform coefficients. It was introduced by Amir Said and William A. Pearlman in 
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1996 [9]. More concretely, SPIHT progressively transforms these coefficients into a bit stream [10-11].  

This stream can be cut anywhere. During decoding, the coefficients are more and more refined. Now we have 

a compressed image. 

The decompression step reverses the compression process until a reconstructed image is obtained. 

This process is repeated until the last slice (z slice) of the 3D image. Finally, we get a 3D image after 

grouping all slices (1...z). 

 

 

 
 

Figure 1. Proposed overall scheme of compression 

 

 

3. QUINCUNX WAVELET TRANSFORM 

The purpose of the quincunx wavelet is to improve the boundaries of separable wavelets. To 

overcome these limitations, wavelets based on staggered sampling suitable for analyzing the entire image and 

not the rows and columns. The quincunx method used in this article is described in [12-13].  

 

 

4. SPIHT ENCODER 

The SPIHT algorithm [14-17] uses the principles mentioned in EZW while proposing to recursively 
partition the coefficient trees. Thus, where EZW coded an isolated insignificant coefficient ('Z'), SPIHT 

performs a recursive partitioning of the tree so as to determine the position of the significant coefficients in 

the progeny of the considered coefficient. The significant coefficients are coded in a manner similar to EZW: 

their sign is sent as soon as they are identified as significant and they are added to the list of coefficients to be 

refined. This algorithm also works by bit planes. It offers outstanding performance. The bits sent during the 

signifiance pass correspond to the program executed at the encoder during the execution of the algorithm of 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

3D Medical image compression using the quincunx wavelet coupled with SPIHT (Benlabbes Haouari) 

823 

classification into significant and insignificant coefficients. By following the same program, the decoder 

remains synchronous with the decisions of the encoder and finds the same classification. This  

algorithm is based on the management of three lists, significant coefficients (LSP), insignificant  

coefficients (LIP) and insignificant sets (LIS) [18-20]. With a significance threshold divided by two at each 

iteration, and whose initial value is transmitted to the decoder, the algorithm proceeds as follows.  

The list of significant coefficients is initially empty, while the list of insignificant coefficients contains the 

roots of each tree (coefficients of the low band) and the list of insignificant sets contains all the  

descendants of each tree. This initial partition is segmented recursively by means of two rules. If a set of 

descendants of a node is significant, it is separated into four direct child coefficients of this node, and all the 

other descendants [18-23]. 
Direct wires are added to the LIP or LSP depending on their significance. If at least one element of 

all other descendants is significant, this set is separated into four insignificant sets added to the LIS. Treating 

the coefficients in groups of four allows efficient entropy coding later. As in EZW, the refinement pass 

consists of progressively coding the least significant bits of the significant coefficients. Since the coefficients 

are coded in groups of four, it is interesting to treat them globally in order to exploit entropy of order greater 

than 1. The coefficients can only pass from the insignificant state to the signifying state; the size of the 

necessary alphabet to represent these changes varies according to the number of coefficients already 

signifying in the group [18-23].  

 

 

5. ASSESSMENT MEASURES 
Peak Signal to Noise Ratio (PSNR) is a metric for calculating degradation in a digital image, 

especially in image compression. 

The PSNR between two tranches (original slice and their compressed slice) is calculated by the 

following formula: 
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The average PSNR between the original 3D image and their compression result is calculated by the 

following formula: 
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Structural SIMilarity (SSIM), measure the visual quality of a compressed image, compared to the 

original image. The similarity compares the brightness, contrast and structure between each pair of vectors, 

the structural similarity index (SSIM) between two signals and calculated by the following formula:  

 

       , , . , . ,SSIM x y l x y c x y s x y
 (3) 

 

Finally, the quality measurement can provide a map of the quality of the local image, which 

provides more information about the degradation of image quality. 

For application, we need a single overall measure of the overall quality of the image that is given by 

the following formula:  
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Where Slice  and Slice  are the reference and degraded images, respectively, Slicei and Slicêi are 
the contents of the images to the local window i. 

M is the total number of local windows in the image. The MSSIM values show greater consistency 

with the visual quality. 

The average MSSIM between the 3D original image and their compression result is calculated by 

the following formula: 
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6. EXPERIMENTAL RESULTS  

We tested the approach on 3D images "image 1,size (256,256, 108)" [24], "image 2, size 

(256,256.5)" [25],"image 3 (256, 256.6)" [26] and "image 4 [27].  
As shown in Figure 6 and the graphs in Figures 7 and 8 below, for a bit rate = 0.3 bpp, the results 

are excellent (PSNR and MSSIM), which gives reconstructed images of very good quality with a very high 

compression ratio. We conclude that the effectiveness of the presented algorithm for 3D medical images. 

Original image 1 till 5 as shown in Figures 2-5. 

 

 

  
 

Figure 2. Original image 1 

 

 

  
 

Figure 3. Original image 2 

 
 

 
 

 

Figure 4. Original image 3 
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Figure 5. Original image 4 

 
 

 
 

 
Bitrate = 0.10 bpp 

Ratio compression = 98.75 % 

MPSNR = 20.97 dB 

MMSSIM = 0.58 

 
 

Bitrate = 0.20 bpp 

Ratio compression = 97.50 % 

MPSNR = 27.71 dB 

MMSSIM = 0.64 

 
 

 
Bitrate = 0.30 bpp 

Ratio compression = 96.25 % 

MPSNR = 32.38 dB 

MMSSIM = 0.68 
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Bitrate = 0.40 bpp 

Ratio compression = 95.00 % 

MPSNR = 36.20 dB 

MMSSIM = 0.72 
 

 
Bitrate = 0.50 bpp 

Ratio compression = 93.75 % 

MPSNR = 39.44 dB 

MMSSIM = 0.74 
 

 
 

Bitrate = 0.60 bpp 
Ratio compression = 92.50 % 

MPSNR = 42.26 dB 

MMSSIM = 0.76 
 

 
 

Bitrate = 0.70 bpp 

Ratio compression = 91.25 % 

MPSNR = 44.80 dB 

MMSSIM = 0.78 

 

 
 

Bitrate = 0.80 bpp 

Ratio compression = 90.00 % 

MPSNR = 47.09 dB 
MMSSIM = 0.80 

 

 
 

Bitrate = 0.90 bpp 

Ratio compression = 88.75 

MPSNR = 49.24 dB 
MMSSIM = 0.81 

 

 
Bitrate = 1.00 bpp 

Ratio compression = 87.50 

MPSNR = 51.26 dB 

MMSSIM = 0.82 
 

Figure 6. MPSNR and MMSSIM variation results for image 1 
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Figure 7. MPSNR variation for compressed images 2, 3 and 4 

 

 

 

 
 

Figure 8. MMSSIM variation for compressed images 2, 3 and 4 
 

 

7. CONCLUSION 

In this paper, we proposed a 3D medical image compression approach using the quinqunx wavelet 

transform coupled with the SPIHT encoder. This approach has been tested on 3D medical images (2D slices), 

from bitrate equal 0.3 bpp, the results obtained are satisfactory in terms of PSNR and MSSIM; interesting 

compression rates and good quality of reconstructed images.  
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