Fuzzy logic control of two switch & three switch serial input interleaved forward converters

R. Lakshmi, K. Karunanithi, P. Chandrasekar
Department of Electrical & Electronics-Engineering,
Vel Tech Rangarajan Dr. Sagunthala R & D Institute of Science & Technology, India

ABSTRACT
This manuscript manages F-L-C of “two-switch & three-switch-interleaved-forward-converters” with DC-engine-load. Numerous modern applications require DC-power. This forward-converter convert's unregulated DC-capacity to controlled DC-control. It contains high recurrence transformer which is additionally called ‘isolation-transformer’. This gives disconnection among load & fundamental-circuit. The AC-control is amended utilizing half-wave-rectifier. The swell in the yield is separated utilizing pi-filter. FLC is intended for two-switch and three-switch-forward-converter-systems. The simulation is completed by utilizing MATLAB-simulink. The controller execution is considered for different estimations of load-torque for both two-switch & three-switch-forward-converter-frameworks.

Copyright © 2019 Institute of Advanced Engineering and Science. All rights reserved.

1. INTRODUCTION
DC to DC-converters (with disengagement) convert one DC voltage level to another, by putting away the input energy briefly and afterward discharging that energy to the yield at an alternate voltage level. The energy can be put away in the attractive field storage segments (inductors, transformers) or electric field storage parts (capacitors). “This transformation technique is more valuable-than direct-voltage-control which disperses-undesirable-power as- warmth”. The aptitude is enlarged by the ‘utilization of intensity-FETs’, which works at high -recurrence than ‘power-bipolar-transistors’. ‘DC-DC-converters’ are vital in convenient-electronic gadgets, for ex., ‘phones & PC which are afforded with-power from-batteries’.

Galvanic-isolation is the standard of disengaging functional segments of electrical framework by keeping the moving of the charge conveying particles starting-with one-segment then unto-the-next, i.e. “there is electric-flow-streaming specifically starting with one-area then onto-the-next”. Energy and additionally data can in any case be traded between the segments by different means e.g. “capacitance, 'inductance electromagnetic-waves, 'optical, acoustic/mechanical” means. Such a rule is utilized in these DC to DC converters (with isolation). Two sorts of converter with galvanic segregation are Fly back converter and Forward converter. -Forward-converter is a “switched-mode power-supply”(SM-PS) circuit that is utilized for generating-segregated & controlled-DC-voltage from the unregulated-DC input supply. Uses of these forward converters are Power supply for DC engine, Battery charging, Battery worked Electric vehicle, Telecom applications and so on.

Nowadays Electronic DC-DC converter plays an important role in the field of power electronics and control. Forward DC-DC converter has number of benefits over other DC-DC converter and forward converter becomes beneficial for high power applications. Therefore different topologies have been proposed
[1-12] for various applications. Some of those topologies are of renewable type and few of them are regenerative type. Fuzzy logic controller (FLCs) which is suitable for power system dynamic studies caused by power electronics converter. Because fuzzy logic controllers (FLCs) can handle complex systems in a simple way without knowing much about the systems mathematical model, they are widely used for a wide range of applications [13-17].

To improve the dynamic response of closed loop DC to DC forward converter system suitable Fuzzy Logic controller is used. A detailed study on time domain specifications is done between Fuzzy controlled two switch and three switch converter and the results are tabulated. In this work, the execution of FLC with two-switch and three-switch forward converter is assessed.

2. PROPOSED METHOD

The block-diagram of forward converter with FLC is appeared in Figure 1. Forward converter changes over unregulated DC capacity to controlled DC control. It contains high recurrence transformer which is additionally called isolation- transformer. This gives segregation among load and principle circuit. As the recurrence expands, the extent of the transformer diminishes. Since the transition diminishes with the expansion in the recurrence of the transformer. The power switches BJT, control MOSFET, IGBT and so on can be utilized for forward converter planning. Since the qualities of the MOSFET are quick exchanging and voltage driven, it is decided for the power exchanging in this structuring prerequisite.

![Block-Diagram of Forward-Converter-system with-FLC](image)

Figure 1. “Block-Diagram of Forward-Converter-system with-FLC”

2.1. DC-Load

The Yield-power is normalized by direct-current-power which can be exploited for- applications like speed-control of the motor, battery-charging, tele-communication, computers, robotics, cellular-phones, electrical-drives & other applications which requires DC- power.

2.2. Fuzzy-Controller

A FLC is a controlling-technique used to control the system, that explores input-values- FLC-system are mapped by sets-of membership functions. “Membership-purposes” can portray-realistic-complications. Membership-functions are symbolized by graphical-plots.

3. RESEARCH METHOD

3.1. Open-Loop-Controlled Three-Switch-Forward-Converter with Motor-Load

The open-loop-control of ‘three-switch-DC-DCconverter’ is summarized in Figure 2. The scopes are correllated to verify yield. An ‘input--300V dc-power’ is applied to the ‘open-loop-system’. The 3 switch-forward converter as 3-switches (T1, T2 & T3) -which-turns -on, transmit-energy-through-the-transformer-primary-into-the-secondary. ‘On-the-secondary, the forward- rectifying diode-conducts & conveys the energy into the yield- filter & load’. DC input- voltage is represented in Figure 3 its value is 300Volts.

Since the most fundamental necessity of DC Motor (DCM) is that it ought to pivot at the coveted speed for consistent speed applications. Another execution prerequisite for DCM is that it must quicken to its steady state speed when it turns on. Open-loop-&-closed-loop-operation of the dc-motors is executed by using two-switch & three-switch-forward-converter. The speed & torque of the Open-loop controlled three-switch-forward-converter with motor-load is represented in the Figures 4 and 5. The speed settles at 1.1sec & torque settles at 0.9 sec.
Figure 2. Open-loop control of ‘three-switch forward-converter’ with motor-load

Figure 3. Input-voltage

Figure 4. Motor-speed

Figure 5. Motor-Torque

Fuzz logic control of two switch & three switch serial input interleaved forward converters (R.Lakshmi)
3.2. Closed-Loop-Controlled-Three Switch-Forward-Converter with FL-Controller

FLC have additional benefits when evaluated to additional classical-controller like simplicity of control, little price & the possibility to plan. The FLC is intended to control motor-speed by utilizing error & its change. Forward converter have nonlinear trademark because of the parasitic components, polarizing inductance of the transformer and due-switching of the converter. With the end goal to defeat this disadvantage the structure of FLC is presented. FLC is a basic control technique comprises of fuzzy-sets that permit partial enrollment and “if, then” rules, to take care of a control issue. The FLC comprises of Fuzzifier, Decision making device and Defuzzifier. In which Fuzzifier changes over information into linguistic qualities, Decision making device comprises manage base i.e. control rules and the linguistic factors and the Defuzzifier changes over control activities in to crisp signals which can be connected to signal-comparator. The execution of the driver framework was assessed. Figure 6 delineates the closed-loop controlled three-switch forward-converter with FLC.

![Diagram](image)

Figure 6. Closed-loop-controlled three-switch forward-converter with FLC

Fuzzy controllers are intended to conform to changing working focuses. FLC is intended to control the speed of the DC engine with the set esteem i.e. 300 RPM utilizing Mamdani style fuzzy-inference-framework. The triangular participation capacities are picked at end focuses to think about varieties in information and yield factors. For the inputs same membership functions are picked and are appeared in Figure 7. A membership-function is a plot that characterizes the info space mapping to a membership-value somewhere in the range of 0 and 1. The guidelines utilize the info enrollment esteems as weighting components to decide their impact on the fuzzy yield sets of the last yield end. When the capacities are depicted, scaled, and joined, they are defuzzified into a fresh yield. Here, FIS type is mamdani, FIS name is tuty, two information variable and one yield variable is utilized. Figure 7 demonstrates the input-variables & output-variable.

![Diagram](image)

Figure 7. Input-variables & output-variable

Figure 8 represents the 'membership-functions of input-variable-1'. Figure 9 symbolizes the 'membership-functions of the-input-variable-2' & Figure 10 symbolizes the 'membership-functions of the-output-variable.'

![Image](image1)

Figure 8. The membership-functions of input-variable—1

![Image](image2)

Figure 9. The membership-functions of input-variable—2

The 'FCS (forward-converter--system) with FLC' had controlled the speed of the DC-motor by driving it to run at desired-speed'. For 'various-value-of change-in-load-torque', the 'time- specifications-of-speed-waveform' is analyzed. The speed & torque of Closed-loop controlled three-switch forward-converter with FLC is represented in the Figure 11 and Figure 12.

![Image](image3)

Figure 10. The membership-functions of output-variable

3.3. Open-Loop-Controlled-Two-Switch-Forward-Converter-With Motor-Load

The circuit is modelled utilizing the fundamentals of simulink & the simulation is executed using matlab. "Two-switch-serial-input interleaved-forward-converter with motor-load" is presented in Figure 13. The energy in the upper-capacitor is transmitted to the transformer-T1 & the energy in the lower-capacitor is transmitted to the transformer-T2. They stepup the voltage & the secondary-voltage is rectified using an uncontrolled-rectifier.

Fuzz logic control of two switch & three switch serial input interleaved forward converters (R.Lakshmi)
The speed & torque of the Open-loop controlled-two switch forward-converter with motor load is delineated in the Figure 14 and Figure 15. The speed settles at 1.9 sec & torque settles at 3.1 sec.

Figure 11. Motor-speed

Figure 12. Motor-Torque

Figure 13. “Open-loop-control of-two-switch-forward-converter-with motor-load”

Figure 14. Motor-speed
3.4. Closed-Loop-Controlled-Two-Switch-Forward—Converter-With-FL-Controller

The F.L.C is intended to ‘control-motor-speed of the two-switch-forward-converter’. The set-value of the speed is 300RPM. "The-performance of the driver-system was assessed". Figure 16 characterizes ‘the-closed-loop-controlled-two-switch-forward-converter’ with FLC.

The "speed &-torque of Closed-loop-controlled-two-switch forward-converter with FLC” is represented in the Figure 17 & Figure 18.
4. RESULTS AND DISCUSSION

The “maneuver of three-switch-forward-converter with DC-motor-load controlled by FLC” is studied on the basis of the time-domain-specifications such as rise-time, settling-time & error for the speed-waveform which is evaluated under the various-value of change in torque-applied to the DC-motor. From the Table 1 it is scrutinized that the value-of rise-time, peak-time & error. With augment in the load-torque, ‘the response of the FLC’ is better & the speed of the motor-settles at 300Rpm with a smaller-amount of time.

<table>
<thead>
<tr>
<th>Change in Torque</th>
<th>Rise-time (s)</th>
<th>Settling-time (s)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.145</td>
<td>0.945</td>
<td>0.3</td>
</tr>
<tr>
<td>3.5</td>
<td>0.14</td>
<td>0.95</td>
<td>0.25</td>
</tr>
<tr>
<td>4</td>
<td>0.135</td>
<td>0.995</td>
<td>0.2</td>
</tr>
<tr>
<td>4.5</td>
<td>0.13</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>5</td>
<td>0.12</td>
<td>1.03</td>
<td>0.16</td>
</tr>
</tbody>
</table>

The ‘operation-of-two-switch-forward-converter-with-DC-motor-load’ controlled by FLC is studied. From the tabulation Table 2 it is monitored that fast response is attained in two-switch forward-converter when compared to that of three-switch-forward-converter-in terms-of rise-time & settling-time for the same-value of change-in load-torque. But error is elevated in case of two-switch-forward-converter-system.

<table>
<thead>
<tr>
<th>Change in Torque</th>
<th>Rise-time (s)</th>
<th>Settling-time (s)</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.094</td>
<td>0.442</td>
<td>0.3</td>
</tr>
<tr>
<td>3.5</td>
<td>0.096</td>
<td>0.44</td>
<td>0.4</td>
</tr>
<tr>
<td>4</td>
<td>0.097</td>
<td>0.445</td>
<td>0.26</td>
</tr>
<tr>
<td>4.5</td>
<td>0.1</td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>0.105</td>
<td>0.46</td>
<td>0.21</td>
</tr>
</tbody>
</table>

5. CONCLUSION

The “FL-controlled-two-switch & three-switch-serial-input-interleaved-forward-converters” are modeled & simulated using MATLAB-Simulink. From the outcome, it is concluded that F.L.C have-better controlling in ‘two-switch-forward-converter’ when evaluated with ‘three-switch-forward-converter-system.’ Smooth-variation is possible by utilizing FLC and fast response is achieved within short-time. The simulation-results are in line with the predictions. The contribution of this work is to categorize suitable-converter & controller for DC-DC-conversion.

The scope of this work is the design & implementation of fuzzy-controlled two-switch & three-switch-forward-converter. The investigations with P.R.C and S.M.C based TSIFC will be done in future.

REFERENCES

