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 The noise has incited an original data due to a network with an inferior SNR. 

In case of the bulk noise, the insightful content within the data is 

substantially squeezed. A cost-effective method will challenge to quarantine 

the insights, so that information can be utilized more resourcefully. To 

achieve this aim, it is essential to iron the bulk noise content out, and then 

calculate the analytics of the clean data. As noise is bulk so some statistical 

methodologies such as averaging or randomizing are employed. A prediction 

using the regression-based model with bulk noise for the experiment in 

practice is introduced. The decomposition approach to separate the insights is 

exploited. The proposed algorithm achieves a (local) solution at each 

computing step and selects the best solution in view of global impacts. The 

correlation coefficient, average error, absolute error and mean squared error 

are used to constitute the prediction. Results from MOA simulation will be 

compared to actual data in the succeeding time. The prediction with bulk 

noise using the proposed algorithm outperforms other imputation methods. 
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1. INTRODUCTION 

The missing data are pervasive in the calculating practice. They can be missing for some instances 

or attributes [1-3]. If mainstream (bulk) of data is missing on the attribute then it is alleged to be unnoticed. 

Traditional treatments and software always assume that all attributes in a dataset are figured for all instances. 

The popular method for all fundamental software is to eliminate instances with any noise a technique is 

known as complete data analytics [4-6]. The evident weakness of elimation is that in case of bulk noise, it 

habitually cancels a hefty portion of the attribute, resulting to a bold loss of numerical implication. Data 

scientist is plausibly unwilling to abandon data he has spent money, effort, and time in accumulating. As 

such, most treatment techniques for the case with bulk noise have become prominent. 

Pampaka, et al [7] define missing values as the noise which is not deposited for an entity in the 

instance of interest. The complication of missing value is corporate in most researches and reflects nontrivial 

conclusions. Many types of research have attended to treat the noise and problems arisen from missing 

values, and the approaches to prevent particularly in the medical area [8]. Dziura, et al [9] introduce the 

promising approach of treating the noise is to avoid the issue by well-design the study and amassing the data 

prudently. Mallinckrodt, et al [10] are signifying to lessen the amount of noise in the scientific study. They 

propose the planning has to edge the data accumulation to researchers. This can be attained by decreasing the 

number of critical data collecting, investigations, and using the befitting visualization. Prior to the study, a 

comprehensive documentation of the research is to prepare the guide of operations including the ways to 

select the members, procedure to train the members, the noise treatment, as well as process to collect and 
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revise the data. Besides, if a trivial project is targeted before the primary collection, it may help detect the 

unpredictable complications which may arise during the research, as well as sinking the number of  

missing values. 

In repetition, bulk noise [11] cultivates whenever unrecognized characters including null, blank, and 

others have occupied any rows as shown in the table of Figure 1. Noise data can cultivate an erratic 

consequence varying from the erroneous dataset to nonresponsive execution. Virmani, et al [12] introduce a 

clustering algorithm based on K-means in order to rally results for users over social networks. The K-means 

algorithm per se allows the researcher to fix the K value. The paper based on the fixed figure of K improves 

70% in similarity experiment. Shi, et al [13] investigate an innovative algorithm to opt the fitness calculation 

to the union function in K-Means algorithm. Results based upon the combination of these functions afford a 

better comprehensive document. Wartana, et al [14] introduce a Fuzzy-based algorithm to increase the 

security and stability of the power system. It proves that the fuzzy algorithm is supporting the decision 

making more effectively than the genetic algorithm. Manoj et al [15] propose the predictive framework based 

on the neural network model for optimal performance of the reusability of the code. The least square 

algorithm also is used to obtain optimization in order to calculate and confirm the highest reliability.  

Bulk noise represents any unreadable and useless data which is collected unintentionally, but 

obscures. Suresh et al [16] treat a denoised process to improve the spectral of satellite image. These Gaussian 

noises are contaminating not only corrupted problems such as hardware or software incompatibility but also 

processing vulnerabilities such as no further execution, or no operation, or failure. A bulk noise can ruin the 

classifying process of the dataset. In this case, bulk noise worsens the stability analysis and remains an 

excessive risk. To denoise satellite images is critical for improving the visualization of images and for easing 

supplementary analysis and its processing tasks. 

 

 
 Total Amount 

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 

Trans A 10234 XX  *&^  
Trans B      

Trans C 234.6 CH 9076  !!! 

Trans D   AZX   
Trans E 342.46   @# N/A 

 

Figure 1. An Example of Noise Pattern. Blank Indicates that the Value is Missing 

 

 

The objective of the research is to investigate the accuracy of the regression model for bulk noise 

data using MOA [17]. In the analysis, a large portion of noise is found to be above fifty percent of the total 

size of the dataset. This is called, "bulk noise" which is illogical fluctuation due to attribute which is not able 

to be accounted for. Bulk noise will be considered from practical points of view. The noise part thus needs to 

be detected in order to break through the failure in manipulation. Next, the proposed algorithm will treat 

these noises then prediction results from simulation are collected to legalize the accuracy. Finally, the 

correctness of the proposed treatment will be compared with the actual data. 

 

 

2. RELATED WORK 

Conservative statistical computation and software count on collected instances in an indicated 

framework for entire cases. For a lengthy time, the missing data is explained as the „unknown‟ of 

computation. Although most cases experience missing value and require treating the problem in some 

techniques, there is absolutely nothing found in the literature or practical guidance. It is so far because none 

of the widely used methods have any concrete calculations. A method for dealing with the missing values is 

presented [18] as the temporal data is unsurprisingly recurring using different discretization techniques. The 

concept of exclusion or inclusion of: a temporal sequence of the data, classification label, and managing of 

stream data for temporal data discretization is applied. The prerequisite is that data needs to persist. The 

authors [19] present the regression models where the primary relationship embraces interaction expressions. 

A linear framework with one fully witnessed predictor is considered. Then the conditional distribution of 

interaction expression and the missing covariance is applied for examining the performance of multiple 

imputations. Other techniques which can be employed by adjusting multiple imputation software to 

outperform in spite of incompatibilities between underlying relationships among the attributes and 

framework assumptions are investigated. 
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Nonetheless, the experiment in this research does not shadow any approaches as mentioned earlier. 

The proposed treatment begins with the unwanted bulk noise classification. After that, the proposed 

algorithm repairs all unwanted elements in the dataset by obtaining a local optimal solution at each 

computing step and chooses the best solution in view of global impacts. Note that even if the single element 

of noise in the dataset can impede the data running unless the exclusion of the noise. The existing two 

algorithms, namely, Mean Variables (MV), and Random Imputation (RI) are applied for repairing noise with 

substitution. Thus, the computation costs which are inclusive of searching time for bulk noise removal and 

algorithm run time will be cited. These two algorithms are compared with actual values to reflect their 

precisions. The experimental results using MOA simulation are collected to check the accuracy between 

existing and proposed algorithms. The awaiting outline of the research is as follows. In section III, bulk noise 

conditions are introduced. Section IV explains the performance results of the proposed algorithm from 

experimental perspective. Section V finally outlines the conclusion of the research. 

 

 

3. BULK NOISE CHARACTERISTICS 

Characteristics of bulk missing values are discussed, datasets with bulk noise are illustrated in this 

section. Note that a few entries of noise can crook a dataset as the whole. Bulk noise can develop much 

higher impact than ever as it can certainly create faults during data compiling or storing. A noise blocks the 

insight extraction in data curation, which can result in the aborted deep learning operation. It can be 

frantically complex to leverage the faults. As such, to classify and treat the noise data are a must to overcome 

the constraint. In this research, the overwhelm case of noise in the dataset is studied. Bulk noise revenues the 

attendance of noise in the dataset to be outside 50%. The convolution is to quest systematically where the 

bulk noise accompanies. The search concludes the essence of the bid of noise treatment. To terminate bulk 

noise, the deterministic dataset at hand for execution is assumed. In this research, a split-and-repair is taken 

on by expecting that a dataset D can be split into two parts: a minor but clean part, Dc and a bulk noise part, 

Dn. In the noisy environment (Dn ≥ Dc), the assumption is more representative. However, in case of the 

gigantic dataset, to purge bulk noise is ascending up the split-and-repair time correspondingly. The 

simulation on the dataset with bulk noise displays the sufficient performance accordingly.  

A general approach to deal with bulk noise data is to purge all instances containing the noise. But, 

the technique as such will not iron out the bulk noise problem as, only a Dc remains. Not to mention, 

removed instances can affect the ongoing data curation. To screen Dn in the dataset, the existent bound of the 

noise is presumed. Then, optimization is probable on the simulation.  

The split-and-repair method for Dn is a main target of the research as bulk noise unless purging can 

discontinue further data analytics. Two approaches for estimating data for Dn which are Mean Variables 

(MV), and Random Imputation (RI) have been introduced. Let D be a dataset matrix which contains a rows 

and b columns, while n represents instances affected by noise, in which n is always less than a (n < a and 

Dn1, Dn2, Dn3,…, Dn(b-1), Dnb) for each n = 1, 2, 3,…, a. The D matrix is expected to be a deterministic 

set. An element Dnb is set of the noisy element whenever {Dij = ɸ || ∞, 1 ≤ i ≤ a; 1 ≤ j ≤ b}. Remark that in 

case of bulk noise, n ≥ a/2. The dataset with bulk noise is called troubled dataset. Hence, the proposed 

treatment to revolve the hazard and continue the analysis by applying the estimated vector En is described in 

the next section.  

The split-and-repair strikes out noise which can be screened by an impaired filtering, but eliminated 

instances can hamper the analytics. Noise can misinterpret to negative, inducing data science to keep on with 

fault decision (a type one error). In order to assure data analysis, these Dkb must be definitely denoised. It is 

crucial to detach Dn, particularly for the bulk noise where n ≥ a/2, any techniques have to stress on a 

remaining minor fraction of the whole dataset. This research motivates the proposed algorithm for bulk noise. 

The simulation is based on the regressive model with ten synthetic datasets. In the individual experiment, the 

simulation is run for the proposed algorithm, Mean Variables (MV) and Random Imputation (RI) after 

denoising. The results from three treatments will be compared to those actual data in the subsequent year. 

 

 

4. RESULTS AND ANALYSIS 

The MOA simulation is designated for analyzing ten datasets. The investigation of a regression 

model for bulk noise level (n) is performed. The study is deployed on an Intel® Core ™ i5 CPU, 1.60 GHz 

Processor and 8 GB RAM on board. The datasets are diverse in file size, instances, and attributes. 

 

4.1.   Correlation Coefficient (COEF) 

The COEF is one of the metrics in the statistics. It is a useful analysis which calculates the power 

concerning connections and variables. In statistics, this coefficient refers as the R-test. It defines how 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 17, No. 1, January 2020 :  543 - 550 

546 

powerful connection among two variables is. The figure ranges between 1.0 and -1.0. If the figure is negative 

then, it determines if one declines, the other rises. Also, if the figure is positive, then it earns both of them 

either lessen or grow collectively. The computation for this metric can be found in [20]. 

 

4.2.   Mean Square Error 

Mean squared error (MSE) [21] is one of many types in statistics to enumerate the differences 

among the sample and population awaited by a regression model. The lower the MSE, the nearer to the best-

fit curve is concluded. The MSE clarifies the standard statistical metric of the dissimilarity among 

observation and forecast. The different figure is calculated by the targeted data over the error in the forecast. 

A dataset in a working set drops the error value for the experiment dataset. Fault rate for training dataset will 

be comparatively higher than that of the experiment set. If any two algorithms produce the like mean absolute 

error then MSE is deployed for a decision, which is the optimum answer.  

 

4.3.   Mean Absolute Error 

The mean absolute error (MAE) [21] is a figure deployed to evaluate the fussy forecasts. The MAE 

is an average of the absolute figure of faults and can be defined as model evaluation statistics.  

 

4.4.   Mean Variables (MV) 

Mean value criterion [22] is to assign data for all n instances. Apply the split-and-repair to the D 

dataset and classify Dn, a dataset comprises of n instances with noise. Any n rows of the matrix D possess an 

element dij with noise data where {dij = ɸ || ∞, 1 ≤ i ≤ n; 1 ≤ j ≤ b} then the row is swapped by the MV for 

estimated En dataset as listed in (1): 

 

    
 

|   |
∑    

  

     
 (1) 

 

The investigation of the MV is that it is an acceptable forecast for a parameter out of a normal 

distribution. This treatment somehow induces a volatile unfairness. Not to mention the MV is led by the 

slanted replacement as well as cultivates the size of state space.  

 

4.5.   Random Imputation (RI) 

Utilize several imputations at random for replacement. Analogous to the above MV, the split-and-

repair is applied to the targeted D dataset and results a dataset with n instances. Any n rows of the matrix D 

possess an element dij with noise data where {dij = ɸ || ∞, 1 ≤ i ≤ n; 1 ≤ j ≤ b} then the row is switched by the 

RI for estimated En dataset. The minimum likelihood found in column j (where j = 1, 2, 3,…,b) is marked by 

d(min)j where d(min)j = Min (dnj) for each n = 1, 2, 3,…, (a-n). Likewise, the maximum likelihood of 

column j (where j = 1, 2, 3,…,b) is defined by d(max)j where d(max)j = Max (dnj) for each n = 1, 2, 3,…, (a-

n). The substitution for estimated En dataset with multiple imputations for n instances in each column j is 

randomly explained as follows: 

 

        [               ] (2) 

 

4.6.   Proposed Algorithm 

The proposed algorithm works straightforwardly, as described in the following stages. The dataset 

will be split into Dc and Dn. The Dc portion is assumed to provide the solution. In general, it is the split-and-

repair approach. The successful calculation to cover up Dn in every fractional step imposes on the fruitful 

calculation of every subsolution. This is called the optimal features as an optimal solution can be made out of 

optimal subsolutions. To reach accomplishment at each partial step, the proposed algorithm contemplates the 

subsolution data only at that partial step. Namely, the decision of each fractional step the proposed algorithm 

makes is based on a global consequence. This will complete a global policy to obtain the optimal 

characteristic and is sufficient to compromise decisive goal. As a metaphor, it‟s analogous to doing the chess 

by keeping thinking ahead more than one move, and finally scoring the game. The proposed algorithm needs 

no complex decision rule as it only deliberates all the available subsolutions at each stage. There is not 

necessary to calculate feasible decision inferences then the computation cost is about O(ab). The proposed 

algorithm is summarized in Figure 2. 

State space is nontrivial to reflect the speed of computing complexity. In this research, the 

computation cost is derived, corresponding to the performance assessment. It is deceptive any forecasts are 

problematical if the computation cost is extraordinary as depicted in Table 1. Note that in case of bulk noise, 

a is always smaller than 2n. 



Indonesian J Elec Eng & Comp Sci  ISSN: 2502-4752  

 

Proposed algorithm for Regression-based prediction with bulk noise (Chanintorn Jittawiriyanukoon) 

547 

Proposed Algorithm      
 

Require: Data matrix  [D]xy with x rows and y columns 

Ensure:[D]xy , S = all potential solutions in each computation step = {  
 , …,   

 },   
  

= centroid of the attribute y,   
  = candidates in each computation step, Pr = 

a premium solution where Pr(Sy) ≥ 0 and Sy   St 
for I = 1  to x do 

for J = 1  to y do 

 

  
  ← 0 

            for k = 1  to  S  /** All solutions computation **/ 

Fk = arg                 

/** Solution  Fk and corresponding Ck **/ 

end for 

 for n = 1  to  S  /** Choose best solution **/ 
Δn= |Fn-Cn| 

end for 

   
  = arg                          /** A new best for this computation 

step **/ 

Return    
     /** Regression-based computation **/ 

 

end for 

end for 

 

Figure 2. Proposed algorithm 
 

 

Table 1. Computation Complexity of Proposed Method 
Treatment Computation Complexity 

MV O(ab) + O(ab-bn) ≈ O(ab) 

RI O(ab) + O(2(ab-bn)) ≈ O(ab) 

PROPOSED O(ab) + O(2(ab-bn)) ≈ O(ab) 

 

 

In this research, the split-and-repair strategy is proposed in order to handle the bulk noise. The 

strategy will split and repair the bulk noise portion prior to the forecast. Another model-based strategy will 

rather review the algorithm per se to leverage the noise before the use of the parametric forecast. The latter 

strategy can be found in either ANCOVA [23, 24] or PSPP application, which relates countless imputations 

for interchanging the noise. While the split-and-repair technique [25] gears prospect data to consideration. 

The model-based algorithm is somehow complex, and the user‟s skill is obligatory as it has been profoundly 

designed to replicate the parametric one. The error values of ten divergent datasets using MOA at noise value 

ranging from 50% to 80% are examined. This is a primitive analytics toward the nominated datasets, and all 

results are shown in Table 2-5. The three errors in the table distinguish the correlation coefficient (COEF), 

the mean squared error (MSE), and mean absolute error (MAE) individually. Dataset#2 gives lowest figure 

for COEF, MSE and MAE. The regression-based forecast is depicted in Table 6. 

 

 

Table 2. Forecast with Mean Absolute Error for Ten 

Different Datasets (N = 0.5) 
Dataset COEF MSE MAE 

1 0.31 17.2 14.2 

2 0.08 1.83 1.61 

3 0.29 28.7 24.9 
4 0.17 30.2 26.3 

5 0.28 67.4 57.3 

6 0.79 3.08 2.3 
7 0.14 49.1 37.9 

8 0.32 12.7 10.2 

9 0.04 15.7 13.6 
10 0.2 20.1 14 

 

Table 3. Forecast with Mean Absolute Error for Ten 

Different Datasets (N = 0.6) 
Dataset COEF MSE MAE 

1 0.2 17 14 

2 0.01 1.83 1.54 

3 0.34 28.7 25.2 
4 0.16 26.3 24 

5 0.30 71.2 60.9 

6 0.79 3.07 2.29 
7 0 48.6 37.8 

8 0.35 12.5 10 

9 0.15 15.6 13 
10 0.24 20 14.3 
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Table 4. Forecast with Mean Absolute Error for Ten Different Datasets (N = 0.7) 
Dataset COEF MSE MAE 

1 0.3 17 14.1 

2 0.18 1.81 1.59 
3 0.34 28.7 25.2 

4 28.8 0.28 25 

5 0.19 71.2 61.5 
6 0.79 3.08 2.29 

7 0.01 48.9 38.5 

8 0.35 12.5 10 
9 0.07 14.9 12.9 

10 0.21 20.1 14 

 

 

Table 5. Forecast with Mean Absolute Error for Ten Different Datasets (N = 0.8) 
Dataset COEF MSE MAE 

1 0.37 17.35 14.58 

2 0.18 1.82 1.59 

3 0.34 28.7 25.2 
4 0.17 30.2 26.3 

5 0.02 69.3 59.4 

6 0.8 3 2.23 
7 0.32 49.5 37.9 

8 0.35 12.56 10 

9 0.31 14.5 12.6 
10 0.21 20.1 14 

 

 

Table 6. Regression-Based Forecast for Ten Datasets 
Regression-based Forecast 

D
A

T
A

S
E

T
 

1 X9=0.838X3+24.56 
2 X12= -0.117X2+3.89 

3 X4=1.78X7+147 

4 X1=6.34X3-6.2X5-50.3 
5 X6=0.28X2+0.23X3+1284.3 

6 X7= 0.36X4+0.18X5+0.21X6 -18.09 

7 X1=5.3X4+0.23X5+110.6 
8 X3= -82.7X2+0.07X5+422.7 

9 X6=-1.27X2+624.53 

10 X7= -1.4X1+1.3X3-1.4X5-0.4X4-18.5 

 

 

Tables 7-10 disclose an average error for the regression-based model associating to the authentic 

data. In this research, ten dissimilar datasets are studied at the divergent noise level (n) is extending from 

50% to 80% as charted in Table 7-10 correspondingly. In very cases of the forecast from the proposed 

method, the error is lowest. Moreover, in case of bulk noise, the computation complexity for all three 

treatments is akin. It concludes the proposed method is the utmost effective algorithm for bulk  

noise analytics. 

 

 

Table 7. Average Percentage of Error for Ten Different Datasets (N=0.5) 
n = 0.5 

Dataset MV RI PROPOSED 

1 14.15 14.16 13.67 

2 16.03 16.22 15.83 
3 17.6 16.9 15.66 

4 35.27 36.5 24.7 

5 32.5 35.4 7.4 
6 10.23 18.14 9.9 

7 51.4 58.5 41.3 

8 13 13.9 11.8 
9 54.5 62 46 

10 17.71 17.23 15.23 
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Table 8. Average Percentage of Error for Ten Different Datasets (N=0.6) 
n = 0.6 

Dataset MV RI PROPOSED 

1 14.08 14.21 13.65 

2 16.08 16.28 15.83 
3 17.6 16.9 15.66 

4 35.2 36.5 24.2 

5 28.3 30.4 6.4 
6 10.95 23.15 10.1 

7 51.2 49.9 37.5 

8 13.1 13.6 11.8 
9 54.9 60.8 47.1 

10 20.76 20.73 18.29 

 

 

Table 9. Average Percentage of Error for Ten Different Datasets (N=0.7) 
n = 0.7 

Dataset MV RI PROPOSED 

1 14.22 14.06 13.52 

2 16.08 16.2 15.72 
3 17.6 16.9 15.66 

4 35.2 36.5 24 

5 27.4 29.6 5.32 
6 12.07 29.4 11.1 

7 51 51.1 39.3 

8 13.1 14.3 11.9 
9 52.3 53.1 41.6 

10 23.5 21.39 18.95 

 
 

Table 10. Average Percentage of Error for Ten Different Datasets (N=0.8) 
n = 0.8 

Dataset MV RI PROPOSED 

1 13.98 14.69 13.44 
2 16.08 15.97 15.62 

3 17.6 16.9 15.66 

4 35.2 36.5 24 
5 27.4 28.9 4.52 

6 11.9 30.2 11.6 

7 51.4 49.3 38 
8 13.1 13.3 11.8 

9 55.5 54.4 44.2 

10 21.06 18.5 17.6 

 

  

5. CONCLUSION 

In this paper, conventional algorithms for treating noise are imperfect. Under the certain condition, 

they seriously harvest both standard error and biased parametric forecast. Not to mention, the conservative 

imputations, MV and RI mechanisms, yield severe average error figures. The proposed mechanism is proven 

to be a benign choice when forecasting regression models for which optimum solution is concerned. It also 

exhibits the benefit of not demanding the extra computation cost. Next move will investigate other different 

imputations, so that the suitable suboptimal solution in each computation phase will be further investigated. 
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