
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 17, No. 2, February 2020, pp. 845~849

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v17.i2.pp845-849 845

Journal homepage: http://ijeecs.iaescore.com

JAVA and DART programming languages: Conceptual

comparison

Afaf Mirghani Hassan
Computer Department, Tabuk University (Branch Duba), Saudi Arabia

Article Info ABSTRACT

Article history:

Received Jun 3, 2019

Revised Aug 5, 2019

Accepted Aug 19, 2019

 This paper elaborates on the concepts of a new programming language

“Dart”, which has been developed by Google and considered for future use.

Here, we compare it to the most famous, real time, and updated language

“Java”. This is to define similarities and differences between the two

important languages, explain programs’ behavior, with a focus on

investigating alternative implementation strategies and problem definitions.

We used programming languages’ concepts and terminologies to compare

between the main characteristics of the two languages, Dart & Java. Keywords:

Control statement

Dart

Data type

Java

Semantic

Subprogram

Copyright © 2020 Institute of Advanced Engineering and Science.

All rights reserved.

Corresponding Author:

Afaf Mirghani Hassan,

Computer Department,

Tabuk university,

(Branch Duba), Saudi Arabia,

Email: drafafmirg@gmail.com

1. INTRODUCTION

Google has released a new language aimed at developing complex, Google-scale web applications

In October 2011. The aim was to develop a language that is better language for the web than JavaScript.

That was because of the frustration with the slow progress in evolving JavaScript, partly caused by the so

many interested parties. The main goal was to sustain the dynamic nature of JavaScript, but have a better

performance and is extendable to tooling for large projects. It would also be able to cross-compile to

JavaScript. This language was given the name Dart [1].

Dart is a general purpose programming language. It is a new language in the C tradition,

designed with ease of use, familiarity to the vast majority of programmers, and scalability in mind. It is

purely object-oriented, class-based, programming language. Dart is intended to provide a platform that is

specifically crafted to support future needs and emerging software/hardware platforms. As such it hides low

level details of the underlying platform, while enabling programmers to use the powerful facilities new

platforms have to offer [2].

It is an open source, structured language to create complex, browser-based web applications.

Applications usually run in Dart either by the browser directly, which supports Dart code, or by compiling

code to JavaScript. Dart has a familiar syntax, and it’s class-based, It has a concurrency model called isolates

that allows parallel execution. In addition to running code in web browsers and converting it to JavaScript,

it can also run code on the command line [3-10]. For client side web app development, Dart has many

advantages over JavaScript. These include but are not limited to improved speed, enforcement of

programmatic structure, and improved facilities for software reuse. Best of all, Dart is automatically

converted to JavaScript so that it works with all web browsers, Dart is a fresh start, without the baggage of

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 17, No. 2, February 2020 : 845 - 849

846

the last two decades of the webDart language Designer has pragmatic choice to make smooth experience

coding [3-10].

Java is an efficient programming language likable by developers and so is Dart. Both languages

have powerful concepts such as object creation, concurrency, serialization, reflection, and many more, all in

real time [3, 4, 11-17]. Java has evolved over time; newer versions of Java increase the need for specific best-

practices advice for multiple paradigms, functional interfaces, lambda expressions, method references, and

streams, Default and static methods in interfaces, resources’ statement, New library features such as the

Optional interface, java.time, and factory methods for collections. All of that, so developers can convert to

dart with relative ease [11-17]. One example of a Dart implementation is Flutter, a mobile app SDK from

Google, which has Java integrity. The app Create a simple Dart class, Use optional parameters

(overloading), Create a factory, Implement an interface, Use Dart for functional programming [3-12].

The usability and familiarity of the language makes it a good candidate to implement complex engineered

systems such as those in [18-21].

We would like to find a geometric recognition language, a graphics interpreter, a rule-based control

interpreter, and an object-oriented language interpreter to work together all at once [22]. One good practice is

to structure a complex program as a collection of languages, each of which provides a different viewpoint,

different way for different program elements [22]. It might be this is the reason why our programs are

becoming increasingly complex thinking more explicitly about languages might be the best way to deal with

this complexity. The basic idea is that the interpreter itself is just a program that is written in some language,

whose interpreter is another program, which is written in some other language etc.

One main objective or strategy concept of a programming language is to distinguish itself from

other languages based on the characteristics and usages or utilities of the language. In this study, we try to

investigate the programming language Dart, by comparing to the important programming language (JAVA),

concentrating on the similarities and differences of the two. Section 2 detals this comparison and present it in

an easy readable table format. The paper is concluded in Section 3.

2. DART AND JAVA: COMPARISON OF CONCEPTS

Google is a real time interactive system application dealing with search, electronic mail, translation,

play, images, drive and many other applications. Hence, the company is in a constant search to develop

programming languages that connect all of these, and also future applications. Dart programming language

has come to meet this need [23].

Java is considered a general-purpose programming language while Dart is a client-optimized

programming language. There are many similarities and differences between the two programming

languages. They are similar in criteria such as readability, reliability, cost, portability, and generality [4].

Both languages are writable and well-defined or precise languages. The two languages are roughly OOP

languages (Object Oriented Programming), they are classes’ structure, and both based on C structure i.e.

similar software syntax in C. Also, the two of them are web software languages, and both are lovely

languages for developers [24].

Some of the differences between the two are: while Java is general purpose language, Dart is

considered Google specific language. Dart is a class structure same as Java, however in Dart class code

cannot be written. This is in contrast to Java, a class-based object-oriented programming language not a pure

object- oriented one. That is, Java has a second scoping mechanism (Package Scope) that can be used in

place in all classes in a package, in case there are no access control modifiers that are visible throughout the

package [6].

Table 1 shows a Comparison between Dart and Java in terms of behavior, syntax, sematic, value,

environment, expression, procedure and conditional clauses. With Dart we can create applications on the

web, smart phones and servers [22-26].

Table 1. Comparing Dart and Java
 Comparison points Java Dart

1 Authority Sun company, now Oracle Google company

2 Generation Updated interactive language Future language

3 Script language Can be Web programming Interactive web language
4 Syntax -many similar structure as in Dart

- contain keywords

 with Construct class as in java

 not contain keywords

 depends on has letters (_) that is enters to

special library words or commands.
5 Sematic Example is Java’s static semantics rule: else

matches with the nearest if.

Example is the Flutter semantics package.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

JAVA and DART programming languages: conceptual comparison (Afaf Mirghani Hassan)

847

 Comparison points Java Dart

6 Portability (Java Virtual Machine) JVM concept, JIT(Just In
Time) compilers

Working on different platforms

7 C language

architecture

C, java are imperative language (same

categories)

Based On

8 Java Script language similar syntax supports a multi-tasking feature like JavaScript

9 false result more than one false result (null, false, 0) one false result (False),

10 Cascade Notation N/A (..)
11 Comment // //

12 Run UNICODE, ASCII UTF-32 code points of a string

13 Asynchrony support code run line by line libraries are full of functions that
return Future or Stream objects

14 Exception Handling

and Event Handling

-All exceptions are objects of classes

Throw able (Error- exception).
-Java Swing GUI Components.

-Java Event Model

Exceptions: exception, error, throw, Catch

15 Data Types Defined all:
-Primitive Data Types

-Character String (String class)

-Array (index integer types) -Array Initialization
string object- support jagged arrays

-not support unions

-allows replace pointers

Defined as:
Built-in types (numbers, strings, Booleans, lists

(also known as arrays), sets, maps, runes (for

Unicode characters in a string), symbols).
Initializing list

16 Expressions and

Assignment
Statements

-assignment statement produces a result and can

be used as operands
-Mixe Mode (widening assignment)

Specific defined operators You can override

many of these operators, as described in
Overridable

17 Control Structures

-all control expression must be Boolean.

-Java's static semantics rule: else matches with
the nearest if.

-Multiple-Way Selection (Switch).

Unconditional labeled e (break).
-labeled versions of continue.

-do not support goto statement.

 Control flow statements (if and else,

 For loops, while and do-while loops

 break and continue, switch and case
assert)

18 Libraries Use import to specify how a namespace from one

library

Use import to specify how a namespace from

one library

19 Lexical scope :: inherent class follow the curly braces outward

20 Subprograms

-All parameters are passed by value.
-Object parameters are passed by reference.

Require Type Checking Parameters.

--Array inherits a named constant length.
-allow programmers to write multiple versions of

subprograms with the same name.

-predefined overloaded subprograms
-allow Generic Subprograms

-Function. Type (class objects, Anonymous,
scope, Lexical closures, testing equality.

-Methods provide behavior for an object.

-Callable classes.
-Annotations for public APIs, (function works

if you omit types).

-allow Generic Subprograms

21 An Example

structure

class StackClass {

private:
private int [] *stackRef;

private int [] maxLen, topIndex;

public StackClass() { // a constructor
stackRef = new int [100];

maxLen = 99;

topPtr = -1;
};

public void push (int num) {…};

public void pop () {…};
public int top () {…};

public boolean empty () {…};

}

// Define a function.

printInteger(int aNumber) {
print('The number is $aNumber.'); // Print to

console.

}

//This is where the app starts executing.

main() {
var number = 42; // Declare and initialize a

variable.

printInteger(number); // Call a function.
}

3. CONCLUSION

Dart is a powerfull, interactive language that is expected to get widely adopted by developers the

same way Java is adopted today. Dart code can be reused for either smat phones (clients) or servers; howver,

it still lacks the general-purpose property of Java. In domain-specific (scientific, business, artificial

intelligence, web and system) applications, The programming language’s domain is extended to the special

objectives of that domain; In this capacity Dart can be considered as a domain-specific programming

language. Dart as a domain-specific programming language will be one of the Web Software with three

branches of web or Eclectic collection of languages software, which are markup (HTML), script (PHP) and

general purpose(JAVA).

https://api.dart.dev/stable/dart-async/Future-class.html
https://api.dart.dev/stable/dart-async/Stream-class.html
https://dart.dev/guides/language/language-tour#overridable-operators
https://api.dart.dev/stable/dart-core/Function-class.html
https://dart.dev/guides/language/language-tour#callable-classes
https://dart.dev/guides/language/effective-dart/design#prefer-type-annotating-public-fields-and-top-level-variables-if-the-type-isnt-obvious

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 17, No. 2, February 2020 : 845 - 849

848

REFERENCES
[1] Chris Buckett, Dart in action, Manning Publications, 2013.

[2] Gilad Bracha, The dart programming language, Addison Wiseley Educational Publishers, 2015,

[3] Gilad Bracha, The dart programming language, Publishing Addision Wesely 2016.

[4] David Kopec, Dart for absolute beginners, 1st ed. Edition, Kindle Edition, 2014.

[5] Chris Buckett, Dart in action, Second Edition, Publishing manning Shelter Island, 2013.

[6] D. Mitchell, S. Akopkokhyants, and Ivo Balbaert, Dart scalable application development, Packt publishing 2017.

[7] Ivo Balbaert and Dzenan Ridjanovic, Learning dart, Packt publishing, 2015.

[8] Davy Mitchell, Dart by example, Packt publishing, 2015.

[9] Martin Sikora, Dart essential, Packt publishing, 2015.

[10] Sergey Akopkokhyants, Dart mastering, Packt publishing, 2014.

[11] Andria Redko, Advanced java: Preparing you for java mastery, Exelixis Media P.C., 2015

[12] Oracle D61796FR10, Edition 1.0, D61796FR10_EP, Fundemantals of the java programming language SE6, Oracle

and java copyright 2007, 2009 sunmicrosystem.

[13] Tony Stubblebine, Regular Expression Pocket Reference Regular Expressions for Perl, Ruby, PHP, Python, C,

Java and.NET, 2nd edition, O'Reilly Media, 2007).

[14] Barry Burd, Beginning programming with java for dummies, 4th Edition, John Wiley & Sons, Jul 2014.

[15] Joshua Bloch, Effective java, 3rd Edition, Addison-Wesley Professional, 2017.

[16] Herbert Schildt, Java the complete reference, seven Edition, McGraw-Hill Education, 2010.

[17] Chris Mayfield and Allen Downey, Think java: How to think like a computer scientist, Green Tea Press, 2016

[18] Zainab Mahmod, Aisha Hassan Abdalla Hashim, Othman O. Khalifa, Farahat Anwar, and Shihab A. Hameed, “

The Effect of Network’s Size on the Performance of the Gateway Discovery and Selection Scheme,” Indonesian

Journal of Electrical Engineering and Informatic, Dec 2017.

[19] Md. Reza Ranjbar, and Aisha Hassan Abdalla Hashim, “Development of an autonomous remote access water

quality monitoring system,” Indonesian Journal of Electrical Engineering and Computer Science (IJEECS), vol. 8,

no. 2, pp. 467-474 2017.

[20] Senan Shayma and Aisha Hassan Abdalla Hashim, “Performance Analysis of HRO-B+ scheme for the nested

mobile networks using OPNet”, Indonesian Journal of Electrical Engineering and Computer Science (IJEECS),

vol. 8, no. 2, pp. 522-532, 2017.

[21] T.S. Gunawan, I.R.H. Yaldi, M. Kartiwi, H. Mansor, “Performance evaluation of smart home system using Internet

of Things,” International Journal of Electrical and Computer Engineering (IJECE), vol. 8, no. 1, pp. 400-411,

2018.

[22] Daniel P. Friedman and Mitchell Wand, Essentials of Programming Languages, Third Edition, MIT Press, 2008

[23] Codelabs, Intro to Dart for Java Developers: Create a simple Dart class, Codelabs Developers Google, [Online].

Available: https://codelabs.developers.google.com/codelabs/from-java-to-dart/#1, [Accessed July, 14, 2019].

[24] Sebesta W. Robert, Concept Of programming Language, Eight Edition, Wesley Longman Publishing, 2007.

[25] Codelabs, Dart cheatsheet, [Online]. Available: https://dart.dev/codelabs/dart-cheatsheet, [Accessed July,14, 2019].

[26] J. C. Mitchell, Concepts in programming languages, Cambridge University Press, 2003.

APPENDIX

Below example code that can be compiled with DART, HTML, CSS on the same time; with HTML output

and CONSOLE [26].

1

2
3

4

5
6

7

8
9

10

11
12

13
14

15

16
17

18

19
20

21

22
23

24

import 'dart:html';

import 'dart:math' show Random;
// We changed 5 lines of code to make this sample nicer on

// the web (so that the execution waits for animation frame,

// the number gets updated in the DOM, and the program ends
// after 500 iterations).

main() async {

 print('Compute π using the Monte Carlo method.');
 var output = querySelector("#output");

 await for (var estimate in computePi().take(500)) {

 print('π ≅ $estimate');
 output.text = estimate.toStringAsFixed(5);
 await window.animationFrame;

 }

}
/// Generates a stream of increasingly accurate estimates of π.

Stream<double> computePi({int batch: 100000}) async* {

 var total = 0;

 var count = 0;

 while (true) {

 var points = generateRandom().take(batch);
 var inside = points.where((p) => p.isInsideUnitCircle);

 total += batch;

 count += inside.length;

https://www.oreilly.com/library/view/dart-scalable-application/9781787288027/
https://www.packtpub.com/web-development/learning-dart-second-edition
https://www.packtpub.com/web-development/learning-dart-second-edition
https://www.packtpub.com/web-development/learning-dart-second-edition
https://www.amazon.com/Tony-Stubblebine/e/B001JSAVWO/ref=dp_byline_cont_book_1
https://www.bookdepository.com/author/Herbert-Schildt
https://www.bookdepository.com/publishers/McGraw-Hill-Education
http://greenteapress.com/wp/think-java/
https://codelabs.developers.google.com/codelabs/from-java-to-dart/#1
https://dart.dev/codelabs/dart-cheatsheet

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

JAVA and DART programming languages: conceptual comparison (Afaf Mirghani Hassan)

849

25
26

27

28
29

30

31
32

33

34
35

36

37
38

39

40
41

42

43
44

45

46
47

48

49
50

51

52
53

54

55
56

57

58

59

60

61
62

63

64
65

66

67
68

69

70
71

72

73
74

75

76

77

78
79

80

81
82

83

84
85

86

87
88

89

 var ratio = count / total;

 // Area of a circle is A = π⋅r², therefore π = A/r².

 // So, when given random points with x ∈ <0,1>,

 // y ∈ <0,1>, the ratio of those inside a unit circle
 // should approach π / 4. Therefore, the value of π

 // should be:
 yield ratio * 4;

 }

}
Iterable<Point> generateRandom([int seed]) sync* {

 final random = Random(seed);

 while (true) {
 yield Point(random.nextDouble(), random.nextDouble());

 }

}
class Point {

 final double x, y;

 const Point(this.x, this.y);
 bool get isInsideUnitCircle => x * x + y * y <= 1;

} import 'dart:html';

import 'dart:math' show Random;
// We changed 5 lines of code to make this sample nicer on

// the web (so that the execution waits for animation frame,
// the number gets updated in the DOM, and the program ends

// after 500 iterations).

main() async {
 print('Compute π using the Monte Carlo method.');

 var output = querySelector("#output");

 await for (var estimate in computePi().take(500)) {

 print('π ≅ $estimate');

 output.text = estimate.toStringAsFixed(5);
 await window.animationFrame;

 }

}

/// Generates a stream of increasingly accurate estimates of π.

Stream<double> computePi({int batch: 100000}) async* {

 var total = 0;
 var count = 0;

 while (true) {

 var points = generateRandom().take(batch);
 var inside = points.where((p) => p.isInsideUnitCircle);

 total += batch;

 count += inside.length;
 var ratio = count / total;

 // Area of a circle is A = π⋅r², therefore π = A/r².

 // So, when given random points with x ∈ <0,1>,

 // y ∈ <0,1>, the ratio of those inside a unit circle
 // should approach π / 4. Therefore, the value of π

 // should be:

 yield ratio * 4;
 }

}

Iterable<Point> generateRandom([int seed]) sync* {
 final random = Random(seed);

 while (true) {

 yield Point(random.nextDouble(), random.nextDouble());
 }

}

class Point {
 final double x, y;

 const Point(this.x, this.y);

 bool get isInsideUnitCircle => x * x + y * y <= 1;
}

