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 Currently, the volume of malware grows faster each year and poses a 
thoughtful global security threat. The number of malware developed 
increases as computers became interconnected, at an alarming rate in the 
1990s. This scenario resulted the increment of malware. It also caused many 
protections are built to fight the malware. Unfortunately, the current 
technology is no longer effective to handle more advanced malware. 

Malware authors have created them to become more difficult to be evaded 
from anti-virus detection. In the current research, Machine Learning (ML) 
algorithm techniques became more popular to the researchers to analyze 
malware detection. In this paper, researchers proposed a defense system 
which uses three ML algorithm techniques comparison and select them based 
on the high accuracy malware detection. The result indicates that Decision 
Tree algorithm is the best detection accuracy compares to others classifier 
with 99% and 0.021% False Positive Rate (FPR) on a relatively small 

dataset. 
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1. INTRODUCTION  

Today’s world is rapidly moving towards digitization. Computer field has gained a lot of importance 
in our daily life to deal with many aspects like business purpose, education etc. This scenario is very crucial 

for a country an organization in the context of protective and safeguarding the digital resources [1]. The word 

“Malware” stands for malicious software and it usually specifies as hostile software application [2]. 

Malicious software has developed into the most significant threat to computer system, from its very 

beginning in the 1960s.With the increasing of the internet users in recent years, there has been a powerful 

evolution in occurrences of malicious program. Along with the technology advancement, the malware 

authors have developed malicious code that hard and difficult to be analyzed and detected by researchers. For 

example, malware writers created malicious code with implement new technique mutation characteristic on 

that malware which causes an enormous growth in number of variation of malware.   

Since the number of malicious software rapidly increasing [3], antivirus companies are continuously 

looking for a technique that is the most effective in detecting malware. Signature based detection is the most 
popular method used by antivirus company. However, the traditional malware detection strategies are not 

capable to notify the unknown malwares and only identify variants malware that have been previously 

identified. 

Many efforts have already been made to detect malware. Several methods have been used in many 

research papers [4]. There are different types of malware detection and classification using techniques such 
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as static, dynamic and hybrid features [1].Static analysis also called as code analysis [5] without execute 

malware by examining and observed software code to gain information of how malware’ functions work. 

There is a completely different technique without using the codes but according to the runtime behavior by 

watching its behavior, system interaction and effects on host system called as dynamic analysis [6]. Whereas 

hybrid analysis [7] is a combination of static and dynamic analysis. 

By using API calls, Tian et al. [8] proposed a binary feature method for malware detection and 

classification. In this paper, the writers also investigated the frequency based methods on the same data but 

no upgrading was observed over the binary representation. In similar approach, Z.Salehi et al [9] proposed a 
malware detection based on API calls and their arguments. The authors used this technique as a feature and 

analyzed their outcome on the classification process. To decrease the number of features feature selection 

algorithms are used. The result from the experimental evaluation shows an accuracy of 98.4% in the best case 

by using random forest algorithm. 

D. Arshi and M. Singh [10] proposed a method based on behavioral analysis on machine learning 

that focused on classification and clustering of malware.In their experiment, they used two types of 

classifiers which are K-Means and Logic Model tree algorithms. The result showed that 82% aimed to 

corrupt in the computer system or network resources while 18% of analyzed malware were embedded with 

networking capabilities to connect the outer world. P.V.Shijo and A. Salim [11] proposed a method that 

provides the efficient automated classification of malwares by using both static and dynamic features of 

malwares and by using machine learning technique. In their experiment , the static features are extracted 

from the binary code while in dynamic analysis is done by using the tool cuckoo sandbox that focused on 
system call sequences.The authors made a comparison by using static, dynamic and integrated method with 

using two classifiers which are random forest(RF) and SVM. The accuracy detection shows for integrated 

method in RF 97.68% while 98.71% using SVM algorithm. 

M.S.Anuar & M.Aizaini [12] proposed an improvement decision tree algorithm to classify malware 

and benign. On binary class they achieved accuracy 94.6% by using API as feature extraction. Liu et al [13], 

used Neural network for detection. The authors mostly use the static features gained by anti-compilation 

APK. These static features include string, sensitive API, certificates and application permissions. 

Yang et al [14], suggested an advanced random forest algorithm to detect and classified malware. 

Santos et al [15] primarily used the static feature of PE files. In this paper, they recommended a new method 

to detect unknown malware families based on the frequency of the appearance of opcode sequences. 

C. I. Fun et al. [16], suggested techniques of hooking to track dynamic signatures that the malware 
tries to hide by using data mining methods. This technique detected different behaviors of malware and they 

compare it with the benign data. By applying 80 attributes, the detection rate was 95% which makes the 

technique they used increased detection rate with decreasing complexity. M. Belaoued & S. Mazouzi [17] 

suggested a real-time PE malware detection system based on the analysis of the information stored in the PE-

optional header fileds. For features selection, the writers used Phicoefficient and chi square with selected 

features Rotation forest classifier was trained and tested. Their resulted reached at 97% accuracy. 

Hassen et al [18] proposed a new technique for malware classification using static analysis based on control 

statement shingling. In their work, using a dataset of 10,260 malware instances, they reported up to 99.21% 

accuracy by using disassembled malicious binaries as a extracted features.  

In this paper, researchers presents a comparison of malware detection techniques using machine 

learning algorithm which are K-Nearest Neighbors (K-NN), Decision Tree (DT) and Support Vector 
Machine (SVM) for malware detection by using portable executable (PE) information as a features 

extraction. The PE structure contains of a PE file header and a section table followed by the section’s 

data [19]. The results showed that DT is the best machine learning technique to detect malware with 99% 

detection accuracy. The next sections researchers explain the proposed method and section 3 discusses on the 

experimental finally are the conclusion and future directions. 

 

 

2. RESEARCH METHOD 

The proposed detection approach is illustrated by the flowchart in Figure 1. A malware sample 

analyzed using static analysis. Static analysis leads to the extraction of features. In this experiment, 

we examined PE files with PEview tool. This PE executable files information then will be used as a feature. 

All the information features will then be filtered to select optimal features that are relevant for classification 
task. The last process will be done by evaluating the highest accuracy detection using three types of 

algorithms which are K-Nearest Neighbor (KNN), Decision tree(DT) and Super Vector Machine (SVM). 
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Figure 1. Detection model method 

 

 

2.1.   Data collection 

Dataset is divided into malware and benign software. In this study, we collected 305 types of 

randomly malware and 236 types of  benign software. The malware and benign files from malware collectors 

like VirusShare [20], VirusTotal [21], VX Heaven [22] and etc. For benign files we obtained from Windows 

and Programs Files folder. All are in the Windows PE format. 

 

2.2.   Features extraction 

Feature extraction can be defined as transforming the large, vague collection of inputs into the set of 

features [23]. Advanced detection relies on feature extraction of the malware being analysed [24]. Features 

could contain plaintext strings found in the disassembled files, the size of the malware, n-gram byte 

sequences, system resource information such as the set of DLLs, etc. By using machine learning algorithm, 

these features are provided as inputs. Based on our studies detailed analysis of the format features of the PE 

files, we extracted about 78 features that have probable to differentiate between clean software and malware, 

from given PE files. These features are summarized in Table 1. 

 

 

Table 1. Features to be extracted 
Features  

Name,e_magic,e_cblp,e_cp,e_crlc,e_cparhdr,e_minalloc,e_maxalloc,e_ss,e_sp,e_csum,e_ip,e_cs,e_lfarlc,e_ovno,e_oemid,e_oeminfo,e_

lfanew,Machine,NumberOfSections,TimeDateStamp,PointerToSymbolTable,NumberOfSymbols,SizeOfOptionalHeader,Characteristics,

Magic,MajorLinkerVersion,MinorLinkerVersion,SizeOfCode,SizeOfInitializedData,SizeOfUninitializedData,AddressOfEntryPoint,Bas

eOfCode,ImageBase,SectionAlignment,FileAlignment,MajorOperatingSystemVersion,MinorOperatingSystemVersion,MajorImageVers

ion,MinorImageVersion,MajorSubsystemVersion,MinorSubsystemVersion,SizeOfHeaders,CheckSum,SizeOfImage,Subsystem,DllChar

acteristics,SizeOfStackReserve,SizeOfStackCommit,SizeOfHeapReserve,SizeOfHeapCommit,LoaderFlags,NumberOfRvaAndSizes,Mal

ware,SuspiciousImportFunctions,SuspiciousNameSection,SectionsLength,SectionMinEntropy,SectionMaxEntropy,SectionMinRawsize,

SectionMaxRawsize,SectionMinVirtualsize,SectionMaxVirtualsize,SectionMaxPhysical,SectionMinPhysical,SectionMaxVirtual,Sectio

nMinVirtual,SectionMaxPointerData,SectionMinPointerData,SectionMaxChar,SectionMainChar,DirectoryEntryImport,DirectoryEntryI

mportSize,DirectoryEntryExport,ImageDirectoryEntryExport,ImageDirectoryEntryImport,ImageDirectoryEntryResource,ImageDirector

yEntryException,ImageDirectoryEntrySecurity 
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2.3.   Features selection 
Based on Table 1 explained above, there are 78 features were extracted from PE information not all 

features extracted are significant to be used and will give a high detection accuracy. So, the next phase is we 

only chose some features from the 78 features. It is done to get more accurate detection. Table 2 shows the 

most relevant features used and we select only 28 features from 78 features extracted to continue the 

experiment. 

 

 
Table 2. Features to be selected 

Features  

'NumberOfSections','PointerToSymbolTable','NumberOfSymbols','S 

izeOfOptionalHeader','Characteristics','Magic','MajorLinkerVersion','M 

inorLinkerVersion','SizeOfCode','SizeOfInitializedData','BaseOfCode',' 

ImageBase','SectionAlignment','FileAlignment','SizeOfHeaders','SizeOfI 

mage','Subsystem','SizeOfStackReserve','SizeOfStackCommit','SizeOfHeap 

Reserve','LoaderFlags','SectionsLength','DirectoryEntryImportSize','Di 

rectoryEntryImport','DirectoryEntryImportSize','DirectoryEntryExport' 

 

 

2.4.   Designing detection model 

In this phase, for designing a detection model, machine learning techniques called K-NN, DT, and 

SVM have been used. The choice of classifier or algorithms depends on the type of features, dataset size and 

also problem to be solved. These classifiers have been used after removed irrelevant features extraction. 

Next, these features selection will be trained and tested on each classifier to perform classification task. 

 

 

3. RESULTS AND DISCUSSION 

Figure 2 shows the DT algorithm was used and selected in this experiment which give the best high 

accuracy detection compared to the others machine learning algorithm in classifying between benign 

software and malware. Table 3 shows the classification results using K-NN ,DT and SVM algorithms. 

To evaluate the results, the main performance metrics [25] namely True Positive (TP), False Positive (FP), 

True Negative (TN), and False Negative (FN) will be calculated. True Positives Rates (TPR) will give the 

percentage of correctly identified as malware samples. False Positive Rates (FPR) will give the percentage of 

wrongly identified as malware samples. The performance metrics are calculated as follows 

TPR=TP/(TP+FN) and FPR=FP/(FP+TN). While proportion of the total number of predictions that are 

correct called as overall accuracy that will be computed as Accuracy=((TP+TN))/(TP+FP+TN+FN). 

 

 

 
 

Figure 2. Decision tree algorithm 

 
 

Table 3. Classification result 
Method TPR FPR Detection accuracy (%) 

DT 1.00 0.021 99 

K-NN 0.92 0.042 94 

SVM 0.95 0.160 91 

 

 

Explaining research chronological, including research design, research procedure (in the form of 

algorithms, Pseudocode or other), how to test and data acquisition [6-9]. The description of the course of 
research should be supported references, so the explanation can be accepted scientifically [4, 10]. 
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Tables and Figures are presented center, as shown in Table 1 and Figure 1 and cited in the 

manuscript before appeared. Based on Table 3 above, we can see that DT algorithm have high detection 

accuracy and effective to detect the malware by using the proposed dataset for this work compares to the 

others algorithm which is reached 99%. The performance SVM only 91% is not good enough accuracy. 

Moreover the number of FPR is also higher 0.160. For K-NN the accuracy percentage detection accuracy 

is 94%. 

 

 

4. CONCLUSION 

Malware are becoming widespread and more complex day by day. In this experiment, the focus lies 
on analysing and measuring the detection accuracy of the ML classifier that used static analysis to extract the 

features based on PE information by comparing three different classifiers on machine learning methods. 

We were able to train machine-learning algorithms to detect malware and benign files. The results showed 

that DT machine learning technique is the best classifier to classify our data with 99% of accuracy. From this 

experiment it is clear that by using static analysis based on PE information and selected the relevant features 

of the data can also give the best detection accuracy and can accurately represent malware. Furthermore, the 

advantages of this method there is no need to execute or run malware and we can understand whether it is 

malware or not. 
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