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 The advancement of Distributed Generation (DG) technologies have caused 
great impact to power system operation. Inappropriate installation of DGs 
may lead to over-compensation or under-compensation situation. Thus,  

a reliable optimization is urgent to avoid any unwanted effect. This paper 
analyses the installation impact of different types-multi-DGs determined 
using a pre-developed hybrid optimization technique termed as Immunized-
Brainstorm-Evolutionary Programming (IBSEP). It is imperative to study the 
effect of multi-DGs installation such that a relevant utility can make a correct 
decision, whether its installation is worth or vice versa. Rigorous study has 
been conducted in terms of identifying the optimal location and sizing, 
installed on transmission system for voltage control involving different DG 

types. Comprehensive results are embedded in this paper to demonstrate the 
effect of multi-DGs installation in transmission system which in turns 
beneficial to the utility. 
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1. INTRODUCTION  

Voltage profile of a power system is one of important parameters to be controlled by power system 

provider. While power system losses could be translated into monetary loss to the power provider, 

uncontrolled voltage profile could cause imbalance network and threaten the network safety. Voltage level is 
easily affected by changes in reactive load. Failing to retain the voltage level to a permissible limit may 

results in voltage collapse. Ways to avoid this adverse effect had been studied by other researchers that 

involve installing static VAR compensator in power network, controlling the voltage and VAR output of 

generators and denial of demand during critical under-voltage event [1]. 

Distributed generation (DG) is generally defined as small-scale electricity generation. Due to its 

size, a DG is usually located at the distribution side of power system, to be as close as possible to the 

consumer side, although DG placement at the transmission side is also permissible [2, 3]. Assessments on 

DG penetration to power network were continuously done by many researchers that conclude carefully 

selected DG size and location may enhance the voltage profile and reduce power loss of that network [4-7]. 

Commonly done at the distribution side, studies on the effects of optimally selected DG installation were 

conducted at the transmission network as well [8-12]. These works concluded that medium sized DGs,  

in particular the pure real power delivering DGs, were able to reduce transmission network loss with 
improved voltage profile. Few studies were conducted to assess effect of installing other DGs that have the 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Effect of optimal multi-DG siting and sizing in transmission system… (Sharifah A. Shaaya) 

647 

ability to deliver or absorb reactive power [13, 14]. These studies found that different type of DG will affect 

power network performance differently. 

Inventing robust and reliable optimization technique to determine optimal DG location and size is 

currently trending in the researchers community, aiming at alleviating setbacks in the existing optimization 

techniques [15-20]. Apart from finding higher probability of optimum solution towards meeting the objective 

functions, new optimization algorithms are developed to reduce computational burden in the classical 

optimization techniques [21, 22] 

 Brainstorm Optimization (BSO) is a newly developed algorithm that made its appearance in 2011. 

An algorithm that mimics the collective behavior of human has caught attention of many researcherst. 

Though it is proven reliable in solving science and engineering problems, it does has high computational 
burden due to its K-means clustering technique as well as easily trapped in the local maxima [23-26]. In this 

paper, an optimization technique that embed Artificial Immune System (AIS) optimization technique and 

BSO into the frame of Evolutionary Programming (EP) algorithm is used to determine optimal locations and 

sizes of multiple DGs, of different power delivering capabilities, in power transmission system for voltage 

control. The hybrid technique is termed as Immunized-Brainstorm-Evolutionary Programming (IBSEP). 

 

 

2. RESEARCH METHOD 

Main objective of this study is to compare the capabilities of different types of DGs in improving 

transmission system’s minimum voltage profile. DGs are categorized into four major types, based on their 

ability to deliver power. In this paper, comparison between the performance of these four DG types to control 
system voltage will be investigated, based on the definition below:  

Type-1. This type of DGs deliver only real power. Examples of Type-1 DG are photovoltaic, microturbines 

and fuel cells. In this paper, Type-1 DGs will be referred to as T1 from this point onwards. 

Type-2. DGs that fall under this category are the ones able to deliver only reactive power. Example of this 

DG type is any DGs based on synchronous compensator. Type-2 DGs will be referred to as T2 from this 

point onwards.  

Type-3. This type of DG is able to deliver both real and reactive power. Cogeneration and gas turbine are 

example of Type-3 DG. Type-3 DGs will be referred to as T3 from this point onwards.  

Type-4. DGs under this category are capable of delivering real power, but consume reactive power. Example 

of Type-4 DGs are doubly fed induction generator (DFIG) and induction generators used in wind farms. 

Type-4 DGs will be referred to as T4 from this point onwards. 

In this assessment, multi-DG units set to be 2, 3 and 5 units for each DG type are to be inserted to 
the network. For T1 DG, the real power is limited to 50MW, based on the maximum PV output tabulated  

in [27]. In terms of apparent power S, each T1 DG will be limited to 50MVA, based on (1). For fair 

comparison, the power of other DG types are then limited to 50MVA each.  

 

   √        (1) 

 

Where   is the apparent power,   is the real power and   is the reactive power of the DG. 

Transmission system minimum voltage profile before DGs’ placement in the system will be 

compared with the system voltage profile after multiple DGs placement, for each DG type. The objective 

function to be met is to improve system’s minimum voltage profile, represented mathematically as (2), 

 

      (       )    (           ) (2) 

 
The objective function is however subjected to power balance equality constraint as (3) 

 
∑                   
 
    (3) 

 

as well as inequality constraints: 

 

                    (4) 
 

                (5) 
 

where          is total system load demand,       is the total system loss, and        and        are minimum 

and maximum real power output of     generator, respectively. Following IEEE standard,      and      
should be 0.95 p.u. and 1.05 p.u. respectively. 
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2.1.   Proposed Methodology 

In this work, DGs are placed into IEEE-30 RTS to compensate system loss while load increased.  

In order to maximize the voltage profile enhancement, optimal sized DGs must be injected at optimal 

location. These optimal sized DG and optimal bus location were determined using IBSEP optimization 

technique. IBSEP technique is explained below. 

 

2.1.1  Proposed Immunized-Brainstorm-Evolutionary Programming (IBSEP) 

Flowchart for optimal size and location of DG to improve voltage profile using IBSEP is shown  
in Figure 1. The process is briefly explained afterwards: 

 

 

 
 

Figure 1. Flowchart for optimal DG location and sizes using IBSEP technique 

 

 

Step 1: Initialization of population number  , number of clusters  , probability-to-mutate cluster,    and   , 

reactive load,    and location of where    will be incremented. Random DG location,    and size,    are 

generated.   represents DG’s unit number. 

Step 2:  Fitness of the transmission system, i.e. the minimum system’s voltage profile with optimal DG 

installation will be determined from load flow. Only individuals capable of increasing the minimum voltage 
profile are selected. These individuals, or parents, are then cloned to increase the population. The grown 

population is then divided into few clusters. 

Step 3: Random number pm and    are then generated. They are used to decide which cluster to be mutated.  

Gaussian mutation operator is used to generate new individuals, known as offspring. Load flow is then run to 

determine the fitness of the offspring. 

Step 4: The offspring and the parents are then combined to compete in a tournament process. Only   

numbers of individuals with best fitness will be transcribed to the next process.  

Step 5: A convergence test will then take place. In this test, the difference between the highest and lowest 

fitness values will calculated. Mathematically, it is written as 

 

                               (6) 

 

Should this condition is met, optimal DG locations and sizes will be recorded. Otherwise, Step 2 until Step 5 

are to be repeated. 
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3. RESULTS AND ANALYSIS 

Reactive load, Qd, on one of load buses of IEEE-30 RTS was incremented, from 0 MVar to 30 

MVar. Optimal DGs are to be installed at few load buses to compensate the losses due to the increased 

demand. Two load buses were chosen for the added reactive loading; Bus-6 and Bus-30. These buses 

represent the healthy and the weak buses of IEEE-30 RTS respectively, identified from a pre-loadability test. 

While the reactive loading was increased, the unit of DGs was varied; 2, 3, and 5 units, for each DG types. 

The effect of different DG types and amount on system’s voltage profile and losses are presented below. 

 

3.1.   Effect of Optimal DG Placement on System Voltage Profile While Reactive Load Varies at Bus-6 

Table 1 tabulates the system’s voltage profile and system’s loss without DGs insertion. Table 2 lists 
system’s voltage profiles with optimal DGs for each DG types and the percentage of voltage profile 

enhancement percentage (VEP), calculated using (7). 

 

    
                   

           
       (7) 

 

 

Table 1. System Loss and Voltage Profile of IEEE-30 RTS without Optimal DG when Reactive Load Qd 

Increases at Bus-6 and Bus-30 
Qd6 Pre-opt Loss Pre-opt Voltage Qd30 Pre-opt Loss Pre-opt Voltage 

(Mvar) (MW) (p.u) (Mvar) (MW) (p.u) 

0 17.60 0.9945 0 17.56 1.0036 

10 17.71 0.9907 10 18.11 0.9326 

20 17.76 0.9892 20 19.55 0.8438 

30 17.82 0.9877 30 23.44 0.7069 

 

 

Table 2 shows that IBSEP technique was able to calculate optimal location and optimal size of every 

DG types in order to enhance the system’s minimum voltage profile when reactive load was increased at 

Bus-6. T2 and T3 DGs show good consistency in enhancing the minimum voltage profile the most,  
as indicated by highest VEP values in bold. Except for T4 DGs, other optimal DG types were able to improve 

the minimum voltage profile, if not the same, when DG quantity was added. 

 

 

Table 2. IEEE-30 RTS Voltage Profile and Voltage Enhancement Percentage (VEP) with Optimal DGs 

While Qd
6
 Increases 

Qd30 

(MVar) 

DG Amt. 

(Unit) 

VPT1 

(p.u) 

VPT2 

(p.u) 

VPT3 

(p.u) 

VPT4 

(p.u) 

VEPT1 

(%) 

VEPT2 

(%) 

VEPT3 

(%) 

VEPT4 

(%) 

0 
2 1.0076 1.0100 1.0100 1.0000 1.31 1.56 1.56 0.55 

3 1.0084 1.0100 1.0100 1.0200 1.40 1.56 1.56 2.56 
5 1.0100 1.0100 1.0100 1.0100 1.56 1.56 1.56 1.56 

10 

2 1.0064 1.0100 1.0100 0.9926 1.59 1.95 1.95 0.19 

3 1.0072 1.0100 1.0100 0.9918 1.67 1.95 1.95 0.11 

5 1.0093 1.0100 1.0100 1.0000 1.88 1.95 1.95 0.94 

20 
2 1.0052 1.0100 1.0100 0.9900 1.62 2.11 2.11 0.08 

3 1.0060 1.0100 1.0100 1.0000 1.71 2.11 2.11 1.09 
5 1.0081 1.0100 1.0100 1.0000 2.07 2.11 2.11 1.09 

30 

2 1.0040 1.0100 1.0100 1.0000 1.50 2.11 2.11 1.09 

3 1.0048 1.0100 1.0100 1.0000 1.58 2.11 2.11 1.09 

5 1.0070 1.0100 1.0100 1.0000 1.80 2.11 2.11 1.09 

 

 

3.2.  Effect of Optimal DG Placement on System Voltage Profile While Reactive Load Varies at Bus-30 
Increasing Qd30 at Bus-30 had caused the network to be in not-healthy mode, as indicated in  

Table 1. Table 3 tabulates the effect of different optimal DG types and amount on system’ minimum voltage 

profile. Bold fonts indicate highest VEP value. When there is no load at Bus-30, all optimal DG types 

enhanced the minimum voltage profile, except when optimal T4 DGs were less than five units. As Qd30 

increases, all optimal DGs arrangements were able to increase the system’s minimum voltage profile where 

highest VEP was either due to T2 or T3 DGs. IBSEP technique was able to determine optimal T2 and T3 that 

consistently increase the voltage profile as amount of DG increases. However, increased minimum voltage 

profile does not mean that the network is in the healthy mode, shown by VP values for T1 DGs in italics. 
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Table 3. IEEE-30 RTS Voltage Profile and Voltage Enhancement Percentage (VEP) with Optimal DGs 

While Qd
30 

Increases 

Qd30 DG Amt.  VPT1 

(p.u) 

VPT2 

(p.u) 

VPT3 

(p.u) 

VPT4 

(p.u) 

VEPT1 

(%) 

VEPT2 

(%) 

VEPT3 

(%) 

VEPT4 

(%) (MVar) (unit) 

0 

2 1.0100 1.0100 1.0100 1.0036 0.64 0.64 0.64 0.00 

3 1.0100 1.0100 1.0100 1.0036 0.64 0.64 0.64 0.00 

5 1.0100 1.0100 1.0100 1.0300 0.64 0.64 0.64 2.63 

10 

2 0.9949 1.0083 1.0096 1.0000 6.68 8.11 8.26 7.22 

3 1.0002 1.0100 1.0100 1.0000 7.24 8.30 8.30 7.22 

5 1.0091 1.0100 1.0100 0.9900 8.20 8.30 8.30 6.15 

20 

2 0.9241 1.0076 1.0083 1.0000 9.53 19.42 19.50 18.52 

3 0.9492 1.0100 1.0100 0.9900 12.50 19.70 19.70 17.33 

5 0.9488 1.0100 1.0100 0.9900 12.45 19.70 19.70 17.33 

30 

2 0.8199 1.0068 0.9994 1.0000 15.99 42.43 41.39 41.47 

3 0.8430 1.0096 1.0100 1.0000 19.26 42.83 42.89 41.47 

5 1.0000 1.0100 1.0100 0.9900 41.47 42.89 42.89 40.06 

 

 

3.3.   Effect of Optimal DG Placement on IEEE-30 System Losses 

While the objective function is to enhance minimum voltage profile, the effect of optimal DGs on 

system losses were monitored. The results were tabulated in Table 4 and Table 5. Along with the system 

losses, the percentage of losses reduction (LRP) was calculated using (8). Based on this equation, if system 
loss with optimal DG insertion is less than system loss without DG, then LRP value will be positive number.  

 

     
                   

           
       (8) 

 

As the reactive load increases, optimal T1 and T3 DGs show their ability to consistently reduce the 

system loss while enhancing the minimum voltage profile. When healthy Bus-6 was burdened with 

increasing reactive load, T1 DGs shows better performance than T3 DGs in reducing the loss as indicated by 

high LRP values. Also, five T1 DGs outperform the two or three DGs units about 20 points. However,  

when weak Bus-30 reactive load increases, optimal T3 DGs are better than T1 DGs in many occasions and 
show better consistency in reducing total system loss as DG units increases. When Qd30 = 30MVar,  

five optimal T1 DGs were able to put the system into the healthy-mode but caused very high system loss.  

As for T2 and T4 DGs, IBSEP technique was not able to determine the optimal sizes and locations such that 

system’s minimum voltage profile is improved and system loss is reduced indicated by a mix of positive and 

negative LRP values in Table 4 and Table 5. Therefore, if a utility provider is planning to improve its 

transmission system performance in terms of stable network while not negatively affected its total loss at any 

loading scenarios, then installing T3 types DGs would be a better decision. Table 6 lists all optimal DG 

locations and sizes determined by IBSEP technique to compensate for IEEE-30 RTS minimum voltage 

profile, when Qd30 were varied. 

 

 

Table 4. IEEE-30 RTS System Losses and Loss Reduction Percentage (LRP) with Optimal DGs while Qd
6
 

increases  
Qd6 

(MVar) 

DG Amt. 

(unit) 

LossT1 

(MW) 

LossT2 

(MW) 

LossT3 

(MW) 

LossT4 

(MW) 

LRPT1 

(%) 

LRPT2 

(%) 

LRPT3 

(%) 

LRPT4  

(%) 

0 

2 10.21 17.68 13.53 14.61 41.96 -0.48 23.11 17.00 

3 10.55 17.81 11.17 15277 40.05 -1.23 36.52 -86713 

5 6.25 19.96 10.87 30.58 64.50 -13.39 38.26 -73.79 

10 

2 10.23 17.68 13.53 16.51 42.23 0.17 23.61 6.79 

3 10.58 17.66 10.75 16.05 40.27 0.31 39.32 9.37 

5 6.84 19.93 10.86 13.13 61.39 -12.50 38.71 25.90 

20 

2 10.27 17.70 13.55 15.34 42.20 0.36 23.73 13.62 

3 10.62 17.67 13.23 232.27 40.18 0.51 25.48 -1208 

5 6.88 19.89 10.83 35.65 61.28 -11.98 39.01 -100.75 

30 

2 10.31 17.72 11.85 23.66 42.14 0.54 33.51 -32.78 

3 10.68 17.69 13.26 159.54 40.07 0.72 25.59 -795.42 

5 6.92 19.95 10.97 73.18 61.13 -11.99 38.43 -310.71 
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Table 5. IEEE-30 RTS System Losses and Loss Reduction Percentage (LRP) with Optimal DGs While Qd
30 

Increases 
Qd30 

(MVar) 

DG Amt. 

(unit) 

LossT1 

(MW) 

LossT2 

(MW) 

LossT3 

(MW) 

LossT4 

(MW) 

LRPT1 

(%) 

LRPT2 

(%) 

LRPT3 

(%) 

LRPT4 

(%) 

0 

2 12.12 17.67 11.80 16.84 30.97 -0.59 32.81 4.13 

3 11.74 20.48 11.21 17.01 33.19 -16.58 36.20 3.14 

5 8.60 19.94 10.85 520.79 51.02 -13.51 38.25 -2865 

10 

2 11.41 18.89 12.11 91.05 36.97 -4.32 33.15 -402.79 

3 13.11 20.92 11.21 1568 27.61 -15.54 38.10 -8560 

5 9.64 19.43 9.96 1748.41 46.79 -7.32 44.99 -9555 

20 

2 16.08 19.83 14.45 41.25 17.73 -1.45 26.09 -111.04 

3 14.57 20.66 11.26 157.56 25.44 -5.71 42.38 -706.02 

5 11.28 23.15 8.96 10744 42.30 -18.40 54.15 -54862 

30 

2 18.80 20.07 15.06 14.40 19.81 14.37 35.76 38.57 

3 17.69 20.78 11.70 62.96 24.53 11.37 50.10 -168.56 

5 1082 20.99 9.39 16.67 -4515 10.46 59.94 28.90 

 

 
Table 6. Optimal DG Location And Size Determined by IBSEP Technique to Enhance Minimum Voltage 

Profile Of IEEE-30 RTS as Qd30 Increases 
 Qd30 

(MVar) 

DG Amt. 

(unit) 

XT1 

(Bus) 

XT2 

(Bus) 

XT3 

(Bus) 

XT4 

(Bus) 

ST1  

(MVA) 

ST2  

(MVA) 

ST3  

(MVA) 

ST4 

(MVA) 

0 

2 7, 26 7, 26 19, 21 12, 17 35.7, 8.0 35.7, 8.0 36.4, 43.0 7.8, 1.6 

3 
4, 7, 

26 

7, 9, 

29 

16, 21, 

29 
9, 12, 21 4.6, 35.7, 8.0 

24.2, 31.4, 

46.0 

41.1, 33.6, 

19.0 
0.7, 6.3, 0.2 

5 

19, 25, 

22, 29, 

9 

3, 3, 

12, 28, 

14 

3, 3, 

12, 28, 

14 

30, 30, 

30, 21, 

21 

22.0, 34.5, 

49.4, 42.6, 

26.9 

47.4, 25.0, 

13.9, 26.5, 

47.1 

46.9, 24.8, 

13.7, 26.2, 

46.6 

35.9, 43.8, 

49.2, 42.6, 

46.5 

10 

2 15, 30 22, 25 22, 25 30, 30 43.1, 22.2 49.4, 34.5 48.9, 34.1 38.36, 7.22 

3 
15, 25, 

30 

22, 25, 

29 

16, 21, 

29 

22, 22, 

30 

18.4, 8.1, 

43.2 

49.4, 34.5, 

42.6 

41.1, 33.6, 

19.0 

25.21, 

16.35, 44.45 

5 

30, 25, 

21, 19, 

12 

22, 27, 

10, 16, 

26 

22, 27, 

10, 16, 

26 

10, 28, 

26, 26, 

17 

47.7, 38.9, 

42.1, 38.4, 

29.3 

50.0, 11.7, 

17.6, 29.6, 

20.6 

49.5, 11.5, 

17.4, 29.3, 

20.4 

0.5, 4.8, 

47.4, 33.4, 

22.3 

20 

2 10, 30 6, 29 6, 29 30, 30 2.9, 27.1 18.6, 48.2 18.4, 47.8 24.7, 18.6 

3 
15, 25, 

30 

22, 25, 

29 

22, 25, 

29 

27, 29, 

30 

18.4, 8.1, 

43.2 

49.4, 42.6, 

34.5 

48.9, 34.1, 

42.1 

45.6, 30.4, 

14.7 

5 

30, 25, 

21, 19, 

12 

28, 26, 

16, 25, 

14 

19, 25, 

22, 29, 

9 

25, 10, 

29, 6, 25 

47.7, 38.8, 

42.1, 38.4, 

29.3 

12.5, 23.6, 

30.0, 37.8, 

47.6 

21.8, 34.1, 

48.9, 42.1, 

26.6 

27.9, 27.4, 

35.6, 14.8, 

7.6 

30 

2 10, 30 6, 29 6, 29 19, 30 2.9, 27.1 18.6, 48.2 18.4, 47.8 0.3, 26.1 

3 
15, 25, 

30 

22, 25, 

29 

22, 25, 

29 

20, 26, 

30 

18.4, 8.1, 

43.2 

49.4, 34.5, 

42.6 

48.9, 34.1, 

42.1 

32.5, 9.5, 

22.7 

5 

4, 30, 

16, 30, 

30 

19, 25, 

22, 29, 

9 

19, 25, 

22, 29, 

9 

29, 4, 

17, 9, 4 

44.1, 28.2, 

4.3, 42.2, 

14.6 

22.0, 34.5, 

49.4, 42.6, 

26.9 

21.8, 34.1, 

48.9, 42.1, 

26.6 

43.5, 36.8, 

42.8, 47.0, 

5.7 

 

 

4. CONCLUSION 

This paper has presented effect of multiple different optimal DG types in terms of power delivering 

capabilities towards transmission network minimum voltage profile while monitoring the system’s total loss. 

It can be concluded that optimal DGs that provide reactive power could enhance the minimum voltage profile 

the most in many scenarios. Other DG types may compensate the voltage profile degradation in most cases, 

but may cause more power loss. IBSEP optimization technique was able to determine optimal sizes and 
location for all DG types and amount, in order to fulfill the objective function of increasing minimum  

voltage profile. 
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