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Abstract 
Taking the botnet incident response plan decision-making as an example, we construct a new 

graph model to represent complex plan resolution domain by using action decomposition. In this model we 
introduced action layer, relation between subactions and decompose the complex incident response plan 
into many layers. This graphic model provides a powerful representing framework on the complex plan 
domain. By analyzing the decomposing method and the action node structure, we prove that the store 
space size of this graphic representation is not increased exponentially when the action node added. We 
present a quantitatively analyzing algorithm on the plan resolution domain. 
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1. Introduction 

More and more attacks aiming at Web service, DDoS attack is the main cause that 
result in Web crash. Botnet is an important technical means being used to launch DDoS attacks. 
Taking the botnet incident response plan decision-making as an example, we construct a new 
graphic model by using action decomposition. Because relations between actions and action 
layer are introduced in the model, so we can decompose the complex incident response plan 
into many layers. This graphic model also provides a representation of the complex plan 
resolution domain. The complex incident response plan can also be quantitatively analyzed with 
this model and it enables us to make incident response plan decision more scientific. 

Incident response start from the current abnormal state of network system, by using of a 
series of commands and software tools and executing a series of actions, at last making 
network system to achieve its normal state. So the incident response plan decision–making is a 
planning process. The incident response plan is action sequence that satisfying certain 
constraints. 

The action decomposition method being used in incident response plan representing 
graphic model has the same principles as that used in [2]. Some actions in the incident 
response plan can be executed in a free order, so the relation between the actions of incident 
response plan is a partial order. Using action decomposition we get subaction layers. Some 
subactions in the same layer have relations and form a graph. An action and subactions 
decomposed from it form a tree. We can use graph algorithm to optimize and analyze the 
incident response plan. 

In section 2 we explain the research method of constructing complex plan domain 
representing graph; Section 3 describes the concrete method to constructing our representing 
graph. In section 4 we present quantitatively analyzing algorithm of the complex plan resolution 
domain. Section 5 is the conclusion. 
 
 
2. Research Method 

As described in [3] that consciousness cannot be reduced to a single neuron. For the 
complex incident response plan, its property cannot be reduced to a single action too, and we 
should analyze the total actions and the relations between these actions. Decomposing the 
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action into subaction array and constructing six types of relation for these subactions, we can 
quantitatively analyze the complex incident response plan. The similar analyzing graphic model 
can be found in [4].  

In the graphic modeling process an important factor of human is ignored. In fact the 
integration of human and machine is a key approach when analyzing complex system. We 
introduce expert group to our graphic model. 

 
2.1. Equivalent  

Definition 1. Equivalent relation 
If a dualistic relation on P ≈ meet the following three axioms: 
(1) for all x ∈ P, x ≈ x (reflexivity) 
(2) if x ≈ y, y≈ x (symmetry) 
(3) if x ≈ y and y ≈ z then x ≈ z (transitivity) 
The dualistic relation ≈ is called an equivalent relation on P. 
Let E be a set of system S and its simulative model, the checked attribute set of E's is: 

A={ai |i=1,2,3,…,n}. An simulative model M of the system S on attribute set A is ideal, if the 
following relation is satisfied:  

fi (S)= fi (M), i=1,2,3,…,n. 
Here fi (E)= ai, i=1,2,3,…,n. are attribute extracting functions that can be used to define 

equivalent relation on set E as depicted in Figure 1. 
 
 

 
 

Figure 1. Equivalent relation between S and its simulative model M 
 

 
2.2. Action Decompose Method 

Action decomposition is a process decomposing a complex action into many subactions 
that satisfy certain relation constraint. For example, when facing a complex action A, different 
expert would provide different executing plan. In order to present this diversity executing plan 
we decompose A into many subactions, every subaction presents an executing plan and the 
relation between subactions is OR. The relation between subactions is defined as following: 

Definition 2. Relation AND, OR and ORDER between subactions  
The relation between subactions decomposed from one action is called AND, if we want 

to complete the action, we must execute all of its subactions. The relation between subactions 
decomposed from one action is called OR, if we want to complete the action, we must execute 
one and only one of its subactions. The relation between subactions decomposed from one 
action is called ORDER, if we want to complete the action, we must execute all of its subactions 
in a certain order. 

Definition 3. Relation ORDERAND  
The relation between subactions decomposed from one action is called ORDERAND ( 

Figure4 ), if subactions  have ORDER and AND relation. Relation ORDERAND is a combination 
of relation ORDER and AND. 

In action decomposing process the participation of domain expert is very important. The 
data show that if we build a supper computer which has the same computing ability as human 
brain, it would need a nuclear power plant to support its electricity consuming.   

Botnet is the primary technical means of implementing DDoS attacks. In order to 
describe the action decomposing method, we use IRC botnet incident response as an example. 
At first we according to the following characteristics of the network to determine if an attack of 
IRC botnet is occurred: 

(1) the network connection greatly increase  
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(2) machine was significantly slower 
(3) the launched connection from local IP to the same port of multiple targets IP 

appears. 
 
 

 
 

Figure 2. Subaction relation type ORDER 
 
 

  
 

Figure 3. Subaction relation type AND 
 
 
Supposing action A (IRC botnet incident response) changes the network system that 

attacked by IRC botnet to its normal state. The action A is put in the top-level of action 
decomposition. We now present the action decomposing method and how to represent the 
relation between subactions[5].  

As depicted in Figure 2, IRC botnet incident response action A is decomposed into two 
ordered actions: a (get the basic information of the IRC botnet) and b (dealing with IRC botnet). 

In Figure 3 action a is decomposed into a1 (get information of the control server), a2 
(get channel information), a3 (get information of the command set supported by IRC botnet), a4 
(get information of controlling password), a5 (get information of coding rules) and a6 (get 
information of the controlled hosts). Here the executing order of actions a1, a2, a3, a4, a5 and 
a6 is free. 

Figure 4 shows the decomposition of action b (dealing with IRC botnet), which is divided 
into action b1, b2 and b3. Note the executing order constraints of action b1, b2 and b3. Action 
b1 must be executed before b2, but no order constraint of b3.  

The action b1 (cut off the connection between host and controlling server) is 
decomposed into action b11 and b12 (shown in Figure 5). The relation between b11 and b12 is 
OR. This minds only one action (b11 or b12) will be executed in the incident responding 
process. 
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As depicted in Figure 3 we use an arc to represent that the relation between subactions 
is AND. The action a1, a2, a3, a4, a5 and a6 are named the next-layer of action a. Action 
decomposition would go on until all the subactions being atomic action. 

Definition 4. Relation SUPPORT and SUPPORTORDER 
The relation between action x and action y is called SUPPORT, if we want to complete 

the action x, we must beep action y is executing. The relation between action u and action set V 
is called SUPPORTORDER, if we want to complete the action set V, we must beep action u is 
executing, and the actions in V has the relation type of ORDER. As depicted in Figure 6, 
V={b2,b3} and u=b1. 

Definition 5. Action set V, W and action s 
The subactions of an action can be divided into three parts: an support action s, the 

supported action set V and the others W. Subactions in V and W may have relation type: AND, 
OR or ORDER. 

 
 

 
 

Figure 4. Subaction relation type ORDERAND 
 
 

 
 

Figure 5. The subaction relation type of OR 

 
 

Figure 6. The subaction relation type of 
SUPPORTORDER 

 
 
3. Representing Graph 

As described in [3] in order to facilitate computer processing, first we need to build a 
graph to represent complex plan resolution domain that can be represented by computer. The 
size of the model and action nodes should have a linear relation [6], thus avoiding the 
exponential explosion growth of the storage space size with the increase of action nodes. The 



TELKOMNIKA  ISSN: 2302-4046  52 
 

A new Graph To Represent Complex Plan Resolution Domain (Ping LIU) 

implementing property that we need to look at of the plan resolution domain must be presented 
in the representing Graph. 

The complex plan resolution implementing property studied in this paper is time 
consumed by the plan. The remaining property can be studied in the same way [7]. 

A complex incident response action is decomposed into several simpler subactions and 
we say they belonging to the same layer. Thus we have introduced a hierarchy of action. 

Using the concept of action layer, we can represent the project implementation plan 
with different level, so we cannot only to examine the overview of the project implementation, 
but also to examine the different plan implementing details. Such a representation of complex 
project plan presents a method for us to use outside storage algorithms [8-10]. 

There are six types of relation between subactions: the OR, AND, ORDER, 
ORDERAND, SUPPORT and SUPPORTORDER as defined in definition 2, 3 and 4 
respectively. The number of subactions decomposed from one action node cannot be too much, 
so we can observe and handle the action decomposition easily with interactive method. Of 
course, the relation type of subaction can be defined if you want. You have to give the 
corresponding quantitative calculation method. 

Different subaction that belongs to the same subaction group with OR relation will result 
in the change of the plan resolution. Another factor that shorten the implementing time of 
incident response plan is executing the subactions that satisfy AND relation in parallel. So we 
get different plan with the longest and the shortest implementing time. 
 
3.1. The Representation of Action Node 

The action node consists of two parts, the action node attribute values, as well as a 
pointer to the subaction array. In the algorithm we use an integer ACTION_ID to identifier an 
action node. 

Based on the above analysis, we give the action node representation as follows: 
#define ACTION_ID  long  //data type 
#define MAX_SUB_ACTION_NUM  16  //a constant number 
struct action_node { 

//Action identifier,  
1) ACTION_ID id; 
2) string Action name; 
3) Boolean bAtomic; //not to decompose atomic action  
// bFlag is TRUE only if the min_time and max_time of an action  
//have been calculated 
4) Boolean bFlag;  
5) Group of experts; 
6) software tools to perform the action; // non-atomic action can be null 
7) int layerNumber;// to indicate the action on which layer 
//if we calculate the max value of an action attribute 
8) boolean bMaxValue; 
//if the action is an atomic action then we set min_time=max_time 
9) int min_time; // the shortest time for performing this action 
10) int max_time; // the longest time for performing this action 
// a pointer to an array of subaction; pActionArray=NULL for the atomic action 
11) struct action_array *pActionArray;  

}; 
Note that the action identifier is different to the actual action. Action identifier is globally 

unique. 
 
3.2. Subaction Array 

We use the following structures to define our subaction array.  
struct action_array { 
 // A pointer to the parent action: In the action decomposition hierarchy 

// use this pointer to reach the parent action layer. 
struct action_node *pParent; 

 struct sub_action_relation subactionrelation; // to describe the relation type 
 // to hold our subactions 
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 struct action_node actions[MAX_SUB_ACTION_NUM];  
}; 
 
struct sub_action_relation { 
 int iSupportedSubactionRelationType;//can be relation:  AND OR ORDER  

ACTION_ID SupportedSubactionID[MAX_SUB_ACTION_NUM]; 
 //the relation type between surport subaction and other subactions 

int iSupportSubactionRelationType; //can be relation:  AND OR ORDER 
// to hold our subactions that have relation type AND 

 ACTION_ID ANDSubactionID[MAX_SUB_ACTION_NUM]; 
// to hold our subactions that have relation type OR 

 ACTION_ID ORSubactionID[MAX_SUB_ACTION_NUM]; 
// to hold our subactions that have relation type ORDER 

 ACTION_ID ORDERSubactionID[MAX_SUB_ACTION_NUM];  
}; 

 
3.3. The Expert Group Relation 

In the decision making of the complex plan resolution many groups of expert are 
involved. Different group proposed different plan. The relation between groups of expert can be 
represented by a matrix C. C (i ,j) = 1 presents expert group i and j have relation; C(i,j) = 0 
present expert group i and j have no relation. The number of expert group is less than a given 
integer G. The store space size of matrix C is less than G*G. 
 
3.4. The Elements in representing graph 

Our representing graph provides a representating framework of the complex plan 
domain. If the subactions x,y,and z have OR relation type, we get three plan resolutions that are 
x,y,z respectively. For the same reason if the subactions x,y,and z have AND relation type, we 
get 7 plan resolutions that are xyz, xzy, yxz, yzx, zxy, zyx and an concurrent action [zxy] 
respectively. If the subactions x,y,and z have ORDER relation type, we get only one plan 
resolution that is xyz. So we can see that the graph is of powerful representing ability. 

You can define your own subaction relation type as needed, but you should give the 
corresponding calculating function.  
 
3.5. Graph Store Space Size 

Let V is the store space size occupied by our plan decision-making model. By analyzing 
the decompose method and the action node structure, we can prove that V do not increase 
exponentially when the action node added. 

If we use the decomposed method to get a plan P that has N atomic actions (if an 
atomic action appears j times, we count it j times ) . An non atomic action include at least 2 
subactions. The plan model has M action nodes, so we can conclude M≤2N. Since the store 
space size occupied by an action node or a subaction array is less than a constant K, and the 
number of subaction array is less than M, so we conclude that：  
V ≤ KM + KM + G*G≤ 2KM + G*G ≤ 4KN+ G*G 

 
 

4. Quantitatively Analyzing Algorithm 
We get the plan resolution domain D by decomposing the action. Analyzing the element 

in D we can get the optimal resolution. According to the definition of subaction relation type an 
algorithm is presented in Figure 7.  

The current action C is the action node that we are analyzing. At the beginning in Figure 
7 the action A is defined in Figure 2.  Using function R_type(C) we get the relation type of 
subactions that decomposed from action C. The variable of bFlag and bAtomic is defined in 
struct action_node. 
 
4.1. ORDERAND_order_num 

The number of subactions that have ORDER relation in the subactions which have 
ORDERAND relation. The array subaction_ORDERAND[ORDERAND_order_num] denotes 
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these subactions. If the parent action of these subactions is P, Let  k= ORDERAND_order_num 
, then we get the P.min_time and P.max_time as formula  (1) and (2): 

P.min_time = max { , 

 
max{ sub_action_ORDERAND[j].min_time | j=k+1,…,n} } (1) 
 

P.max_time=  (2) 

 
 

 
 

Figure 7. Quantitatively analyzing algorithm on the plan resolution domain 
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4.2. SUPPORTAND_support_num 
Let k=SUPPORTAND_support_num: the number of supported subactions that has AND 

relation. The array subaction_ SUPPORTAND [SUPPORTAND_support_num] denotes these  
subactions. If the parent action of these subactions is P. The action s is defined in definition 5. 
Then P.min_time and P.max_time is as formula  (3) and (4): 

 
P.min_time = max {max{ subaction_ SUPPORTAND [i].min_time | i=1,…,k}, s.min_time }(3)  

P.max_time = 



k

i

timestimeiSUPPORTANDsubaction
1

max_.max_].[_
 

 (4) 

 
 
5. Conclusion 

We use the plan decision making of responding botnet attack to describe the method of 
constructing represent graph. In decomposing action into subactions the relation type between 
subactions and the action layer are introduced. The store space size occupied by our represent 
graph is not increased exponentially when the action node added. We construct a quantitatively 
analyzing algorithm on the complex plan resolution domain. The OR relation between 
subactions enables the graphic model to represent different plan. The ORDER relation enables 
the graphic model to represent the order of actions. The SUPPORT and SUPPORTORDER 
relation type enable the graphic model to represent more complex actions.  

Our graphic model of complex plan resolution domain is a hierarchy structure. We can 
display it with different level. If the graph is too larger to load into the memory, we should study 
the method to store our graph in external memory [11].  

Every plan resolution represented by this graphic model is a partially ordered set P. 
Given resource constraint set how to determine P being a feasible or optimal resolution? This is 
the need for further research. 
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