
Indonesian Journal of Electrical Engineering and Computer Science

Vol. 15, No. 2, August 2019, pp. 1076~1085

ISSN: 2502-4752, DOI: 10.11591/ijeecs.v15.i2.pp1076-1085 1076

Journal homepage: http://iaescore.com/journals/index.php/ijeecs

Towards machine learning-based self-tuning of

hadoop-spark system

Md. Armanur Rahman1, Abid Hossen2, J. Hossen3, Venkataseshaiah C4, Thangavel Bhuvaneswari5,

Aziza Sultana6
1,3,4,5Faculty of Engineering and Technology, Multimedia University, Malaysia

2Faculty of Computing and Engineering, Khulna University, Bangladesh
6Faculty of Computing and Engineering, Dhaka International University, Bangladesh

Article Info ABSTRACT

Article history:

Received Sep 21, 2018

Revised Feb 1, 2019

Accepted Feb 25, 2019

 Apache Spark is an open source distributed platform which uses the concept
of distributed memory for processing big data. Spark has more than 180

predominant configuration parameter. Configuration settings directly control
the efficiency of Apache spark while processing big data, to get the best
outcome yet a challenging task as it has many configuration parameters.
Currently, these predominant parameters are tuned manually by trial and
error. To overcome this manual tuning problem in this paper proposed and
developed a self-tuning approach using machine learning. This approach can
tune the parameter value when it’s required. The approach was implemented
on Dell server and experiment was done on five different sizes of the dataset

and parameter. A comparison is provided to highlight the experimented result
of the proposed approach with default Spark configuration system. The
results demonstrate that the execution is speeded-up by about 33% (on an
average) compared to the default configuration.

Keywords:

Apache spark

Big data

Machine learning

Self-tuning

Spark parameter

Copyright © 2019 Institute of Advanced Engineering and Science.
All rights reserved.

Corresponding Author:

Md. Armanur Rahman,

Faculty of Engineering and Technology,

Multimedia University, Jalan Ayer Keroh Lama,

Melaka, 75450 Bukit Beruang, Malaysia.

Email: arman.bdmail@gmail.com

1. INTRODUCTION

The improvement of the mobile network, e-commerce, the social network is continuously and vastly

increasing which results in the increment of a number of internet users. The increasing number of internet

users constantly generates huge content of data for future use. According to an indication by IDC by the end

of 2020, the amount of digital data will be more than 44 ZB [1-3]. The existence of big data cannot be denied

with the current state of the digital world. Recently, big data technologies gained huge concentration with the
evolving of big data in the sectors such as government, academia, and industries. The traditional computing

system cannot offer the necessary efficiency and performance. Therefore, the big data industries have seen

various platforms such ad Spark [4], Haddoo [5, 6] and Strom [7] to entertain the demands of a large amount

of big data processing. Apache spark is one of the most widespread frameworks among the prevailing

distributes framework, due to its great capability to sustenance heavy applications and for complex data

processing performance [2, 4]. The most popular processing platforms in is Apache Spark which offers high-

level API in scalar, python, and Java [8]. In the spark, the system has more than 180 parameters that require

to adjust manually for each individual application in order to increase applications functionalities [9]. It is

the only operational and retiring method to enrich the capability. In one hand, the huge number of parameter

space offers a lot of chances to improve prominent proficiency by tuning parameter carefully. Then again, it

is very tough to tune abundance of parameters because of the complex interaction among parameters [10].

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Towards machine learning-based self-tuning of hadoop-spark system (Md. Armanur Rahman)

1077

We have developed a novel approach using machine learning which can self-tune the parameter value while

processing big data.

Whatever remains of this paper is structured as follows. The details of Apache spark and related

work are provided in section 2 and 3 accordingly. Section 4 described the steps of methodology. The Block

diagram of the novel approach are presented in section 5. The result and analysis is presented in section 6.

The conclusion of the paper and suggestion is described in section 7.

2. BACKGROUND OF APACHE SPARK

In the big data industries, Apache Spark is the greatest acknowledged open source platform which
declares the great idea of using “Resilient Distributed Datasets (RDDs)” [4]. RDDs permits rapid considering

of the huge data size extracting distributed memory. The key feature of Apache Spark is RDD that is

characterized by a read-only entities collection assigned among various machines. An RDD can explicitly

store data in the cache memory set by the user for several times and reuse it in parallel nature as the

MapReduce does. RDD has the characteristics of tolerating fault through an extraction notation. RDD can

rebuild the lost partitions of data as it has the sufficient information about the origin of the data. RDDs are

considered as the well-suited for diverse of applications [11-14]. The spark cluster framework is

demonstrated in the Figure 1 framework.

Figure 1. Spark Physical Cluster

The Apache Spark consist with a driver node which is corresponding to a master node and a number

of workers node which are a reporter to slave nodes. All the worker nodes are managed by the driver node

through a process named worker daemon process. The worker daemon process helps worker’s nodes to

communicate with driver node as well as to manage local executors. Each application comprises of multiple

one driver and multiple executors. Each application comprises with one drive and a number of executors.

The driver process runs the key jobs of the application and generates SparkContext. Each worker nodes

perform either one or more Executor backed process while initiating and supervising instance is

accomplished by a single Executorbacked. An executor accomplishes a group of the thread which tracks each

of the jobs as a single thread. However, the execution time of a definite job in the Apache platform rely on

various aspects such as the volume of input, CPU speed, data type, size of memory, the number of nodes,

design and implementation of the system, parameter configuration, and so on. The execution time in Apache

Spark platform may differ obviously in each individual job based on these aspects.

3. RELATED WORK

In the present years, one of the hottest research is performance optimization of big data due to the

wide big data transformation analytics platform. Nevertheless, most of the prevailing researches have been

conducted on either MapReduce (MR) computing framework or Hadoop-Spark platform. Starfish uses

simulation and a cost-based model to look for required employment setup for the workload of MR. AROMA

[15] exploits an optimization context as well as a two-stage ML to reset resource distribution and job

configuration keeping in mid heterogeneous clouds. The authors of [16], point out that Hadoop scheduler in a

Client Node

Driver

Spark

Context

Master Node

YARN
Resource

Manager

HDFS
Name

Node

Worker Node

YARN

Node

Manager

HDFS Data Node

Block

Cache

Partition

Executor

Task

Worker Node

YARN

Node

Manager

HDFS Data Node

Block

Cache

Partition

Executor

Task

Worker Node

YARN

Node

Manager

HDFS Data Node

Block

Cache

Partition

Executor

Task

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 15, No. 2, August 2019 : 1076 - 1085

1078

heterogeneous situation can result in serious performance reduction and thus they proposed an alternative

scheduler titled Longest Approximate Time to End.

In [17] a concentration was seen for examining diverse resource consumption consequence for a

different set for Map and reduce slots. These difficulties have been solved by [18] over a system named

“Profiling and Performance-Based System (PPABS)” that can auto-tune tune Hadoop configuration setting

by reducing the needs of application performance. The key contribution of [18] is modifying widespread

KMeans++ cluster along with simulated strengthening algorithm that was required to adjust to MR paradigm.

Reference [18] recommends simplifying this issue by an engine which proposes the configuration for a new
analytical task intelligently and timely. In order to discover the correct configuration in which the past job

performed well, this engine was embedded into the modified k-nearest neighbor (KNN). However,

researching the Apache Spark performance optimization is still the beginning stage. A simulation driven

prediction model to estimate job performance with high perfection for Apache Spark is presented in [19].

Their proposed model predicts the execution time and memory usage of the Spark system in the situation of

defaults parameters. The authors of [20] presented that “Support Vector Regression” (SVR) is computing

effective with high accurateness. Based on their findings, it allows concluding that utilizing automatic

parameter tuning can provide improved performance compared to Starfish with using relatively few

parameters.

4. METHODOLOGY

4.1. Data Collection

In order to train and test our proposed system, we have collected two input data, target time and

dataset size by processing Puma beanchmark. Wordcount job was initiated to collect the input data by

changing parameter and their values for different dataset sizes. A number of 3000 data sample data was

collected for training and testing to the machine learning model. The data was separated into 80:20 for

training and testing respectively.

4.2. Parameter Selection

In this proposed work, we have selected five configuration parameters which are exposed in Table 1.

In this table defaults parameter shows the values with default setting and the range of the parameters are

shown by the column named range. Parameter range is used to reduce the process time and to maximize
performance when the parameters can not tune automatically as needed. Parameter selection is an important

issue for the research of this arena. By considering the notable facts, five parameters have been selected.

First, these five parameters are available almost in all existing resources of the clusters that generally

includes memory, CPU disk and so on. The second thing that the selected parameter can play a significant

role for both scheduling and shuffling modules. Thirdly, different levels of clusters are impressively affected

by these parameters [21, 22].

Table 1. Selected predominant parameter
Parameter Description Default Range

“spark.driver.cores” Number of cores to use for the driver process 1 1-8

“spark.driver.memory” Amount of memory to use the driver process 1g 1g-4g

“spark.executor.cores” Number of cores to use for the executor process 1 10-40

“spark.executor.memory” Amount of memory to use per executor process 1g 2g-8g

“Spark.reducer.maxSizeInFlight” Maximum size of map outputs to fetch simultaneously from each reduce task 48m 24m-96m

4.3. Flowchart

To develop this approach we made two process one is for model making and another one is the-

prediction. Figure 2 shows the model making flowchart. The flowchart includes the required machine
learning libraries, train data, test data, model defined, model compile, model fit with train data, predict the

model with test data and model save. Figure 3 Prediction flowchart shows how the optimum parameter

values are predicted using the model generated earlier and saved in the disk. It incorporates the following

steps: load desired dataset; provide input values of predefined target time and dataset size; load the generated

model; predict the optimum parameter range using model; receive and update the optimum parameter values

in Spark system; start processing the desired dataset and after execution is done reset default values in Spark.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Towards machine learning-based self-tuning of hadoop-spark system (Md. Armanur Rahman)

1079

Figure 2. Flowchart of Model Making

Figure 3. Flowchart of Prediction

4.4. Linear Regression (LR)

LR is one in all the foremost ordinarily used strategies for prediction. the method is precisely

specified by an equation [23-27]:

𝑌𝑖 = β0 + β1 𝑋𝑖1 + ⋯ + β𝑝 𝑋𝑖𝑝 + ε𝑖 (1)

where Yi is the output in the ith trail with i = 1,…,n, where n denoted as the trial size, the values Xi1, Xi2,…,

Xij is the observed value of the jth of p, j=0,…,p independent variables related with the ith output, the non-

observable random variables ε1, ε2,…, εn are random error term with E {ε} = 0 and variance 2 σ2{εi}= σ2 and

βj are unidentified parameters to be assessed. The procedure can be demonstrated by:

𝑌�̂� = β0 + β1 𝑋𝑖1 + ⋯ + β𝑝 𝑋𝑖𝑝 (2)

Different type of methods subsist to get the regression coefficient, βj, the most well-known approach
is “ordinary least squares” (OLS). By using OLS, the regression coefficient approximations are completed by

expressing the measurements in the matrix form, for expediency, (p +1) is defined as p′.

npnpnnn

p

p

n
XXXX

XXXX

XXXX

Y

Y

Y

::
*

1

1

1

2

1

1

0

321

2232221

1131211

2

1

 (3)

 (n*1) (n * p′) (p′ *1) (n*1)

The OLS yields to equation (4), which gives the least squares estimate βˆ of the parameter set.

�̂� = (𝑋𝑇 𝑋)−1 𝑋𝑇𝑌 (4)

To calculate the coefficient of the regression model, it is necessary to weigh the model’s validity. In

order to examine this, we have employed commonly used r2 fit. The quantity of r2 provides the degree for

which the linear relationship among variables and a set of predictors are able to justify the variance in the

variable. In other words, r2 demonstrates the total proportion of variation in y which is described by the fitted

Start

Import ML Library

Split data into input

(X) and output (Y)

variables

Define Base Model

Train model with
train data

Predict the model

with test data

Compile the Model

Save Model on Disk

Stop

Load

Training

Data

Start

Load Unprocessed

Dataset

Set Predefined

Target Time and

Dataset Size

Load Model from

Disk

Start Processing the
Unprocessed Dataset

Update Predicted

Parameter Range

Set back default

parameter value

Predict Optimum
Parameter Value

Stop

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 15, No. 2, August 2019 : 1076 - 1085

1080

model. For example, 0.9 means that the variation of 90% can be expressed by the LR model. The r2 is

calculated as follows

𝑟2 =
𝑆𝑆𝑅

𝑆𝑆𝑇
=

∑ (�̂�𝑖− �̅�)2𝑛
𝑖=1

∑ (𝑌𝑖− �̅�)2𝑛
𝑖=1

 (5)

where The Sum of Squares Regression (SSR), The Total Sum of Squares (SST), �̂�𝑖 is the estimated value for

Yi , i.e., �̂�𝑖 = 𝛽𝑇𝑋𝑖 ⋅ r
2 is always between 0 and 1. We utilized to evaluate whether the statement in which the

linear model can be fitted historic data was effective or not. As we know that a regression model adopts that

the quantity errors are independent and Gaussian. Thus, it is projected that the fragments are typically

distributed [28-29].

4.5. Model development

We develop this linear regression model by using Keras, Tensorflow and Pycharm. Keras is a library

of Tensorflow. In development, the required machine learning libraries from Keras are imported. The train

and test data are loaded and kept in X_train, Y_train, and X_test variables respectively. X_train contains two

training values which are data size and execution time which are collected manually by parameter tuning.

Likewise, X_test variable holds the test data size and execution time. The train and test dataset are loaded

into the model. After that, the base model is compiled. Then X_train and Y_train data are fitted. After that,

the base model predicts the accuracy of X_test data. The accuracy, and loss are printed for analysis (Figure
4). The model accuracy is 95.7% for training data and 94.3% for testing. After satisfactory accuracy we

saved the model on disk for prediction (Figure 5). One model is saved for one parameter. Therefore, it has

altogether 5 models that were constructed by changing Y_train with five different parameters.

Figure 4. Model Accuracy and Loss in Train and Test Cases

Figure 5. Generated Machine Learning Model

4.6. Prediction
For prediction of optimum parameter values using the stored models, a prediction algorithm is

developed. For prediction, machine learning libraries are imported and the desired dataset is loaded. After

that, two inputs (dataset size and predefined target time) are given as argument values. Then, the stored

driver_cores_model.h5

driver_memory_model.h5

executor_cores_model.h5

executor_memory_model.h5

reducer_maxSizeInFlight_mode
l.h5

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Towards machine learning-based self-tuning of hadoop-spark system (Md. Armanur Rahman)

1081

model is loaded and input data is fitted into the model to predict the optimum parameter value. The Optimum

parameter value is predicted based on input data (dataset size and predefined target time) using the stored

model (Figure 6). In this process, only one parameter value is predicted. Therefore, the same process is to be

repeated for the remaining parameters.

Figure 6. Prediction of Parameter Value Using Stored Model and Arguments

Once the optimum parameter value is obtained, the corresponding default value in the Spark system

is updated with this value (Figure 7). Then, the Spark system starts processing the given dataset using the

predicted optimum parameter values. After completing the process, another function is developed for

resetting the parameter to its default value in Spark.

Figure 7. Predicted Optimum Parameter Value Updated in Spark

4.7. Test Bed

The novel approaches have been implemented on a testbed comprising of Dell PowerEdge R720

server. The server is furnished with Xeon(R) CPU E5 v2 @ 2.6Ghz 16 core processor 32 GB PC3 memory,

Intel(R). Ubuntu Linus version 17.10 is used by the server with Hadoop 2.8.1. The novel approach can be run

either in an independent system or on a virtual machine (VM). As listed in Table 2, the wordcount job was

run in the Spark system for five different datasets which are 70, 120, 170,220, and 270 GBs. The datasets

were chosen from PUMA benchmark. In Table 1 five predominant parameter configuration is displayed.

Table 2. Selected datasets for this work
Datasets Size Benchmark Spark Program

70 GB

Puma Benchmark Wordcount

120 GB

170 GB

220 GB

270 GB

Load Models

& Arguments

data

driver_memory_model.h5

executor_cores_model.h5

executor_memory_model.h5

reducer_maxSizeInFlight_model.h5

driver_cores_model.h5 Parameter 1 Value 5

Parameter 2 Value 5g

Parameter 3 Value 40

Parameter 4 Value 8g

Parameter 5 Value 85m

Parameter 1 Value 5

Parameter 2 Value 5g

Parameter 3 Value 40

Parameter 4 Value 8g

Parameter 5 Value 85m

“spark.driver.cores” = 5

“spark.driver.memory” =5g

“spark.executor.cores” =40

“spark.executor.memory” =8g

“spark.reducer.maxSizeInFlight” =85m

Spark System

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 15, No. 2, August 2019 : 1076 - 1085

1082

5. BLOCK DIAGRAM

Training block gathers training data from a dataset and formulates these data for model creation. The

model generation block obtains this data and creates the model according to the definition of model LR and

stored the model on the disk in the predefined location for later use. The block named ‘model assessment’ is

used to evaluate and test the saved model. ‘Predicted parameter value’ is used to get output that is the

parameter range as a real value. The update block in the Spark system is responsible for receiving and

updating real values in the Spark system. The block diagram of approach is illustrated in Figure 8.

Figure 8. The block diagram of this approach

6. RESULT DISCUSSION

In this part consist of the novel approach efficiency, capability and system performance speedup.

6.1. Efficiency of Novel Approach

Figure 9 illustrations wordcount job execution time with the novel approach and default

configuration for a variety of dataset sizes. It is observed that the execution times of wordcount are

significantly lower compared to default parameter configuration which is independent of dataset size such the

range is from of 70 to 270 GB.

Figure 9. The figure shows a comparison between novel approach and default configuration

6.2. Self-tuning capability and execution time speed-up
To assess novel approach ability of self-tune, the Spark parameters as per the different of input

dataset size, we run a Spark wordcount programme for five datasets such as (70, 120, 170, 220 and 270 GB)

56.39

91.21

125.33

165.41

208.59

38.21
64.11

82.79
105.98

136.89

0

50

100

150

200

250

70 120 170 220 270

E
x
e
c
u

ti
o

n
 T

im
e
 i

n
 (

m
in

)

Dataset Size in (GB)

With Default Configuration With Novel Approach

Training Data

Generate Model

Model Assessment

Store Model

Predicted Parameter
Value receive

Predicted Optimal
Value Update in Spark

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Towards machine learning-based self-tuning of hadoop-spark system (Md. Armanur Rahman)

1083

with default parameter value and with our developed novel approach. Table 3 presents the execution times

for each of the 5 input dataset and the corresponding predicted optimum parameter value. It can be observed

from Table 3, to process mention datasets, the default parameter configuration of Spark takes 56.39, 91.21,

125.33, 165.41 and 208.59 minutes for dataset sizes 70, 120, 170, 220 and 270 GB respectively. But our

novel approach takes 38.21, 64.11, 82.79, 105.98 and 136.89 minutes accordingly. The results show (Table

4) that independent of the dataset size and the execution times obtained with the novel approach are

significantly lower than default configuration.

Table 3. Predicted optimum parameter value

 Parameters Name Parameter

Default

Value

Parameter

Range

Value

Predicted

Parameter

Value for

50GB

Predicted

Parameter

Value for

100GB

Predicted

Parameter

Value for

150GB

Predicted

Parameter

Value for

200GB

Predicted

Parameter

Value for

250GB

“spark.driver.cores” 1 1-8 2 3 6 6 6

“spark.driver.memory” 1g 1g-4g 3g 3g 4g 4g 6g

“spark.executor.cores” 1 10-40 20 30 30 35 40

“spark.executor.memory” 1g 2g-8g 3g 3g 5g 5g 6g

“Spark.reducer.maxSizeInFlight” 48m 24m-96m 48m 60m 60m 70m 80m

Table 4. Time Saved

Executed with default

Configuration

Executed with ASSPM

system
Time Saved

Data Size Execution Time (Min) Execution Time (Min) In Min

70 GB 56.39 38.21 18.18

120 GB 91.21 64.11 27.1

170 GB 125.33 82.79 42.54

220 GB 165.41 105.98 59.43

270 GB 208.59 136.89 71.7

7. CONCLUSION

A novel approach is presented in this paper, for self-tuning configuration of Spark parameter to
increase its performance for big data processing. Our developed approach estimates the optimal range for five

nominated parameters and updates Apache Spark beforehand the start of processing. The method was applied

on Dell PowerEdge R720 server using different sizes of datasets. The experimented result shows, typical

performance is increased 33% related to the default configuration. The improvement is noticed with the

increase of dataset size. For selecting more suitable parameters utilizing better servers we are still doing

research.

REFERENCES
[1] Profile U S, “The Digital Universein 2020: Big Data,” Bigger Digital Shadows, and Biggest Growth in the Far

East-United States, pp. 1-7, 2013.
[2] Anagnostopoulos I., et al., “Handling big data: research challenges and future directions,” J. Supercomput., vol. 72,

pp. 1494-516, 2016.
[3] McKinsey and Company, “Big data: The next frontier for innovation, competition, and productivity,” McKinsey

Glob. Inst., vol. 156, 2011.
[4] Bhattacharya A. and Bhatnagar S., “Big Data and Apache Spark : A Review,” pp. 206-10, 2016.

[5] Kaur I., et al., “Research Paper on Big Data and Hadoop,” vol. 8491, pp. 50-3, 2016.
[6] Rahman M. A., et al., “A Survey of Machine Learning Techniques for Self-tuning Hadoop Performance,” Int. J.

Electr. Comput. Eng., vol. 8, pp. 1854, 2018.
[7] V. D. Veen J. S., et al., “Dynamically scaling apache storm for the analysis of streaming data,” Proc. - 2015 IEEE

1st Int. Conf. Big Data Comput. Serv. Appl. BigDataService, pp. 154-61, 2015.
[8] Drabas T. and Lee D., “Learning PySpark,” vol. 273, 2017.
[9] Wang G., et al., “A Novel Method for Tuning Configuration Parameters of Spark based on Machine Learning,”

2016.

[10] Herodotou H., et al., “Starfish: {A} Self-tuning System for Big Data Analytics {CIDR},” 2011 Fifth Bienn. Conf.
Innov. Data Syst. Res. Asilomar, CA, USA, Online Proc., pp. 261-72, 2011.

[11] Gupta A., et al., “Big Data Analysis Framework Using Apache Spark and Deep Learning.”
[12] Jonnalagadda V. S., et al., “A Review Study of Apache Spark in Big Data Processing,” vol. 4, pp. 93-8, 2016.
[13] Karau H., et al., “Learning.”

 ISSN: 2502-4752

Indonesian J Elec Eng & Comp Sci, Vol. 15, No. 2, August 2019 : 1076 - 1085

1084

[14] Parsola J, et al., “Post Event Investigation of Multi-stream Video Data Utilizing Hadoop Cluster,” Int. J. Electr.
Comput. Eng., vol. 8, pp. 5089, 2018.

[15] Lama P. and Zhou X., “AROMA: Automated Resource Allocation and Configuration of MapReduce Environment

in the Cloud,” Proc. 9th Int. Conf. Auton. Comput. - ICAC’12, vol. 63, 2012.
[16] Zaharia M., et al., “Improving MapReduce Performance in Heterogeneous Environments,” pp. 29-42.
[17] Wu D. and Gokhale A., “A self-tuning system based on application profiling and performance analysis for

optimizing hadoop mapreduce cluster configuration,” 20th Annu. Int. Conf. High Perform. Comput. HiPC, pp. 89-
98, 2013.

[18] Zhang R., et al., “Finding the Big Data Sweet Spot : Towards Automatically Recommending Configurations for
Hadoop Clusters on Docker Containers,” pp. 365-8, 2015.

[19] Wang K. and Khan M. M. H., “Performance prediction for apache spark platform,” Proc. - 2015 IEEE 17th Int.
Conf. High Perform. Comput. Commun. 2015 IEEE 7th Int. Symp. Cybersp. Saf. Secur. 2015 IEEE 12th Int. Conf.

Embed. Softw. Syst. H, pp. 166-73, 2015
[20] Yigitbasi N., et al., “Towards machine learning-based auto-tuning of MapReduce,” Proc. - IEEE Comput. Soc.

Annu. Int. Symp. Model. Anal. Simul. Comput. Telecommun. Syst. MASCOTS, pp. 11-20, 2013.
[21] Gounaris A. and Torres J. “A Methodology for Spark Parameter Tuning Big Data Res,” vol. 11, pp. 22-32, 2018.
[22] Angelov P., et al., Conference I and Data B 2016 Advances in Big Data.
[23] Sunthornjittanon S., “Linear Regression Analysis on Net Income of an Agrochemical Company in Thailand,” 2015.
[24] Gustafsson A. and Wogenius S., “Modelling Apartment Prices with the Multiple Linear Regression Model,” 2014.
[25] Fallis A., “A Multiple Linear Regression Model to Predict the Student’s Final Grade in a Mathematics Class,” J.

Chem. Inf. Model, vol. 53, pp. 1689-99, 2013.
[26] Cook R. D. and Weisberg S., “Simple Linear Regression,” pp. 97-138, 2008.
[27] Joseph P. J., et al., “Construction and Use of Linear Regression Models for Processor Performance Analysis,”

Twelfth Int. Symp. High-Performance Comput. Archit., pp. 99-108, 2006.
[28] Baran M. E., et al., “Load estimation for load monitoring at distribution substations,” IEEE Trans. Power Syst., vol.

20, pp. 164-70, 2005.
[29] Lim H. L. and Brown R. H., “Gas Load Forecasting Model Input Factor Identification Using A Genetic

Algorithm,” IEEE, pp. 670-3, 2001.

BIOGRAPHIES OF AUTHORS

Md. Armanur Rahman received the B.Sc. degree in computer science and engineering from

Asian University of Bangladesh (AUB) in 2010. He is currently working toward the MEngSc
degree at the Multimedia University (MMU), Malaysia. His research interest include
performance optimization of big data system, data mining, machine learning and image
processing.

Abid Hossen is a Serving as Vice President at Information Technology division of National

Bank Limited of Bangladesh. He received a B.Sc. In Computer Science and Engineering from
Khulna University (KU) and pursing his M.Sc in Industrial and Production Engineering from
Bangladesh University of Engineering and Technology (BUET). During his 18 years carrier in
IT of different bank, he implemented different IT project successfully. His area of interest is IT
Security, Big data, Artificial Intelligence and Cloud Computing.

Dr. Jakir Hossen is graduated in Mechanical Engineering from the Dhaka University of
Engineering and Technology (1997), Masters in Communication and Network Engineering from
Universiti Putra Malaysia (2003) and PhD in Smart Technology and Robotic Engineering from

Universiti Putra Malaysia (2012). He is currently a Senior Lecturer at the Faculty of Engineering
and Technology, Multimedia University, Malaysia. His research interests are in the area of
Artificial Intelligence (Fuzzy Logic, Neural Network), Inference Systems, Pattern Classification,
Mobile Robot Navigation and Intelligent Control.

Indonesian J Elec Eng & Comp Sci ISSN: 2502-4752

Towards machine learning-based self-tuning of hadoop-spark system (Md. Armanur Rahman)

1085

Dr.Chinthakunta Venkata Seshaiah received his Bachelor of Engineering (B.E.) Degree in
Electrical Engineering from S.V. University, Andhra Pradesh, India, in the year 1964.He
received Master of Engineering (M.E) degree in High Voltage Engineering from Indian Institute

of Science, Bangalore in 1966. He received his Ph.D. degree in Electrical Engineering (in the
area of Power Systems) in 1976 from I.I.T. Madras. Later, he worked in the same institute till
2005. He was appointed as Professor of Electrical Engineering in Jan.1993. In 2006, he joined
the Faculty of Engineering and Technology, Multimedia University (Melaka) Malaysia and is
with them presently as Associate Professor. His research interests are in the areas of Electrical
Power Systems, High Voltage Engineering and Instrumentation,Power Electronics and its
application to green technology solutions,Electic Power quality improvement and Electrical
energy conservation, Power efficient devices and Big data analytics.

Dr.T.Bhuvaneswari is a Lecturer in the Faculty of Engineering and Technology, Multimedia
University (MMU), Melaka. She obtained her PhD in Electronics Engineering from Multimedia

University in 2013. She earned her Master of Engineering in Applied Electronics with
Distinction from Bharathiar University, India in 2001 and Bachelor of Engineering in Electrical
and Electronics Engineering (First class) from Bharathiar University, India in 1998.She has 22
years of overall teaching experience.Her research interests are digital system design, VLSI,
FPGA, Solar power controller design and bioinformatics.

Aziza Sultana received the B.Sc. degree in computer science and engineering from Dhaka
International University (DIU) in 2016. She is currently searching an oopertunity to continue her
higher study. Her research interest include performance optimization of big data system, data

mining, machine learning and image processing.

