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 Speech segmentation is an important part for speech recognition, synthesizing 
and coding. Statistical based approach detects segmentation points via 
computing spectral distortion of the signal without prior knowledge of the 

acoustic information proved to be able to give good match, less omission but 
lot of insertion. In this study the segmentation is done both manually and 
automatically using Malay words in traditional Malay poetry. This study 
proposed a hybrid method of Brandt’s generalized likelihood ratio (GLR) and 
short-term energy algorithm. The Brandt’s algorithm tries to estimate the 
abrupt change in energy to determine the segmentation points. A total of five 
Pantun are used in read mode and spoken by one male student in a noise free 
room. Experiments are conducted to see the the accuracy, insertion, and 
omission of the segmentation points. Experimental results show on average 

80% accuracy with 0.2 second time tolerance for automatic segmentation with 
the algorithm having no knowledge of the acoustic characteristics. 
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1. INTRODUCTION  

Humans mainly communicate with each other through words formed from languages. Information 

exchanges are easily achieved between two individuals that speaks the same language. Computers and digital 

systems also works as such. A computer can only understand instructions in one’s and zero’s and thus it is the 
compilers job to translate high level programming language into these instructions. Automatic Speech 

Recognition Systems (ASR) aim to “translate” vocal human words in natural language into information usable 

by computers and digital systems [1]. Speech signal varies greatly based on the context [2]. Even when the 

same speaker says the same word repeatedly will result in variation, even little, in the speech signal produced. 

Human communication are complimented with body language and simpler versions of language that better suit 

two way dialogues [1]. Among these, unclear word boundaries, noise signals, regional and geographical 

dialects, and speaker variability makes building an accurate ASR system harder.  

ASR pre-processing stage will greatly determine the outcome of the later stages. Framing, noise 

removal, and segmentation are common processes that are done during pre-processing [2]. The focus of this 

paper is on continuous audio segmentation. Segmentation algorithm can be categorized as follow [3]: First is 

Metric-based segmentation where audio streams are segmented at the maxima of the distances between 
neighbouring windows placed at fixed sampling intervals. Second, Decoder-guided segmentation where audio 

streams are decoded followed by segmentation at silent points generated by the decoder. Third, Model-based 

segmentation such as the use of Gaussian mixture models. Segments are assumed at locations where there is a 

change in acoustic class. The incoming stream can be classified by using maximum likelihood selection. 
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Speech segmentation can be defined as the process of finding the limits (with specific characteristic) 

in natural spoken language between words, syllables or phonemes. [4, 5]. The main objective of Speech 

segmentation is to serve other speech analysis problems such as speech synthesis, data training for speech 

recognizers, or to fabricate and label prosodic databases. Therefore, it can be viewed as a vital sub-issue for 

various fields in speech analysis and research. [6, 7]. The traditional approach handling this issue is by manual 

segmentation of speech, which is generally performed by specialized phoneticians. However, this method is 

based on listening and visual judgment on required boundaries which makes it inconsistent and time 

consuming. [8, 9]. Another method which is considered very convenient is an automatic segmentation. The 
speech can be automatically segmented into sub word units which are defined acoustically. [10] In Automatic 

Speech Recognition ASR systems, segmentation can be performed: (i) At the system training stage, when 

segmentation is applied to the training set recordings. (ii) At the recognition stage [5]. 

 

 

2. SEGMENTATION TECHNIQUES 

Several well-established segmentation techniques have been proposed by previous researchers, such 

as in [10], that audio segmentation is performed using segment features. The proposed technique uses a log-

linear segment model to determine the segmentation of the input audio stream [11]. First, the audio data is 

processed with a speaker independent acoustic model [12]. The decoding process will hypothesis the locations 

of sentence start and end. The resulting segments are also clustered and used in Constrained maximum 

likelihood linear regression (CMLLR) feature transformations and maximum likelihood linear regression 
(MLLR) mean transformations. The experimental results in [10] shows that the framework is applicable for 

various segments, boundary features, and for different change point detection methods. 

The Hidden Markov Model (HMM) is one of the highly-used segmentation techniques. A refined 

HMM algorithm was tested for segmenting a Chinese corpus [11]. The method is carried out in 3 steps: 

1. Obtain initial segmentation marks using HMM with forced alignment. 

2. Create a super vector for each boundary of this database by placing acoustic vector near the boundary. The 

pseudo-triphone formed from the boundary are classified using a classification and regression tree (CART) 

where the pseudo-triphone are clustered into smaller number of classes. Then each leaf node on the CART 

is used to train a Gaussian Mixture Model (GMM). 

3. For each labelled sentence, attempt to refine the boundary of each segment. Using the HMM boundary 

obtained above, compute the likelihood of this frame contains the actual boundary. The optimal boundary 
is assumed to be the frame that has maximum likelihood of the GMM model associated with the CART 

leaf node for the pseudo-triphone. 

Experimental results in [5] shows that the refined HMM is more accurate than the standard  

HMM segmentation. 

The Brandt’s generalized likelihood ratio (GLR) method aims to detect discontinuities in homogenous 

segment of the speech signal models using statistics to detect sequentially abrupt changes in the parameter of 

the model [11-14]. The signal Yn, is decribed using an autoregressive model M, such that 

 

𝑀(𝐴, 𝜎)𝑓(𝑥) = {
𝑌𝑛 = ∑ 𝑎𝑖

𝑝
𝑖=1 𝑌𝑛−1 + 𝑒𝑛

𝑣𝑎𝑟(𝑒𝑛) =  𝜎2
 (1) 

 

where en is a zero-mean noise with variance σ2.  

Assume the audio signal is windowed as in Figure 1. 

 

 

 
 

Figure 1. Location of three windows in Brandt’s GLR 

 
 

where W1 is decribed the signal (Y1,…...,Yr) and W2 describes the signal (Yr+1,……….,Yn). A jump is detected 

at r if DN(r) ≥ D0 if 
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Dn(r) = -(n – r)Logσ2
2 – rLogσ1

2 + NLogσ0
2 (2) 

 

and D0 is the predefined threshold. 

This research will focus on the use of Brandt’s GLR algorithm on segmenting Malay words. The 

Malay language is one of many Austronesian languages which also includes languages such as Pilipino and 

Tagalog [15]. It is officially used in Malaysia and Singapore. Some aspects of the language are influenced by 

English and some words are directly borrowed from English itself. ASR system for Malay is challenging due 

to various regional dialects used and the occasional use of English words in sentences. Structures for the Malay 

syllables exits in the form of V, CV, CVC, CCV, CCVC, and CCCVC [16]. C’s are consonant and V’s are 

vowels. Syllable borders have two significantly different energy clusters which are visually noticeable however 
when pronounced continuously and closely together, false abrupt changes might occur depending on the 

speaker’s utterance style [17]. For read mode, the patterns are quite obvious and easily detected as only minimal 

amount of noise is present but in spontaneous mode, the presence of background noise, talking pace, and 

interference from other speaker may cause difficulty during segmentation [18]. 

 

 

3. METHODOLOGY 

The framework of this research is shown in Figure 2. Speech signal data in the form of Malay Poems 

or known as Pantun is used to test the Brandt’s GLR. The Pantun represents read mode audio data where audio 

recording is done in controlled environments and the speaker controls his/her manner of speech to ensure clear 

pronunciation and fixed reading pace [19, 20]. The Poems (Pantuns) are framed per sentence. No windowing 
method is used due to the Brandt’s GLR only working on detecting energy difference in time domain. Further 

processes are explained in detail in the following sections. 
 

 

 
 

Figure 2. Research framework 
 

 

3.1.   Data collection 

As mentioned earlier, the data used during testing are in the form of traditional Malay Poems (Pantun) 

read by a male speaker in a noise free room. Instances of modern poems, as well as other types of poems, can 

be found in all sorts of printed and electronic documents including books, newspapers, magazines, and websites 

[21]. An instance of modern Malay poems can represent a complete poem or a poem portion. Five (5) poems 

(pantuns) of 10 sentences long each are first manually segmented. Segmentation both manually and 

automatically is done on frames consisting of one sentence long cut from the Pantuns. Manual segmentation is 

performed using the wavesurfer program as shown in Figure 3. 

Segmentations are done on word by word by word basis visually by observing the waveform while 

listening to the audio as well. Referring to Figure 3, the energy difference between words are visually obvious 

since the data is in read mode and there are clear silences in between words. 
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Figure 3. Manual segmentation using on the sentence “baik-baik jaga pedoman” using the wavesurfer 

program. Words segmented are “baik”, “baik”, “jaga”, “pedoman” 

 

 

3.2.  Brandt’s GLR algorithm 
Noise filtering is not required since little to no noise is present in the data. The data is first framed into 

individual frames of one (1) sentence each [22-24]. Then the Brandt’s GLR ratio is calculated for each sample 

as follow, using the windows in Figure 4. 

1. The covariance of W1 and W2 are calculated using brute force calculations. W1 will start at r = 1 and will 
grow until n and the variance values of values for both W1 and W2 are calculated.  

2. The variation of Dn is then calculated using equation (1) and graph Dn is plot. 

 

 

 
 

Figure 4. Top shows the signal waveform for sentence “baik-baik jaga pedoman” Bottom shows variation of 
DN. The red lines show the points of segmentation 

 

 

The segmentation points are then acquired by observing the highest ratio calculated by the Brandt’s 

GLR. Resulting segmentation points from the Brandt’s GLR method are compared to the reference segmented 

points from the manual segmentation that was done using the wavesurfer program by us. The measurement 

criterion is adapted from [25]. Let K = {K1, K2,,……,An} and R = {R1, R2,…….,Rn} be the segmented points 

in seconds obtained from the Brandt’s GLR and manual segmentation respectively. For each Kj, the 

corresponding point Rkj is determined by the time instance closes to that of Kj. Thus a sequence Rk = {Rk1, 

Rk2,….., Rkn} is build to compare both segmentations. 

Omission can be detected as when point in Rk is not in Kj and insertion when points in Kj is not in Rk. 
Number of similar points in both Rk and Kj are calculated as Match, m = (m/p * 100) where p is the number of 

points in R [26, 27]. Accuracy is calculated using, accuracy = ((m/p+n) * 100) which is affected by the number 

of insertions. The Brandt’s GLR method will be evaluated in terms of the number of omission and insertions, 

matches, and accuracy [28]. 
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3.2 Short-term energy algorithm 

The energy parameter has been used in speech segmentation since the 1970’s [29]. This algorithm 

was adopted and modified to better locate the beginning and ending of speech points for the isolated spoken 

Malay utterances and will be discussed in detail. This is a two-step search algorithm where the absolute energy 

(AE) for a coarse search is first used [19]. The speech signal was first divided into 50% overlapping frames of 

10ms and then passed through a rectangular window [30, 31]. The AE was computed by summing the absolute 

magnitudes of speech samples in each frame as shown in (3). 

 

 


m
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 (3) 
 

where, w(m) rectangular window, N length frame duration ending at n=m and m peech samples overlapping  
at 10 ms. 

The mean and standard deviation of the AE measure is first computed during the first 50ms of the 

speech, assuming there is only background noise in that interval [22]. This information was further used to 

compute the peak energy (IMX) for the entire interval in each speech sample and the silence energy (IMN) 

[23, 24]. Subsequently the IMX and IMN were used to set two energy thresholds: upper threshold (Tu) and 

lower threshold (Tl) according to (4). 
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The upper threshold (Tu) will be computed as in (5) and (6). 
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where, WL word length, I is index of all frames, having E(i)>Tl 

Therefore, upper level for average energy is set to 0.25 based on experimental findings in case of  

high noise [25]. 

 

 

4. RESULTS AND ANALYSIS 

In the experiments, the Brand’s GLR is applied on periodic frames of 0.4 seconds. The algorithm was 

tested on frames of 0.2 seconds but was find to create high amount of insertion thus lowering the accuracy of 
the segmentation. At 0.2 seconds, Brandt’s GLR produces twice the amount of segmentation points compared 

to the reference segmentation points as shown in Figure 5. 

Each pantun is read in a controlled rhythm where each of the words in each sentence is read 

approximately 0.5 seconds apart from each other. Therefore 0.4 second framing is relatively effective for this 

type of segmentation. Pantun five (5) shows the worst accuracy as a lot of the words are made of prefixes such 

as dihati and membujang. Insertion occurs in between the prefix and the word hence lowering the accuracy of 

it. All of the other pantuns manage to be segmented with 80% accuracy with a 0.2 second tolerance. 

Nine out of 20 of the data managed to be 100% segmented and overall result is presented in Table 1. 

And the 5th sentence from pantun two (2) achieved 100% segmentation within 0.1 second time tolerance. In 

that sentence, “suka hati kumbang yang terbang”, none of the words contains prefixes and suffixes, and 

contains no more than two syllable per words. Suffixes and prefixes can sometimes be captured as new words. 

For example, in the 3rd sentence of pantun five (5), the prefix “membu” in “membujang” was captured as a 
separate word. 0.4 second frames are chosen as it manages to segment words that are two syllables long without 

over segmenting. This however will cause over-segmentation in words that are three syllables or more which 

is commonly due to the presence of prefixes or suffixes. 
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Figure 5. Average accuracy of each pantun vs time tolerance 

 

 

Table 1. Overall segmentation results for five (5) pantun 
Time 

tolerance 

(seconds) 

0 second 0.1 second 0.2 second 

Sentence 
p 

(auto) 

m 

(match) 

n 

(miss) 

accuracy 

(%) 

p 

(auto) 

m 

(match) 

n 

(miss) 

accuracy 

(%) 

p 

(auto) 

m 

(match) 

n 

(miss) 

accuracy 

(%) 

Poem 1 

Sentence 1 
7 5 2 55.56 7 6 1 75.00 7 7 0 100.00 

Poem 1 

Sentence 2 
8 2 6 14.29 8 4 4 33.33 8 5 3 45.45 

Poem 1 

Sentence 3 
7 1 6 7.69 7 3 4 27.27 7 7 0 100.00 

Poem 1 

Sentence 4 
7 2 5 16.67 7 6 1 75.00 7 6 1 75.00 

Poem 2 

Sentence 1 
6 2 4 20.00 6 5 1 71.43 6 6 0 100.00 

Poem 2 

Sentence 2 
8 3 5 23.08 8 5 3 45.45 8 6 2 60.00 

Poem 2 

Sentence 3 
7 2 5 16.67 7 3 4 27.27 7 6 1 75.00 

Poem 2 

Sentence 4 
7 2 5 16.67 7 7 0 100.0 7 7 0 100.00 

Poem 3 

Sentence 1 
7 2 5 16.67 7 4 3 40.00 7 6 1 75.00 

Poem 3 

Sentence 2 
7 4 3 40.00 7 5 2 55.56 7 7 0 100.00 

Poem 3 

Sentence 3 
6 2 4 20.00 6 5 1 71.43 6 6 0 100.00 

Poem 3 

Sentence 4 
7 3 4 27.27 7 4 3 40.00 7 6 1 75.00 

Poem 4 

Sentence 1 
7 3 4 27.27 7 6 1 75.00 7 7 0 100.00 

Poem 4 

Sentence 2 
7 2 5 16.67 7 5 2 55.56 7 7 0 100.00 

Poem 4 

Sentence 3 
7 0 7 0.00 7 4 3 40.00 7 5 2 55.56 

Poem 4 

Sentence 4 
7 3 4 27.27 7 6 1 75.00 7 7 0 100.00 

Poem 5 

Sentence 1 
7 1 6 7.69 7 5 2 55.56 7 5 2 55.56 

Poem 5 

Sentence 2 
9 2 7 12.50 9 3 6 20.00 9 7 2 63.64 

Poem 5 

Sentence 3 
8 1 7 6.67 8 4 4 33.33 8 6 2 60.00 

Poem 5 

Sentence 4 
5 1 4 11.11 5 3 3 37.50 5 5 1 83.33 

 

 

Figure 6 shows the reference segmentation of the word “membujang” and Figure 7 shows how the 

algorithm did it. The word “membujang” was read 0.6 seconds long, which was captured by two separate GLR 
frames thus causing over segmentation. 
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Figure 6. Waveform for the sentence “sudah lama hidup membujang”, the red line shows the start of the 

word “membujang” and the blue line marks the end of the prefix “mem” 

 

 

 
 

Figure 7. Automatic segmentation of the sentence “sudah lama hidup membujang”.  

Red line shows segmentation points  

 

 

5. CONCLUSION 

Four out of five of the pantun managed to be segmented with 80% accuracy. However, it is to be noted 

that all the data is in read mode and was recited in a controlled rhyme thus making the segmentation process a 

lot simpler than if to be done on spontaneous speech where there will be multiple speakers which all speak at 

different pace. Salam recommended in [7] to use higher order of autoregressive model to purposely cause over 

segmentation and to remove the insertions using Neural Network. This might also help with segmentation of 

spontaneous data. To test this would be our future goal. 
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